
Aplikace matematiky

Bohdan Maslowski
Stability of invariant measure of a stochastic differential equation describing
molecular rotation

Aplikace matematiky, Vol. 32 (1987), No. 5, 346–354

Persistent URL: http://dml.cz/dmlcz/104266

Terms of use:
© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104266
http://dml.cz


32(1987) APLIKACE MATEMATIKY No. 5, 346—354 

STABILITY OF INVARIANT MEASURE OF A STOCHASTIC 
DIFFERENTIAL EQUATION DESCRIBING MOLECULAR ROTATION 

BOHDAN MASLOWSKl 

(Received February 20, 1986) 

Summary. Stability of an invariant measure of stochastic differential equation with respect 
to bounded perturbations of its coefficients is investigated, The results as well as some earlier 
author's results on Liapunov type stability of the invariant measure are applied to a system 
describing molecular rotation. 
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McConell [1] studied nuclear magnetic relaxetion arising from spin-rotational 
interactions of the molecules. He assumed the rotation of a molecule to be due to the 
thermal motion in a steady state and the components co^t), co2(t), co3(t) of its angular 
velocity to obey the Euler-Langevin equations 

(0.1) I id), - (I2 - I3) co2co3 = -hBiCo, + IXW± 

I2cb2 - (I3 - Ii) cotco3 = -I2B2co2 + I2W2 

I3cb3 - (Ix - I2) co±co2 = -I3B3co3 + I3W39 

where I^h^h a r e the principal moments of inertia, BX,B29 B3 the frictional con
stants and (Wu W29 W3) is a 3-dimensional Wiener process. We can write the system 
(0.1) in a more usual differential form 

(0.2) dcox(t) ^(-Bx cox(t) + bsih co2(t) co3(t)\ dt + dWx(t) 

dco2(t) =(-B2 co2(t) + ^ - = i i cot(t) co3(t)\ dt + dW2(t) 

dco3(t) « (~B3 w3(t) + ^ - i 2 a>t(t) co2(t)\ dt + dW3(t) . 
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In this paper we investigate the system (0.2) from the viewpoint of stability (which 
was suggested in MR 83m:82030). In Section 1, which is based on the previous results 
[4], [5], we show the existence of an invariant measure (stationary solution) of the 
system (0.2) and its global asymptotic Liapunov stability in the strong and the 
weak topology. In Section 2 we show the stability of the invariant measure with 
respect to bounded perturbations of coefficients of the system (0.2). 

1. INVARIANT MEASURE AND ITS LIAPUNOV STABILITY 

Consider an n-dimensional autonomous stochastic differential equation 

(1.1) d£t = b(£t)dt + <r(Cf) dwf, 

where wt is an /-dimensional Wiener process, b and a are an n-dimensional vector 
and an n x / matrix, respectively, both b and a defined on Rn. Assume that 

(1.2) \b(x) - b(y)\ + \a(x) - a(y)\ ^ KN\x - y\, KN > 0 , 

holds for all N > 0, |x| + \y\ S N. Set (ay(x)) = a(x) aT(x) and denote by 

L=(Kx),f) + i£«.,(x)-4-
\ OX) i,j OXt OXj 

the infinitesimal operator corresponding to the equation (1.1). Assume that for some 
ceR 

(1.3) LW^cP(W) 

holds on Rn9 where We C2 satisfies 

(1.4) WR = inf W(x) -* 00 for R -+ 00 
1*1.=* 

and ft e CX(W+) is a nonnegative and nondecreasing function satisfying 

du 

Í 0 1 + ß(") 
00 . 

It is known (see e.g. [2], [3]) that the conditions (1.2), (1.3) guarantee the existence 
and uniqueness (with probability 1) of a solution of (1.1) defined on R+. Denote 
by 0> the set of probability measures defined on the d-algebra 36 of Borel sets of Rn. 
Set 

St: 0> ~+ 0>, St v(A) = J P(f, x, A) v(dx) , i e j , t ^ 0 , 
JRn 

where P(t, x, A) is the transition probability function of the solution of (1.1). Let d 
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stand for a metric on & realizing the weak convergence of measures, and || • || for the 
total variation of measures. Statements in this section concern the dynamics of St 

in the spaces (SP, || • ||) and (^, d). We consider the case of nondegenerate diffusion, i.e. 

(1.5) £ a^x) aflj :> m(x) |a|2 

for all a e Rn and xeU, where U is a region in Rn and m > 0 is a continuous func
tion on U. 

A measure ji* e 0> is called invariant if Stix* = n* for all t > 0. 

