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A REMARK CONCERNING UNIQUENESS 
OF THE WOLD DECOMPOSION 

OF FINITE-DIMENSIONAL STATIONARY PROCESSES 

KAREL HORAK, VLADIMIR MULLER, PAVLA VRBOVA 

(Received June 11, 1985) 

Summary. The uniqueness of the Wold decomposition of a finite-dimensional stationary 
process without assumption of time-containedness is proved. As a corollary the correspondence 
between the Wold decomposition of full rank stationary process and the Lebesgue decomposition 
of its spectral measure is easily obtained. 

Key words: Stationary process, Wold decomposition, spectral measure. 

AMS Classification: 60 G 10, secondary 47 B 15 

1. INTRODUCTION AND PRELIMINARIES 

An orthogonal decomposition of a stationary process into the regular and singular 
parts was established for the first time by H. Wold [7]. A more abstract form which 
points out the operator-theoretical nature of the fact can be found in [1] (cf. also 
[5]). It may seem to be little surprising that the natural assumption of the so-called 
time containedness of the regular part is of no importance for the uniqueness of the 
decomposition in the one-dimensional case. In fact, the same argument applies to 
stationary processes generated by a set of elements for which the regular part is 
n-dimensional. The proof requires elementary Hilbert space geometry only. 

As a consequence of the uniqueness theorem we obtain a new and more elementary 
proof of the correspondence between the Wold decomposition of a full rank station
ary process and the Lebesgue decomposition of its spectral measure. 

Let Jf be a Hilbert space. We shall denote by P(%) the orthogonal projection 
of 3/IC onto a closed subspace 2E of ^f. All projections are considered to be orthogonal. 

A sequence (fn)nez °f vectors in Jf is called a (discrete time) stationary process 
if the scalar products (fnJm) depend of the difference n - m only, i.e. 

(fn + k,fm + k) = (fnJm) for all H, m, k G Z . 
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Since an analogous relation holds for linear combinations of vectors fs it follows 
that there exists a unitary operator U acting on the whole space ffl which satisfies 

Ufn = /-,+1 or equivalents Unf0 = f„ 

for all neZ, and U is uniquely determined on the reducing subspace containing 
Vf/, the closed linear span of allf,.. Conversely, given a unitary operator U e B(#f) 

JeZ 

and an x e Jf, the sequence (f„ = Unx)„eZ is a stationary process. The above con
sideration allows us to introduce the following definition. 

1.1 Definition. A triplet (jf, U, x), 3tf a Hilbert space, U e B(j^) a unitary 
operator and x e Jf, is called a stationary process. 

Similarly, a double sequence (/J)M6Z, i = 1, 2, ..., N, of vectors from 2tf is called 
a finite dimensional stationary process if the Gram matrix (/i,/;(,) Jj-a i depends 
on the difference n — m only. Obviously, we can use the same reasoning as before 
so that the following definition describes the more general situation. 

1.2 Definition. Let U e B(jf) be a unitary operator and X a subset of Jf. Then 
(^f, U, X) is called a stationary process. 

Consider now a stationary process (^f, U, X), X c ^f. Denote by EX(HX) the 
smallest invariant (reducing, respectively) subspace of U* containing X, i.e. 

00 

Ex = V UkX , Hx = V UkX . 
k^O & = - c o 

The restriction U* | Ex is an isometry so that the Wold decomposition applies. 
In other words, the space Ex can be decomposed into a direct sum of two subspaces 
reducing with respect to U* | Ex, 

Ex = (n UhEx) ® ((Ex Q U*EX) ® U*(EX Q U*EX) ® ...) , 

so that the restriction of U* to the first subspace is a unitary operator and the re
striction to the second is a unilateral shift of multiplicity dim (Ex Q U*EX) g dim 
span X (see [5], p. 4). 

Let 0tx = n UkEx, and denote by fFx the wandering subspace, # ' x = Ex Q 
k^O 

Q U*EX. We shall also use the notation M+(^x) = ® Uk&x and M(^x) = 
k^O 

= © Vk!Fx. 
— 00 

Moreover, this decomposition is unique in the following sense: if Ex = M?
1 ® 3tf2 

and U* | Jf j is unitary and U* | ^f 2 is a unilateral shift then ^ \ = 0tx and #e2 = 
= M+(<FX). 

