Aplikace matematiky

Bohdan Maslowski

Stability of invariant measure of a stochastic differential equation describing molecular rotation

Aplikace matematiky, Vol. 32 (1987), No. 5, 346-354
Persistent URL: http://dml.cz/dmlcz/104266

Terms of use:

© Institute of Mathematics AS CR, 1987
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

STABILITY OF INVARIANT MEASURE OF A STOCHASTIC DIFFERENTIAL EQUATION DESCRIBING MOLECULAR ROTATION

Bohdan Maslowskí

(Received February 20, 1986)

Summary. Stability of an invariant measure of stochastic differential equation with respect to bounded perturbations of its coefficients is investigated. The results as well as some earlier author's results on Liapunov type stability of the invariant measure are applied to a system describing molecular rotation.

Keywords: Stochastic differential equation, invariant measure, stability.
AMS Classification: 60 H 10 .

McConell [1] studied nuclear magnetic relaxetion arising from spin-rotational interactions of the molecules. He assumed the rotation of a molecule to be due to the thermal motion in a steady state and the components $\omega_{1}(t), \omega_{2}(t), \omega_{3}(t)$ of its angular velocity to obey the Euler-Langevin equations

$$
\begin{align*}
& I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=-I_{1} B_{1} \omega_{1}+I_{1} W_{1} \tag{0.1}\\
& I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{1} \omega_{3}=-I_{2} B_{2} \omega_{2}+I_{2} W_{2} \\
& I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=-I_{3} B_{3} \omega_{3}+I_{3} W_{3},
\end{align*}
$$

where I_{1}, I_{2}, I_{3} are the principal moments of inertia, B_{1}, B_{2}, B_{3} the frictional constants and $\left(W_{1}, W_{2}, W_{3}\right)$ is a 3-dimensional Wiener process. We can write the system (0.1) in a more usual differential form

$$
\begin{align*}
& \mathrm{d} \omega_{1}(t)=\left(-B_{1} \omega_{1}(t)+\frac{I_{2}-I_{3}}{I_{1}} \omega_{2}(t) \omega_{3}(t)\right) \mathrm{d} t+\mathrm{d} W_{1}(t) \tag{0.2}\\
& \mathrm{d} \omega_{2}(t)=\left(-B_{2} \omega_{2}(t)+\frac{I_{3}-I_{1}}{I_{2}} \omega_{1}(t) \omega_{3}(t)\right) \mathrm{d} t+\mathrm{d} W_{2}(t) \\
& \mathrm{d} \omega_{3}(t)=\left(-B_{3} \omega_{3}(t)+\frac{I_{1}-I_{2}}{I_{3}} \omega_{1}(t) \omega_{2}(t)\right) \mathrm{d} t+\mathrm{d} W_{3}(t) .
\end{align*}
$$

In this paper we investigate the system (0.2) from the viewpoint of stability (which was suggested in MR $83 \mathrm{~m}: 82030$). In Section 1, which is based on the previous results [4], [5], we show the existence of an invariant measure (stationary solution) of the system (0.2) and its global asymptotic Liapunov stability in the strong and the weak topology. In Section 2 we show the stability of the invariant measure with respect to bounded perturbations of coefficients of the system (0.2).

1. INVARIANT MEASURE AND ITS LIAPUNOV STABILITY

Consider an n-dimensional autonomous stochastic differential equation

$$
\begin{equation*}
\mathrm{d} \zeta_{t}=b\left(\zeta_{t}\right) \mathrm{d} t+\sigma\left(\zeta_{t}\right) \mathrm{d} w_{t}, \tag{1.1}
\end{equation*}
$$

where w_{t} is an l-dimensional Wiener process, b and σ are an n-dimensional vector and an $n \times l$ matrix, respectively, both b and σ defined on \mathbb{R}_{n}. Assume that