Theorem 1.1. Let (1.5) be fulfilled with U == ̂ n. Then, for every e > 0 and jie@y 

such 5 > 0 can be found that 

d(Stn, Stv) < e 

holds for all t — 0 and v e £P such that d(fi, v) < 5. 

Theorem 1.2. Assume that (1.5) is fulfilled with 

U = URo = {xeRn, \x\ <R0} 

for some R0 > 0 and let there exist a function Ve C2(Rn), V >. 0, satisfying 

(1.6) LV= - a V + £ 

for some a > 0, p > 0, and 

(1.7) VRi = inf V>£ 
HnNURj a 

for some 0 < Rt < R0. Then there exists a unique invariant measure \i* e& and 

(1.8) \Stv ~ ju*|| ->0 , t-»oo, 

holds for all ve0>. 
The proof of Theorem 1.1 can be found in [4] in a more general (nonautonomous) 

case. Theorem 1.2 has been proved in [5] as a consequence of a more general result 
based on a method developed by A. Lasota [7]. 

We shall show that the above theorems can be applied to the equation (0.2). 

Corollary 1.3. Assume that the equation (1.1) has the form (0.2). Then the as
sertions of Theorems 1.1 and 1.2 are valid. 

Proof. Set 

W(x) = i(/xx2 + I2x\ + I2x
2

3 + 1). 

Then 

LW(x) = -hBrf - l2B2x\ - I3B2x
2
3 -h i(Ix + I2 -h /3) ^ c FT(x) 
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for a suitable c > 0 and all x e R3 and hence (1.3) is fulfilled with j9(x) = x. The 
assumptions of Theorem 1.1 are clearly satisfied. Setting V= W we also see that 
(1.6), (1.7) are fulfilled for some a > 0, J? > 0 and R0 > 0. 

Remark 1.4. It is easily seen that the invariant measure /** is a Liapunov stable 
stationary point of the system St in the space (^, || • ||). Thus we have obtained the 
global asymptotic stability of pi* in the space (̂ *, || • j|) as well as in (0*f d). 

2. STABILITY WITH RESPECT TO PERTURBATIONS 

Consider the equation (1.1) whose coefficients satisfy (1.2) and (1.3) with fi(x) = x, 

LW< cW 
ì.e. 

(2.1) 

for some c > 0 and We C2 satisfying (1.4). For >/ = 0we denote by Xn the set of 
couples [5, <x] of coefficients of equations 

(2.2) dlt = B(Qdt + a(Qdwt 

satisfying (1.2) and (2.1) (with the same c and W) and such that 

sup max \bi(x) — Bt(x)\ g r\ 
x i 

and 

sup max laj/x) — ai/x)| S *\, 
x ij 

where (ay) = daT. Denote by M c &> and Jt a 0 the set of invariant measures 
with respect to the equations (1.1) and (2.2), respectively. 

Theorem 2.1. Let there exist a function u _t 0, u e C2, such that 

(2.3) lim sup {LH(x) + ř/(V дu 

ÔXІ 
(') 

l l,J 

ô2u 

дXi дxj 
(x) < 0 

for some r\ ^ 0. Then J( + 0 for all [5, <r] e Jfr 

Proof. Denote by L the infinitesimal operator corresponding to the equation (2.2). 
For [5, a] e Jfn we have 

Lu(x) ^ Lu(x) + max(|b/vx) - 5,(x)|, \atj(x) - al7(x)|) . 

ÕU , 

дXi ť) + S 
*> І,J 

Õ2U 

ÕXІ дx (4 
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By (2.3) we get 

(2.4) Lu(x) ^ — fc, |x| > K0 

for some k > 0, R0 > 0. It can be shown by a standard argument ([8], [6]) that 
(2.4) implies the existence of an invariant probability measure with respect to (2.2), 
i.e., Ji + 0. 

The next Theorem concerns the "continuous dependence" of that invariant 
measures of the equation (1.1) on its coefficients. 

Theorem 2.2. Let (2.3) be strengthened to 

(2.5) lim sup \Lu(x) + rjíj] 
R-*oo jx |=R l \ i 

ÕU 

дxi 
w — w l ì i 

ÕXІ ÕXj l/J 

- 0 0 

Consider the metric of uniform convergence and the metric d on jfn and 0>, respec
tively. Then the mapping 

0: Jfn -> exp 0> , [5, <T] i-» Ji 

is upper semicontinuous at the point \b, a]. In particular, if M = [p] contains only 
one point for all [E, <T] G Jfn (i.e. every equation (2.2) has a unique invariant 
measure), then the mapping 

W:Ж„ », d) , [E, a] H-> fi 

is continuous at /i* (the invariant measure Of(1.1)). 