Clearly, 

Ex = M+(FX) ®0tx, Hx = M(&x) ® 0tx . 
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1.3 Definition. A stationary process (jf, U, X) is called singular if Ex = Hx. 
It is called regular if &x = {0}. 

If we denote Q = 1 - P(3tx) then QU = UQ and Q(X) c M+(^x) e £3, 
Since QU = UQ the subspaces HQX and H(l„Q)x are orthogonal and x = Q* + 
+ (1 - Q) x for each x e l Further, the process (J4?, U, QX) is regular and 
(tf, U, (1 - Q) # ) is singular. Indeed, 

E(1-Q)X = VUn P(mx) X = clos (P(@x) V UnX) = clos (P(#*) E r ) = 
и _ 0 

= clos ( P ( ^ ) Hx) = clos (P(^a-) V WSt) = V t/" P(.»») X = H{1. 
nєZ 

Q)%-

Since 2 J" _ M + ^ a ) we also have EQX <= M + ^ ^ a n d 

^ - n Ufc£ear _ n U* M + (> , ) = {0} 
fc^O 

On the other hand, it follows from the uniqueness of the Wold decomposition 
that if P is any projection such that it commutes with U, maps X into Ex, (J4?, U, PX) 
is regular and (ffl, U, (1 — P) X) singular, then P | Hx = Q [ Hx. We can now 
sum up these facts in the following definition. 

1.4 Definition. Let (jf, U, X) he a stationary process. The only pair of stationary 

processes (j^, U, QX) and (ffl, U, (1 — Q) X) is called the Wold decomposition 

of (JP9 U, X), if 
1° Q is a projection such that QU = UQ and QX cz Ex, 

2° (jf, U, QX) is regular and (jff, U, (1 - Q) X) is singular. 

2. THE UNIQUENESS OF DECOMPOSITION 

We shall use a slightly modified version of the Wold decomposition based on the 
fact that a bilateral shift of finite multiplicity cannot contain a bilateral shift of higher 
multiplicity (see [5], Proposition 2.1). Precisely, if Wis a unitary operator and ££u S£2 

two wandering subspaces of Wsuch that M(^t) cz M(S£2)
 a n c* dim«_f x = dim ££2 < 

< oo then M(&t) = M(&2). 

The inclusion QX cz Ex in condition 1° of 1.4 implies EQX cz Ex and has a natural 
meaning: "the past" of the regular part in the Wold decomposition depends on 
"the past" of the initial process only. Nevertheless, it may be replaced by a weaker 
one. 

2.1 Proposition. Let (jf, U, X) be a stationary process. Then there exists an ortho

gonal projection Q such that 

1° QU = UQ, Q% cz Hx, 
2° (jf9 U, QX) is regular with dim # Q X = dim &x and (jff, U, (1 - Q) X) 

is singular. 
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Conversely, if dim &% < co and Q satisfis 1° and 2° then (jf, U, Q%), (jf, U, 
(1 - Q) X) is the Wold decomposition of(jf, U, %). 

Proof. It is easy to see that Q = 1 — P(0t%) also satisfies dim £FQ3C = dim &$. 
To prove the second part of the assertion let us consider a projection Q satisfying 

1° and 2°. Condition 1° implies HQX a H%. Using the singularity of (tf, U, 
(1 - Q) X) we have 

E% c EQ3r © E(1_Q)5r = EQdc © H(1_Q)ar 

and, for neZ, 

UnEv cz U*EQ3C © UnH(l„Q)v = UnEQ2e © H(1_Q)a-. 

Condition 1° and regularity of (jf, U, Q%) imply 

mx = n U"^ c ( n UWFQ^) © H(l_Q)v = H(i-Q)<r = Hx © HQ^, 
« _ 0 n^O 

hence M(^QX) = HQir cz H^ © ^ = M(#V). Both J^Q£r and J5^ are wandering 
subspacesof U \ HV and, by 2°, dim J 2 ^ = dim &%. If dim :F«y < oo then M(#"Q5r) = 
= M ( ^ ) by Prop. 2A of [5]. 

Clearly, g j H^ is an orthogonal projection and QHX = HQ3€ = M(#"Q5r). On 
the other hand, M(^^) = (1 - P ( ^ ) ) H^, thus Q | Hx = (1 - P{0t^) \ Hx. 
The proof is complete. 

The following example shows that if dim #V = oo, conditions 1° and 2° do not 
imply the uniqueness of the decomposition. 