$$
\begin{equation*}
|b(x)-b(y)|+|\sigma(x)-\sigma(y)| \leqq K_{N}|x-y|, \quad K_{N}>0, \tag{1.2}
\end{equation*}
$$

holds for all $N>0,|x|+|y| \leqq N$. Set $\left(a_{i j}(x)\right)=\sigma(x) \sigma^{\mathrm{T}}(x)$ and denote by

$$
L=\left(b(x), \frac{\partial}{\partial x}\right)+\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

the infinitesimal operator corresponding to the equation (1.1). Assume that for some $c \in \mathbb{R}$

$$
\begin{equation*}
L W \leqq c \beta(W) \tag{1.3}
\end{equation*}
$$

holds on \mathbb{R}_{n}, where $W \in \mathbb{C}_{2}$ satisfies

$$
\begin{equation*}
W_{R}=\inf _{|x| \geqq R} W(x) \rightarrow \infty \quad \text { for } \quad R \rightarrow \infty \tag{1.4}
\end{equation*}
$$

and $\beta \in \mathbb{C}_{1}\left(\mathbb{R}_{+}\right)$is a nonnegative and nondecreasing function satisfying

$$
\int_{0}^{\infty} \frac{\mathrm{d} u}{1+\beta(u)}=\infty .
$$

It is known (see e.g. [2], [3]) that the conditions (1.2), (1.3) guarantee the existence and uniqueness (with probability 1) of a solution of (1.1) defined on \mathbb{R}_{+}. Denote by \mathscr{P} the set of probability measures defined on the σ-algebra \mathscr{B} of Borel sets of \mathbb{R}_{n}. Set

$$
S_{t}: \mathscr{P} \rightarrow \mathscr{P}, \quad S_{t} v(A)=\int_{R_{n}} P(t, x, A) v(\mathrm{~d} x), \quad A \in \mathscr{B}, \quad t \geqq 0,
$$

where $P(t, x, A)$ is the transition probability function of the solution of (1.1). Let d
stand for a metric on \mathscr{P} realizing the weak convergence of measures, and $\|\cdot\|$ for the total variation of measures. Statements in this section concern the dynamics of S_{t} in the spaces $(\mathscr{P},\|\cdot\|)$ and (\mathscr{P}, d). We consider the case of nondegenerate diffusion, i.e.

$$
\begin{equation*}
\sum_{i, j} a_{i j}(x) \alpha_{i} \alpha_{j} \geqq m(x)|\alpha|^{2} \tag{1.5}
\end{equation*}
$$

for all $\alpha \in \mathbb{R}_{n}$ and $x \in U$, where U is a region in \mathbb{R}_{n} and $m>0$ is a continuous function on U.

A measure $\mu^{*} \in \mathscr{P}$ is called invariant if $S_{t} \mu^{*}=\mu^{*}$ for all $t>0$.

Theorem 1.1. Let (1.5) be fulfilled with $U=\mathbb{R}_{n}$. Then, for every $\varepsilon>0$ and $\mu \in \mathscr{P}$, such $\delta>0$ can be found that

$$
d\left(S_{t} \mu, S_{t} v\right)<\varepsilon
$$

holds for all $t \geqq 0$ and $v \in \mathscr{P}$ such that $d(\mu, v)<\delta$.
Theorem 1.2. Assume that (1.5) is fulfilled with

$$
U=U_{R_{0}}=\left\{x \in \mathbb{R}_{n},|x|<R_{0}\right\}
$$

for some $R_{0}>0$ and let there exist a function $V \in \mathbb{C}_{2}\left(\mathbb{R}_{n}\right), V \geqq 0$, satisfying

$$
\begin{equation*}
L V \leqq-\alpha V+\beta \tag{1.6}
\end{equation*}
$$

for some $\alpha>0, \beta>0$, and

$$
\begin{equation*}
V_{R_{1}}=\inf _{R_{n} \backslash U_{R_{1}}} V>\frac{\beta}{\alpha} \tag{1.7}
\end{equation*}
$$