Remark 2.3. The assumption (2.5) cannot be weakened to (2.3) in Theorem 2.2. 
However, it can be shown that (2.3) guarantees the "continuous dependence" of 
invariant measures if the topology on 0> is suitably weakened (cf. [6]). 

Before proving Theorem 2.2 we give a lemma. Forfe C, set 

Ttf(x)= Г P(t,x,dy)f(y), í > 0 , 

and consider a sequence \bm, am] e Xn, bm ZX b,am zX o. Let Lm, Pm(t, x, A), Tm and 
Mm have the same meaning with respect to the equations 

(2.6) d£m = bm(Cm) dt + am(Cm) dwt 

as L, P(t, x, A), Tt and Ji have with respect to (1.1). 

Lemma 2.4. Let f: Rn -> R be a bounded Lipschitzian function. Then 

Tmf(:) zXl0CTJ(-), m->oo for all r = 0 . 
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Proof. First assume b, a to be globally Lipschitzian. Let 

supmax(|fc,.(x) - bm(x)\, \atJ(x) - a?j(x)\) < e 
x i,j 

for some e > 0. It can be easily seen that 

EX\C, - C7\2 ^ K, (s2 + T EX\CS - C7\2 A 

for some Kt > 0 (independent of m). GronwalPs lemma yields 

\Ttf(x) - T?f(x)\ < K2[Ex\Ct - Cr|2]1/2 ^ eK2 V(ex" - 1) . 

It follows that T?f zX Ttf. In the case of non-Lipschitzian b, a we define (globally) 
Lipschitzian approximations b0,k, bm'k, a0,k, am,k such that 

b°-k(x) = b(x) , bm-k(x) = bm(x) for \x\ < k , keN, 

sup max \bm(x) - bm-k(x)\ < sup max \bt(x) - b°-k(x)\ 
x i x i 

and similarly with a0,k, am,k. Denoting by (w,fc and £0,fe solutions of the corresponding 
equations with the coefficients [bw,fc, am,k~\ and [b0,fc, a0,k~\, respectively, we have 

\T?f(x) - Tj(x)\ < \Exf(C7) - Exf(t
m>k)\ + 

+ \Exf(Z7>k) - Exf(£-k)\ + \Exf(C°'k) - Exf(Q\ . 

Hence it suffices to show that 

(2.7) \Exf(C7'k) - Exf(C7)\ + \Exf(C°-k) - Exf(Q\ - 0 , k -> oo , 

uniformly with respect to m and locally uniformly with respect to x. Trajectories of 
the processes £w,fc and Cw(C0,fc and Q coincide until the exist time Tm,fc(Tfc) from the 
ball |x| < k. Furthermore, by (2.1) we obtain 

PJTw,fc < t\ < *Ct W{X) 
xL " J " inf W{y) 

(cf. the proof of Theorem 3.4A in [7]) and hence (2.7) is valid. 

Proof of Theorem 2.2. Take an arbitrary sequence jxme Jim. We need to show 
that fimi -*• pi holds for some subsequence (/*„.,) and a measure jne Ji (-* stands for 
the weak convergence). First we show that the set ̂  = \}Jim is relatively compact 
in {&, d). By (2.5) we have 

M = sup sup Lw u(x) < oo . 
meN x 
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Put 

The condition (2.5) yields 

(2.8) 

VR = sup sup Lu(x) 
\x\^Rlh,<i-\e*n 

l im VR = — oo . 
K->ac 

For x e Rn, t > 0, m e N we obtain, by a standard application of Ito's formula 
and Fatou's lemma: 

EXCT) - " t o = E- f L" «(£) ds = Ex f Virftiw-IM + M) d5 . 
Jo Jo 

Hence (we can take VR < 0) 

E f'v < «(x) + M L - E ^ g ) 
--./• I 7rir m l > p i U i _• 

and thus 

(2.9) 

Since 

~ #ncsmiš.KV 
Jo ~" VR 

' «-/ „ rr X ^ ^ " t o - E,ll(CT) M 

F^s, x, R, \ UR) ás ^ - ^ *J>L£ + 

A^ff- ^ ^ R ) = í ^ *> » . ̂  t/jO /^m(dx) = í - f Pm(s, x, Rn \ UR) ds / im(dx) 
J Rn J Rn

t J 0 

foг any /гm є JГ, s > 0, í > 0, by (2.9) we get 

u(x) - EĄg) M ^ j ^ + f " w - M g W 
The second term on the right-hand side equals zero and thus 