2.2 Example. Consider the following double sequence of orthonormal vectors 
in a Hilbert space Jf, 

••• eo,-i eo,-i ôo ^oi ^02 ••• 
••• e i . - i «io eix • •• 

. . . e20 ... 

and define a unitary operator U e B(jf) satisfying 

Uetj = etj_! for i i_ 0 , j e Z . 

If :T = {^0 : k ^ 0} then (^f, 17, ̂ ) is clearly a regular stationary process and 
dim !P'x = oo. Let us define 

fc = 0 

The projection Q = 1 — P(^#) clearly satisfies condition 1° and we shall show 
that it also satisfies condition 2° of Proposition 2.1. By easy computation we have, 
for k ^ 0, 

P(M) ek0 = P(Ji) Ukekk = Uk P(M) ekk = 
= 2~*U* P(Ji) 2kekk = 2~*Uk P(M) e00 
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because 

2kekk - e00 J- * . 
Since 

- W r = V U*» P(M) ek0 = V U*»U* P(Jt) e00 = 
neZ neZ яєZ 
fc£0 *.= o 

- clos (PUt) V U*M-*eoo) - c l o s H*) V U*"-ke00) = 
«eZ w = :0 
fe^O fc^O 

= V U*"U* P(J() e00 = V U*" -%*) ek0 = EHM)X , 
n>(\ i. >» n « è 0 fc_;0 
fci=0 иl>0 

the process (̂ f, U, P(Jt) 9C) is singular. 
Now, we shall show that (jf, U, (1 - P(Jt)) X) is regular. If we denote by & = 

= V ekk then 
fc_:0 

HX = e £!*# • 
fceZ 

To compute 0t?(M^ we shall use the inclusion 

V*EnMLyx = Un clos (P(JiL ) E*) = clos (P(JtL) VnE<z) c UnEs v J 

and the decomposition 

U*nEs v Jt = ® (U*nEv \t Jt)r\ U*k% . 
fceZ 

For any n _ 0, we have also 

(U*nEx v ^ ) n ^ r = m v y ^ 
11=" 

so that 
U*nEx v Jt = ® (U*nEx v M) n tf**^ = © U^^U*""*^ v ^ ) n if] = 

fceZ fceZ 

= ® V*\m v V fy) © ® U*kZ . 
fc < n jHsn~"k fc|j=n 

Denoting 
fU*fc(m v V ejj) , fc < n , 

\U*k&, k^n, 

for any n > 0, we clearly have A„+i,* c A* a n d n A* = .-tr n U*k-?. The equality 
»ao 

KeZ 

now implies 

*W>* = n l/*Wx>* = £&"** V "*) ".J,® 4* c •* • 
n _: 0 — 

On the other hand, 9tnM,)X c= ̂ X s 0 t h a t **(-«->* = M a n d th« regularity of 
(Jf, U, P(Jty)%) is proved. 
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3. STATIONARY PROCESSES WITH THE SPECTRAL MEASURE ABSOLUTELY 
CONTINUOUS WITH RESPECT TO THE LEBESGUE MEASURE 

Let us now consider the Hilbert space L2 = L2(T) with the norm | f |2 = JT | / | 2 dm 
where T is the unit circle and m the normalized Lebesgue measure on T. As usual, 
denote by S the unitary operator of multiplication by eu on L2. Given a natural 
number n, we shall denote by ll(n) the Hilbert space of all w-tuplesf = (fi, ...,f„) 
with fi e L2 (i = 1, 2 , . . . , n) equipped with the scalar product (f, g) = £J=i(fj- #*)• 
Let SneB(L2(n)) be the bilateral shift operator, Snf = (Sfl9 ..., Sfn), feL2(n). 
Obviously l3(n) = M(^M) where Jt = {ey. ejk = 3jk, j , k = 1, 2 , . . . , n}. 

3.1 Definition. Ler (jf, U, 3£) be a stationary process. Denote by E the spectral 
measure of U. The set of Borel measures 

fix = {fix,y = (£(•) *, y): x,ye^} 

will be called the spectral measure of(^, U, %). We shall say that JLLX <| m (/% 1 m) 
iff fix ty 4: m (fiXtV JL m, respectively) for all x,yeSC. 

If SC consists of a single element x then the spectral measure of (J?, U, 3£) is non-
negative, fix = \E(') X \ 2 . 

If % is finite, #* = {xi9 ...., x„}, then the spectral measure of («9f, U, S£) can be 
considered as a matrix /% = (jtty)"' with nonnegative diagonal entries. 