for some $0<R_{1}<R_{0}$. Then there exists a unique invariant measure $\mu^{*} \in \mathscr{P}$ and

$$
\begin{equation*}
\left\|S_{t} v-\mu^{*}\right\| \rightarrow 0, \quad t \rightarrow \infty, \tag{1.8}
\end{equation*}
$$

holds for all $v \in \mathscr{P}$.
The proof of Theorem 1.1 can be found in [4] in a more general (nonautonomous) case. Theorem 1.2 has been proved in [5] as a consequence of a more general result based on a method developed by A. Lasota [7].

We shall show that the above theorems can be applied to the equation (0.2).
Corollary 1.3. Assume that the equation (1.1) has the form (0.2). Then the assertions of Theorems 1.1 and 1.2 are valid.

Proof. Set

$$
W(x)=\frac{1}{2}\left(I_{1} x_{1}^{2}+I_{2} x_{2}^{2}+I_{3} x_{3}^{2}+1\right) .
$$

Then

$$
L W(x)=-I_{1} B_{1} x_{1}^{2}-I_{2} B_{2} x_{2}^{2}-I_{3} B_{3} x_{3}^{2}+\frac{1}{2}\left(I_{1}+I_{2}+I_{3}\right) \leqq c W(x)
$$

for a suitable $c>0$ and all $x \in \mathbb{R}_{3}$ and hence (1.3) is fulfilled with $\beta(x)=x$. The assumptions of Theorem 1.1 are clearly satisfied. Setting $V=W$ we also see that (1.6), (1.7) are fulfilled for some $\alpha>0, \beta>0$ and $R_{0}>0$.

Remark 1.4. It is easily seen that the invariant measure μ^{*} is a Liapunov stable stationary point of the system S_{t} in the space $(\mathscr{P},\|\cdot\|)$. Thus we have obtained the global asymptotic stability of μ^{*} in the space $(\mathscr{P},\|\cdot\|)$ as well as in (\mathscr{P}, d).

2. STABILITY WITH RESPECT TO PERTURBATIONS

Consider the equation (1.1) whose coefficients satisfy (1.2) and (1.3) with $\beta(x)=x$, i.e.

$$
\begin{equation*}
L W \leqq c W \tag{2.1}
\end{equation*}
$$

for some $c>0$ and $W \in \mathbb{C}_{2}$ satisfying (1.4). For $\eta \geqq 0$ we denote by \mathscr{K}_{η} the set of couples $[\bar{b}, \bar{\sigma}]$ of coefficients of equations

$$
\begin{equation*}
\mathrm{d} \bar{\zeta}_{t}=\bar{b}\left(\bar{\zeta}_{t}\right) \mathrm{d} t+\bar{\sigma}\left(\bar{\zeta}_{t}\right) \mathrm{d} w_{t} \tag{2.2}
\end{equation*}
$$

satisfying (1.2) and (2.1) (with the same c and W) and such that

$$
\sup _{x} \max _{i}\left|b_{i}(x)-\bar{b}_{i}(x)\right| \leqq \eta
$$

and

$$
\sup _{x} \max _{i, j}\left|a_{i j}(x)-\bar{a}_{i j}(x)\right| \leqq \eta,
$$

where $\left(\bar{a}_{i j}\right)=\bar{\sigma} \bar{\sigma}^{\mathrm{T}}$. Denote by $\mathscr{M} \subset \mathscr{P}$ and $\overline{\mathcal{M}} \subset \mathscr{P}$ the set of invariant measures with respect to the equations (1.1) and (2.2), respectively.