Hm(Rn\UR)^-^-
KR 

which by (2.8) implies the weak compactness of 01. It follows that there exist a sub
sequence (/xm.) c (fim) and a measure \ie0> such that jum< -* /L It remains to show 
that 

(2.10) ľ TJåџ = Ґ 
J я„ J я, 

r , / d ^ = fdn, í > 0 , 

for any bounded Lipschitzian function /, which implies fie Jl. To show (2.10) 
we write 

i r/d/i , ., - ľ r, 
Jи„ 

-V d/.. |7T'/ - Ttf\ d/.m, + 2 sup |/ | fim,(Rn \ K) + 
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Ttfdfimt - Ttfdfil (K cz Rn compact) . 
Rn J Rn 

+ 

By Lemma 2.4 we get 

(2-11) |V'/d/ .mi^ fr,/o>. 

On the other hand, we have 

[Trfdfimt= jfd/^-» f/dAi 

which together with (2.11) implies (2.10). 

Example 2.5. For R > 0 set 

MR = sup (b(x), Cx) + i Tr(A(x) C), 
1*1-* 

where A(x) = <r(x) crT(x) and C = (ctJ) is a symmetric positive definite matrix. 
Assume that 
(2.12) lim(MK + eR) = - co 

R-+00 

holds for some s > 0. Then the assertions of Theorems 2.1 and 2.2 are valid with 
n = sjK, where K = w3/2 max \ctJ\ + 1. To prove it we can use the function u(x) = 
— i X CijXiXj. We have 

-»I 

lim sup { L « ( » + ± ( 2 E c ^ l + i l |cw|)l ^ 
R-+00 \x\=R I K i j i,j J 

^ lim sup(Lw(x) + eR) = lim(MjR + eK) = -co . 
R-+oo |:c|=R R->oo 

Hence (2.5) is fulfilled. 
We shall apply the above results to the system (0.2). 

Corollary 2.6. Assume the equation (1.1) to have the form (0.2). Then the assertions 
of Theorems 2.1 and 2.2 are valid with any n ^ 0. 

Proof. We can use Example 2.5 with ctj = 5tJIi9 i,j = 1, 2, 3. We have 

(fe(x), Cx) + i Tr A(x) C = 

= - B ^ x ? - B2I2x\ - B3I3X2 + i(Ix + I2 + I3) ^ -a |x | 2 

for an a > 0 and all |xj sufficiently large. Hence (2.12) is fulfilled with any s > 0. 

Remark 2.7. By Corollary 2.6 the invariant measure of the system (0.2) is stable 
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with respect to bounded perturbations of the coefficients, i.e., after addition of any 
bounded perturbation the new equation also possesses an invariant measure which 
differs little from the original one if the perturbation is sufficiently small. 
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S o u h r n 

STABILITA INVARIANTNÍ MÍRY STOCHASTICKÉ DIFERENCIÁLNÍ ROVNICE 
POPISUJÍCÍ MOLEKULÁRNÍ ROTACI 

BOHDAN MASLOWSKI 

Je vyšetřována stabilita invariantní míry stochastické diferenciální rovnice vzhledem k omeze
ným perturbacím jejích koeficientů. Získané výsledky a některé dřívější autorovy výsledky 
o stabilitě Ijapuncvského typu invariantní míry jsou aplikovány na systém popisující molekulární 
rotaci. 

Pe3K>Me 

yCTOÍMHBOCTb HHBAPHAHTHOH MEPLI CTOXACTHHECKOrO 
AH<D<DEPEHITHAJII>HOrO yPABHEHHJI 

OnHCBIBAÍOIUErO MOJIEKyjDIPHOE BPAIUEHHE 

BOHDAN MASLOWSKI 

HccjieAyeTCH ycTOHHHBOGTb HHBapHaHTKOH Mepbi CTOxacTHHeCKoro AH(J)<j)epeHirHajTbHoro ypaB
HeHHH npH OrpaHHHeHHBIX B03MVIHeHHaX erO K03$4>HHeHTOB. B Ka^eCTBe npHMeHefflM 3THX H HeKO-
Topnx npe3KHHx pe3yjibTaTOB aBTopa, KacaioíHHxcíi ycTOHHHBocTH .rwnyHOBCKoro Tuna, paccMaTpn-
BaeTca CHCTeMa onHCBiBaKDmaa MOJieKyjnrpHOe BpameHHe. 

Author's address: RNDr . Bohdan Maslowski, CSc., Matematický ústav ČSAV, Žitná 25, 
115 67 Praha 1. 

354 


		webmaster@dml.cz
	2020-07-02T06:23:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