3.2 Lemma. Let jfu Jf2 be two Hilberts spaces, Ut e B(j^^), U2 e B(j^2) unitary 
operators and 3£ c j f . If $ e B(jft9 Jf2) is an isometry such that <PUx = U2<P 
then 

1° EM = <PEX and &*x = <*>#*., 

2° ^ a r = ^I^ar* 
3° m^ = (fc^. 

Proof. 

E0X = v t/2*# = V *u\x = <*> v t/i# = <PEX 
fc<iO fc^O fcgO 

and 

&*x = £ w e U2£0*. = $EX e U2^£^ = <PEX e ^ E * = 
= $(Ex Q UXEX) = <*>.#* . 

Similarly, 

Further, 

H*x = $HX . 

hx = ^ U\E„ = n V\<PEX = n W Í E , -
fcgo itžo *go 

3.3 Proposition. Let 3C = {xl9..., xn} be a subset of ffl such that the stationary 
process (jf9 U, X) satisfies dim $FX = n and \ix < m. Then (jf, U, %) is regular. 
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Proof. Since ptJ 4 m there exist functions ftjet}(T) such that fu = d/^./dm 
(i, j = 1,..., n). Given Al9..., A, e C we have 

£A,A;ft/.) H ^ O X W go 

so that £A|A* %(•) is a nonnegative Borel measure on T which is absolutely continu
ous with respect to m. Consequently, its density EA£A*fy is nonnegative a.e. This 
implies that there exists a Borel subset (T0 of T such that ^(<f0) = 1, all functions fi7 

are defined on <J0 and £AjA*A/(0 = 0 for f e <r0, Xx,..., Xn e C. 
In other words, matrices (fij(t)) are positive semidefinite so that there exist functions 

<Pij defined on <T0 such that 

(fM-WMM*))* for ie^o-
Since 

EM')l2=/»(') 
fc=i 

for r e cr0 we have (pfy e L2(T). 
Let us now set 

<pXj = cp. = (<pJU ..., <pjn) eL
2(n) . 

The relations (xh Xj) = (<ph <pj) (i, j = 1,..., n) make it possible to define an isometry 
$ on H% with values in L2(n) which satisfies 

$Xj — $Xj and $U = S..^ . 

According to Lemma 3.2 the process (L2(n), S,., ##*) satisfies dim ^ox = n. Now, 
using Proposition 2.1 of [5] we deduce that (L2(n), S„, ^ ^ ) is regular and, conse
quently, (j^, U, St) is regular as well. The proof is complete. 

If n = 1 then there are only two possibilities: either (tf, U, x) is singular or 
dim &x -= 1. So we have 

3.4 Corollary. Let (jtf, U, x) be a stationary process satisfying \ix -4 m. Then 
it is either regular or singular. 

4. THE LEBESGUE DECOMPOSITION OF THE SPECTRAL MEASURE 

Let (<#% U, &) be a stationary process with the spectral measure /%. If P is a pro
jection which commutes with U then P also commutes with £(•) and, for x j e f , 

HXfy = (£(•) x, y) = (£(•) Px, Pjr) + (£(•) (1 - P) x, (1 - P) y) -
588 £*Pjc,Py + /^(1-P) .v,(l-P)y -

or shortly, 

A% == r̂ par + ft<i-p)x • 

Clearly /*P<r < /% and /J(i-p)<r ^ /% . 
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The spectral measure of a regular process (jf, U, X) is absolutely continuous 
with respect to m. Indeed, the unitary operator U | Hx is a bilateral shift so that its 
spectral measure is equivalent to m ([5]). It follows that the spectral measure of a non-
singular process (j^9 U, X) cannot be orthogonal to m. In other words, if fix _L m 
then (#e9 U, X) is singular. 

On the other hand, if U is a bilateral shift and X c 2tf such that Hx is reducing 
to U then (jtf, U, X) is singular and fix 4 m. In view of these considerations it is 
not unnatural to ask what is the connection between the above decomposition and 
the Lebesgue decomposition of measures fiXtV (x, y e X) into absolutely continuous 
and orthogonal parts with respect to m. 