Theorem 2.1. Let there exist a function $u \geqq 0, u \in \mathbb{C}_{2}$, such that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \sup _{|x|=R}\left\{L u(x)+\eta\left(\sum_{i}\left|\frac{\partial u}{\partial x_{i}}(x)\right|+\frac{1}{2} \sum_{i, j}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)\right|\right)\right\}<0 \tag{2.3}
\end{equation*}
$$

for some $\eta \geqq 0$. Then $\overline{\mathcal{M}} \neq \emptyset$ for all $[\bar{b}, \bar{\sigma}] \in \mathscr{K}_{\eta}$.
Proof. Denote by \bar{L} the infinitesimal operator corresponding to the equation (2.2). For $[\bar{b}, \bar{\sigma}] \in \mathscr{K}_{\eta}$ we have

$$
\begin{gathered}
\bar{L} u(x) \leqq L u(x)+\max _{i, j}\left(\left|b_{i}(x)-b_{i}(x)\right|,\left|a_{i j}(x)-\bar{a}_{i j}(x)\right|\right) . \\
\cdot\left(\sum_{i}\left|\frac{\partial u}{\partial x_{i}}(x)\right|+\frac{1}{2} \sum_{i, j}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)\right|\right) .
\end{gathered}
$$

By (2.3) we get

$$
\begin{equation*}
\bar{L} u(x) \leqq-k, \quad|x|>R_{0} \tag{2.4}
\end{equation*}
$$

for some $k>0, R_{0}>0$. It can be shown by a standard argument ([8], [6]) that (2.4) implies the existence of an invariant probability measure with respect to (2.2), i.e., $\overline{\mathscr{M}} \neq \emptyset$.

The next Theorem concerns the "continuous dependence" of that invariant measures of the equation (1.1) on its coefficients.

Theorem 2.2. Let (2.3) be strengthened to

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \sup _{|x|=R}\left\{L u(x)+\eta\left(\sum_{i}\left|\frac{\partial u}{\partial x_{i}}(x)\right|+\frac{1}{2} \sum_{i, j}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)\right|\right)\right\}=-\infty . \tag{2.5}
\end{equation*}
$$

Consider the metric of uniform convergence and the metric d on \mathscr{K}_{η} and \mathscr{P}, respectively. Then the mapping

$$
\Phi: \mathscr{K}_{\eta} \rightarrow \exp \mathscr{P}, \quad[b, \bar{\sigma}] \mapsto \bar{M}
$$

is upper semicontinuous at the point $[b, \sigma]$. In particular, if $\overline{\mathcal{M}}=\{\bar{\mu}\}$ contains only one point for all $[\bar{b}, \bar{\sigma}] \in \mathscr{K}_{\eta}$ (i.e. every equation (2.2) has a unique invariant measure), then the mapping

$$
\Psi: \mathscr{K}_{\eta} \rightarrow(\mathscr{P}, d), \quad[\bar{b}, \bar{\sigma}] \mapsto \bar{\mu}
$$

is continuous at μ^{*} (the invariant measure of (1.1)).
Remark 2.3. The assumption (2.5) cannot be weakened to (2.3) in Theorem 2.2. However, it can be shown that (2.3) guarantees the "continuous dependence" of invariant measures if the topology on \mathscr{P} is suitably weakened (cf. [6]).

Before proving Theorem 2.2 we give a lemma. For $f \in \mathbb{C}$, set

$$
T_{t} f(x)=\int_{\mathbf{R}_{n}} P(t, x, \mathrm{~d} y) f(y), \quad t>0
$$

and consider a sequence $\left[b^{m}, \sigma^{m}\right] \in \mathscr{K}_{\eta}, b^{m} \rightrightarrows b, \sigma^{m} \rightrightarrows \sigma$. Let $L^{m}, P^{m}(t, x, A), T_{t}^{m}$ and \mathscr{M}^{m} have the same meaning with respect to the equations

$$
\begin{equation*}
\mathrm{d} \zeta_{t}^{m}=b^{m}\left(\zeta_{t}^{m}\right) \mathrm{d} t+\sigma^{m}\left(\zeta_{t}^{m}\right) \mathrm{d} w_{t} \tag{2.6}
\end{equation*}
$$

as $L, P(t, x, A), T_{t}$ and \mathscr{M} have with respect to (1.1).
Lemma 2.4. Let $f: \mathbb{R}_{n} \rightarrow \mathbb{R}$ be a bounded Lipschitzian function. Then

$$
T_{t}^{m} f(\cdot) \rightrightarrows{ }^{\text {loc }} T_{t} f(\cdot), \quad m \rightarrow \infty \quad \text { for all } t \geqq 0
$$

Proof. First assume b, σ to be globally Lipschitzian. Let

$$
\sup _{x} \max _{i, j}\left(\left|b_{i}(x)-b_{i}^{m}(x)\right|,\left|\sigma_{i j}(x)-\sigma_{i j}^{m}(x)\right|\right)<\varepsilon
$$

for some $\varepsilon>0$. It can be easily seen that

$$
\mathrm{E}_{x}\left|\zeta_{t}-\zeta_{t}^{m}\right|^{2} \leqq K_{1}\left(\varepsilon^{2}+\int_{0}^{t} \mathrm{E}_{x}\left|\zeta_{s}-\zeta_{s}^{m}\right|^{2} \mathrm{~d} s\right)
$$

for some $K_{1}>0$ (independent of m). Gronwall's lemma yields

$$
\left|T_{t} f(x)-T_{t}^{m} f(x)\right| \leqq K_{2}\left[\mathrm{E}_{x}\left|\zeta_{t}-\zeta_{t}^{m}\right|^{2}\right]^{1 / 2} \leqq \varepsilon K_{2} \sqrt{ }\left(\mathrm{e}^{K_{1} t}-1\right)
$$

It follows that $T_{t}^{m} f \rightrightarrows T_{t} f$. In the case of non-Lipschitzian b, σ we define (globally) Lipschitzian approximations $b^{0, k}, b^{m, k}, \sigma^{0, k}, \sigma^{m, k}$ such that

$$
\begin{gathered}
b^{0, k}(x)=b(x), \quad b^{m, k}(x)=b^{m}(x) \text { for }|x| \leqq k, \quad k \in \mathbb{N}, \\
\sup _{x} \max _{i}\left|b_{i}^{m}(x)-b_{i}^{m, k}(x)\right| \leqq \sup _{x} \max _{i}\left|b_{i}(x)-b_{i}^{0, k}(x)\right|
\end{gathered}
$$

and similarly with $\sigma^{0, k}, \sigma^{m, k}$. Denoting by $\zeta^{m, k}$ and $\zeta^{0, k}$ solutions of the corresponding equations with the coefficients $\left[b^{m, k}, \sigma^{m, k}\right]$ and $\left[b^{0, k}, \sigma^{0, k}\right]$, respectively, we have

$$
\begin{aligned}
& \left|T_{t}^{m} f(x)-T_{t} f(x)\right| \leqq\left|\mathrm{E}_{x} f\left(\zeta_{t}^{m}\right)-\mathrm{E}_{x} f\left(\zeta_{t}^{m, k}\right)\right|+ \\
+ & \left|\mathrm{E}_{x} f\left(\zeta_{t}^{m, k}\right)-\mathrm{E}_{x} f\left(\zeta_{t}^{0, k}\right)\right|+\left|\mathrm{E}_{x} f\left(\zeta_{t}^{0, k}\right)-\mathrm{E}_{x} f\left(\zeta_{t}\right)\right|
\end{aligned}
$$