Let X be a subset of 34?, y e Hx, and let us consider the nonnegative Borel measure 
fiy = \E(') y\2. Let the Lebesgue decomposition of fiy have the form 

fiy = fia + fX5, \ia 4, m , \xs 1 m . 
If fiy is concentrated on B then y = £(£) >> + E(BC) y and the measure 
VE(B)y•SB (£(•) -S(-5)y|2 = |F(B n -)j ; |2 is absolutely continuous while ^(Bc)y is 
orthogonal to m so that /ja = fiE(B)y and JUS = fiE(Bc)r Since subspaces reducing U 
are invariant to £(•), elements £(J3)y and E(BC) y are in Hx as well. 

Now let us define subspaces 

Jt?a = {yeHxifiy< m) , 

#es = {yeHx: fiy 1 m) . 
Both subspaces are closed, mutually orthogonal and Hx = j ^ a © jfs. The relation 

\iVy = fly implies that they are also reducing to U. 

4.1 Proposition. Let X = {xl9..., xn} be a finite subset of 2tf and let (jf9 U, X) 
be a stationary process with dim &?x = n. If (^f, U, QX), (jf, U, (1 - Q) X) is 
the Wold decomposition of(jf9 U, X) then 

/ % ~ V*Q% + /^(i-Q)ar 

15 i*he Lebesgue decomposition of the spectral measure of(j$?9 U, #*) into absolutely 
continuous and orthogonal parts with respect to m, i.e. 

^xitxj = V-Qxuxi + fi(l-Q)xitxj 

is the Lebesgue decomposition of fiXUXj, i, j = 1, 2, . . . , n. 

Proof. According to what has been said above both jfa and #es are reducing 
subspaces to U, $ea 1JT 5 and x = P(^a) x + P(^s) x for x e «". 

Obviously, HP(Jfa)3f: c jfa
? HP(^S)X c jfs and thus HP(#>a)X 1 HP(Jf,)X. Since 

fiP(Jr*)X 1 m the process (*?f, U, P(^f5) #") is singular. 
We shall show that (X, U, P(Xfl) #*) is regular. Regularity of (jf, U, Q#*) implies 

HQir c jffl, and consequently, #"# c M(«F^) = HQ3r c 2tfa. Thus we have 

&x c P(^r) F^ e U*F^ = P(^a) EX e P(e#a) U*F^ c 

c clos (P(tfa) Ex) Q clos (P(^ra) U*EX) = Fp(ara)3. 0 U*EP(#a)X m &P(jra)X. 
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It follows that dim ^>(Jf«)ir ^ dim &x = n. Moreover, \in#a)X < rn and, according 
to Proposition 3.3, (j^9 U, P(j^a) X) is regular. The decomposition (jf?9 U, P(jfa) X) 
and (jf9 U, P(#es) X) satisfies condition 1° and 2° of 2.1 so that P(tfa) X ^ QX 
and P($es) X = (1 - Q) X. The proof is complete. 
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S o u h r n 

POZNÁMKА O ЈEDNOZNАČNOSTI WOLDOVА ROZKLАDU 
KONEČN ROZMĚRҢÝCH STАCIONÁRNÍCH PROCESÜ 

KАREL HORÁК, VLАDШÍR MÜLLER, PАVLА VRBOVЛ 

V práci je dokázána jednoznačnost Woldova rozkladu konečněrozměrného stacionárního 
procesu bez předpokladu časové podřízenosti. Důsledkem je jednoduchý důkaz korespondence 
mezi Woldovým rozkladem stacionárního procesu plné hodnosti a Lebesgueovým rozkladem 
odpovídající spektrální míry. 

Р е з ю м е 

ЗАМЕЧАНИЕ ОБ ЕДИНСТВЕННОСТИ РАЗЛОЖЕНИЯ ВОЛЬДА 
КОНЕЧНОМЕРНЫХ СТАЦИОНАРНЫХ ПРОЦЕССОВ 

КАКЕ^ НокАк, V^А^IМIк МииьЕк, РАV̂ А VквоVА 

Доказьгоается единственность разложения Вольда конечномерного стационарного про
цесса без предположения подчиненности исходному процессу. Как следствие получается 
элементарное доказательство соответствия разложения Волда стационарного процесса макси
мального ранга и разложения Лебега его спектральной меры. 

АигНоп' аДАгезх; К^Ог. Каге/ Ногбк, С8с, 1ШОг. VШ^т^^ МйИег, С8с, БШОг. РаV^а 
V^ЬоVй, С8с, Магепшкку йз̂ аV С8АУ, Й ш 4 25, 115 67 Ргапа 1. 
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