Hence it suffices to show that

$$
\begin{equation*}
\left|E_{x} f\left(\zeta_{t}^{m, k}\right)-\mathrm{E}_{x} f\left(\zeta_{t}^{m}\right)\right|+\left|\mathrm{E}_{x} f\left(\zeta_{t}^{0, k}\right)-\mathrm{E}_{x} f\left(\zeta_{t}\right)\right| \rightarrow 0, \quad k \rightarrow \infty, \tag{2.7}
\end{equation*}
$$

uniformly with respect to m and locally uniformly with respect to x. Trajectories of the processes $\zeta^{m, k}$ and $\zeta^{m}\left(\zeta^{0, k}\right.$ and $\left.\zeta\right)$ coincide until the exist time $\tau^{m, k}\left(\tau^{k}\right)$ from the ball $|x|<k$. Furthermore, by (2.1) we obtain

$$
\mathrm{P}_{x}\left[\tau^{m, k} \leqq t\right] \leqq \frac{\mathrm{e}^{c t} W(x)}{\underset{|y| \geqq k}{\mid n f} W(y)}
$$

(cf. the proof of Theorem 3.4.1 in [7]) and hence (2.7) is valid.
Proof of Theorem 2.2. Take an arbitrary sequence $\mu_{m} \in \mathscr{M}^{m}$. We need to show that $\mu_{m_{i}} \rightarrow \mu$ holds for some subsequence $\left(\mu_{m_{i}}\right)$ and a measure $\mu \in \mathscr{M}(\rightarrow$ stands for the weak convergence). First we show that the set $\overline{\mathscr{R}}=\bigcup_{m} \mathscr{M}^{m}$ is relatively compact in (\mathscr{P}, d). By (2.5) we have

$$
M=\sup _{m \in N} \sup _{x} L^{m} u(x)<\infty
$$

Put

$$
V_{R}=\sup _{|x| \geqq R[\bar{b}, \bar{\sigma}] \in \mathscr{X}_{n}} \sup _{n} \bar{L} u(x) .
$$

The condition (2.5) yields

$$
\begin{equation*}
\lim _{R \rightarrow \infty} V_{R}=-\infty \tag{2.8}
\end{equation*}
$$

For $x \in \mathbb{R}_{n}, t>0, m \in \mathbb{N}$ we obtain, by a standard application of Itô's formula and Fatou's lemma:

$$
\mathrm{E}_{x} u\left(\zeta_{t}^{m}\right)-u(x) \leqq \mathrm{E}_{x} \int_{0}^{t} L^{m} u\left(\zeta_{s}^{m}\right) \mathrm{d} s \leqq \mathrm{E}_{x} \int_{0}^{t}\left(V_{R} \chi_{\left[\left|s^{m}\right| \geqq R\right]}+M\right) \mathrm{d} s
$$

Hence (we can take $V_{R}<0$)

$$
\mathrm{E}_{x} \int_{0}^{t} \chi_{\left[\left|\zeta \zeta^{m}\right| \geqq R\right]} \mathrm{d} s \leqq \frac{u(x)+M t-\mathrm{E}_{x} u\left(\zeta_{t}^{m}\right)}{-V_{R}}
$$

and thus

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} P^{m}\left(s, x, \mathbb{R}_{n} \backslash U_{R}\right) \mathrm{d} s \leqq \frac{u(x)-\mathrm{E}_{x} u\left(\zeta_{t}^{m}\right)}{-t V_{R}}+\frac{M}{-V_{R}} . \tag{2.9}
\end{equation*}
$$

Since

$$
\mu_{m}\left(\mathbb{R}_{n} \backslash U_{R}\right)=\int_{\mathbb{R}_{n}} P^{m}\left(s, x, \mathbb{R}_{n} \backslash U_{R}\right) \mu_{m}(\mathrm{~d} x)=\int_{\mathbb{R}_{n}} \frac{1}{t} \int_{0}^{t} P^{m}\left(s, x, \mathbb{R}_{n} \backslash U_{R}\right) \mathrm{d} s \mu_{m}(\mathrm{~d} x)
$$

for any $\mu_{m} \in \mathscr{M}^{m}, s>0, t>0$, by (2.9) we get

$$
\mu_{m}\left(\mathbb{R}_{n} \backslash U_{R}\right) \leqq \frac{M}{-V_{R}}+\int_{R_{n}} \frac{u(x)-\mathrm{E}_{x} u\left(\zeta_{t}^{m}\right)}{-V_{R} t} \mu_{m}(\mathrm{~d} x)
$$

The second term on the right-hand side equals zero and thus

$$
\mu_{m}\left(\mathbb{R}_{n} \backslash U_{R}\right) \leqq \frac{M}{-V_{R}}
$$

which by (2.8) implies the weak compactness of \bar{R}. It follows that there exist a subsequence $\left(\mu_{m_{i}}\right) \subset\left(\mu_{m}\right)$ and a measure $\mu \in \mathscr{P}$ such that $\mu_{m_{i}} \rightarrow \mu$. It remains to show that

$$
\begin{equation*}
\int_{\boldsymbol{R}_{\boldsymbol{n}}} \boldsymbol{T}_{t} f \mathrm{~d} \mu=\int_{\boldsymbol{R}_{\boldsymbol{n}}} f \mathrm{~d} \mu, \quad t>0, \tag{2.10}
\end{equation*}
$$

for any bounded Lipschitzian function f, which implies $\mu \in \mathscr{M}$. To show (2.10) we write

$$
\left|\int_{\mathbf{R}_{n}} T_{t}^{m_{i}} f \mathrm{~d} \mu_{m_{i}}-\int_{\boldsymbol{R}_{n}} T_{t} f \mathrm{~d} \mu\right| \leqq \int_{K}\left|T_{t}^{m_{i}} f-T_{t} f\right| \mathrm{d} \mu_{m_{i}}+2 \sup |f| \mu_{m_{t}}\left(\mathbb{R}_{n} \backslash K\right)+
$$

$$
+\left|\int_{\boldsymbol{R}_{n}} T_{t} f \mathrm{~d} \mu_{m_{i}}-\int_{\mathbb{R}_{n}} T_{t} f \mathrm{~d} \mu\right| \quad\left(K \subset \mathbb{R}_{n} \text { compact }\right)
$$

By Lemma 2.4 we get

$$
\begin{equation*}
\int T_{t}^{m_{i}} f \mathrm{~d} \mu_{m_{t}} \rightarrow \int T_{t} f \mathrm{~d} \mu \tag{2.11}
\end{equation*}
$$

On the other hand, we have

$$
\int T_{t}^{m_{i}} f \mathrm{~d} \mu_{m_{i}}=\int f \mathrm{~d} \mu_{m_{t}} \rightarrow \int f \mathrm{~d} \mu
$$

which together with (2.11) implies (2.10).
Example 2.5. For $R>0$ set

$$
M_{R}=\sup _{|x|=R}(b(x), C x)+\frac{1}{2} \operatorname{Tr}(A(x) C)
$$

where $A(x)=\sigma(x) \sigma^{\mathrm{T}}(x)$ and $C=\left(c_{i j}\right)$ is a symmetric positive definite matrix. Assume that

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left(M_{R}+\varepsilon R\right)=-\infty \tag{2.12}
\end{equation*}
$$

holds for some $\varepsilon>0$. Then the assertions of Theorems 2.1 and 2.2 are valid with $\eta=\varepsilon / K$, where $K=n^{3 / 2} \max \left|c_{i j}\right|+1$. To prove it we can use the function $u(x)=$ $=\frac{1}{2} \sum_{i, j} c_{i j} x_{i} x_{j}$. We have

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} \sup _{|x|=R}\left\{L u(x)+\frac{\varepsilon}{K}\left(\sum_{i}\left|\sum_{j} c_{i j} x_{j}\right|+\frac{1}{2} \sum_{i, j}\left|c_{i j}\right|\right)\right\} \leqq \\
& \leqq \lim _{R \rightarrow \infty} \sup _{|x|=R}(L u(x)+\varepsilon R)=\lim _{R \rightarrow \infty}\left(M_{R}+\varepsilon R\right)=-\infty .
\end{aligned}
$$

Hence (2.5) is fulfilled.
We shall apply the above results to the system (0.2).
Corollary 2.6. Assume the equation (1.1) to have the form (0.2). Then the assertions of Theorems 2.1 and 2.2 are valid with any $\eta \geqq 0$.

Proof. We can use Example 2.5 with $c_{i j}=\delta_{i j} I_{i}, i, j=1,2,3$. We have

$$
\begin{gathered}
(b(x), C x)+\frac{1}{2} \operatorname{Tr} A(x) C= \\
=-B_{1} I_{1} x_{1}^{2}-B_{2} I_{2} x_{2}^{2}-B_{3} I_{3} x_{3}^{2}+\frac{1}{2}\left(I_{1}+I_{2}+I_{3}\right) \leqq-\alpha|x|^{2}
\end{gathered}
$$

for an $\alpha>0$ and all $|x|$ sufficiently large. Hence (2.12) is fulfilled with any $\varepsilon>0$.
Remark 2.7. By Corollary 2.6 the invariant measure of the system (0.2) is stable
with respect to bounded perturbations of the coefficients, i.e., after addition of any bounded perturbation the new equation also possesses an invariant measure which differs little from the original one if the perturbation is sufficiently small.

References

[1] J. McConell: Stochastic differential equation study of nuclear magnetic relaxation by spinrotational interactions. Physica 111A (1982), 85-113.
[2] I. I. Gikhman, A. V. Skorokhod: Стохастические дифференциальные уравнения. Naukova Dumka, Kijev 1968.
[3] Kiyomasha Narita: Remarks on nonexplosion theorem for stochastic differential equations. Kodai Math. J. 5 (1982), 3, 395-401.
[4] B. Maslowski: An application of l-condition in the theory of stochastic differential equations, Časopis pěst. mat. 123 (1987), 296-307
[5] B. Maslowski: Weak stability of a certain class of Markov processes and applications to nonsingular stochastic differential equations, to appear.
[6] B. Maslowski: Stability of solutions of stochastic differential equations (Czech), Thesis, Math. Institute of Czech. Academy of Sciences, 1985.
[7] A. Lasota: Statistical stability of deterministic systems. Proc. of the Internat. Conf. held in Würzburg, FRG, 1982; Lecture Notes in Math. 1017, 386-419.
[8] R. Z. Khasminskii: Устойчивсоть систем диффернциальных уравнений при случайных возмущениях их параметров. Nauka, Moscow 1969.
[9] M. Zakai. A Liapunov criterion for the existence of stationary probability distributions for systems perturbed by noise. SIAM J. Control 7 (1969), 390-397.

Souhrn

STABILITA INVARIANTNÍ MÍRY STOCHASTICKÉ DIFERENCIÁLNÍ ROVNICE POPISUJÍCÍ MOLEKULÁRNÍ ROTACI

Bohdan Maslowski

Je vyšetřována stabilita invariantní míry stochastické diferenciální rovnice vzhledem k omezeným perturbacím jejích kocficientů. Získané výsledky a některé dřívější autorovy výsledky o stabilitě ljaruncvského typu invariantní míry jsou aplikovány na systém popisující molekulární rotaci.

Резюме
 УСТОЙЧИВОСТЬ ИНВАРИАНТНОЙ МЕРЫ СТОХАСТИЧЕСКОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ОПИСЫВАЮЩЕГО МОЛЕКУЛЯРНОЕ ВРАЩЕНИЕ

Bohdan Maslowski

Исследуется устойчивость инвариантной меры стохастического дифференциального уравнения при ограниченных возмущениях его коэффциентов. В качестве применения этих и некоторых прежних результатов автора, касающихся устойчивости ляпуновского типа, рассматривается система описывающая молекулярное вращение.

Author's address: RNDr. Bohdan Maslowski, CSc., Matematický ústav ČSAV, Žitná 25, 11567 Praha 1.

