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SHAPE OPTIMIZATION 
OF AN ELASTIC-PERFECTLY PLASTIC BODY 

IVAN HLAVACEK 

(Received June 17, 1986) 

Abstract. Within the range of Prandtl-Reuss model of elasto-plasticity the following optimal 
design problem is solved. Given body forces and surface tractions, a part of the boundary, where 
the (two-dimensional) body is fixed, is to be found, so as to minimize an integral of the squared 
yield function. The state problem is formulated in terms of stresses by means of a time-dependent 
variational inequality. For approximate solutions piece wise linear approximations of the unknown 
boundary, piecewise constant triangular finite elements for stress and backward differences in 
time are used. Convergence of the approximations to a solution of the optimal design problem 
is proven. As a consequence, the existence of an optimal boundary is verified. 

Keywords: domain optimization, time-dependent variational inequality, elasto-plasticity, 
finite elements 

AMS Subject class.: 65 K 10, 65 N 30, 73 E 99. 

INTRODUCTION 

The present paper is a continuation of the research in optimization of two-dimen
sional elastic [1] and elasto-plastic [2] bodies. Whereas in [2] the model of Hencky 
(cf. [3]. [4]) has been considered, here we apply the constituent law of Prandtl-
Reuss, which leads to a weak formulation in terms of a variational inequality of 
evolution [3], [4], [5]. 

Given body forces, surfaces loads and material characteristics of an elasto-plastic 
two-dimensional body, we have to find the shape of a part of its boundary such 
that a cost functional is minimized. The latter functional is an integral of the 
square of the yield function over the time-space domain. Zero displacements are 
prescribed on the unknown part of the boundary. 

We use piecewise linear approximation of the boundary, backward differences 
in time and piecewise constant (external) approximations of the stress field. Employing 
also some ideas of C Johnson ([5], [6]), we prove the convergence of the approxima
tions to a solution of the original optimal design problem. 

381 



1. FORMULATION OF THE OPTIMAL DESIGN PROBLEM 

Let us recall the basic relations of the elasto-plastic bodies obeying the Prandtl-
Reuss law. 

Let Q c R2 be a given (bounded) domain with Lipschitz boundary dQ. Assume that 

dQ = ruurg, runrg = 0, 
where each of the parts FM, rg is open in dQ. 

Let R^ be the space of symmetric 2 x 2 matrices (stress or strain tensor). A repeated 
index implies the summation over the range 1, 2. We introduce the following inner 
product in the space Rff 

<<r, t> = aiixli , <<r, <r>1/2 = |<r|| . 

Let a yield function / : R& -+ R be given, which is convex, Lipschitz and satisfies 
the condition 

(1) f(Xa) = \X\ f(a) Vcr e R& , VA e R . 

These assumptions are fulfilled e.g. by the well-known von Mises function 

f(a) = K . [a2
u + a2

22 - aua22 + 3<r2
2]

1/2 , (K = cost.). 

We introduce the following spaces and notations: 

S(Q) = {T: Q -> R, | rl7 e L2(£>) Vf,7} , 

(<*> e>Q = <<*> 

JO 
for a, e e £(&). 

In 5(.0) we introduce also the energy scalar product 

(M)„ = ( iM) f l , H a = (ff,<
2, 

where b: S(Q) -> S(:Q) is an isomorphism defined by the generalized Hooke's law 

e = ba <=> et7 = bijklakl, Vi,j . 

We assume that bijkl e U°(Q), a positive constant b0 exists such that 

(2) bo°ijVij -= bijkl(x) auakl 

holds for almost all x e Q and all a e Ra, and 

btjki = frfcuJ • 

Then we have 

(a, e)Q = (ba, e}Q = (a, be}Q = <be, a}Q = (e, a)Q, 

(3) MHIo^=IH|S=6iNo.ii V,e8(0). 
We consider a time interval / = [0, T], T < + oo. 
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Assume that the body forces F and the surface tractions g are of the following 
particular form: 

F(x,f) = 7(t)F°(x), g(x9t) = y(t)g<>(x), 

where y e C2(I), y = 0, y(t) = 0 in a "small" interval [0, y0], 0 < y0 < T 
We define the space of test functions 

V(Q) = {we [H 1 ^) ] 2 | w = 0 on FM} 

and the set of statistically admissible stress field at the moment t e I: 

£(Q; t) = {T e S(Q) | <T, e(w)}Q = LQ(w, t) V w e V(Q)} , 

where 

e(w)u = 2~1(<3u\./Ox/ + dwjjdXi) , 

Lй(w, í) = Ғ,(ř) w; dx + 
JЙ 

^ f ( t ) w f d 5 . 

The set of plastically admissible stress field is 

P(Q) = {T e S(Q) \f(t) = 1 a.e. in Q} . 

Let us introduce the set 

K(Q; t) = S(Q; t) n P(Q) . 

Let C0(I, S(Q)) be the space of continuously differentiable functions on the interval 
I with values in S(Q), which vanish at t = 0. We define H0(I, S(Q)) as the closure 
of Cl

0(l, S(Q)) in the norm 

({JMI!,.*)1'2. 
where ^ = d<r/dL 

We observe that 

(4) K t ) - Kh) | |o.n ̂  |t - til1'2 |k|H 0 l ( / > S ( O ) ) 

is true for every a e C0(J, S(Q)). Then continuity of functions from H0(/? 5(^)) 
follows easily and (4) holds for all a e H0(I, S(Q)). 

Given a domain O we can define the state problem: find a e H0(I, S(Q)) such that 

(5) <r(t)eK(.Q;t) WeI 

and 

(6) (<r(t), t - a(t))a ^ 0 

holds for all T e K(f2; t) and almost all t e I. 

Throughout the paper, C will denote a positive constant not necessarily the same 
at each occurence. 
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Passing to the shape optimization problem, we introduce the following set of 
admissible design variables 

L/ad = [v e C ( O M([0, 1]) (i.e. Lipschitz functions), 

a^v^P, \dvjdx2\ ^ CA , 

v dx2 = C2} , Í 
where a, /?, C t and C2 are given positive constants. 

Throughout the paper, we shall consider a class of domains Q = Q(IT), where 
v e Uad and 

&(v) = {(Xu X2) | 0 < X! < i>(x2), 0 < x2 < 1} . 

For any v e Uad, the graph r(v) of the function v will coincide with the part ftt 

of 5.Q(t;). Assume that the constants b0, bt in (3) do not depend o n y e Uad. 
The function v has to be determined from the following 

Optimal Design Problem: 

(7) /("(»)) = m i n 

over the set of v e Uad, where 

(8) S(*(v))= fdřf />(*)) d*, 
J o J íi(t?) 

and a(v) is the solution of the state problem (5), (6) on the domain Q = .Q(t>). 
We first show that the above definition has sense, if we restrict the class of state 

problems by some assumptions imposed upon the loading forces. 
Let 3 > /?, Q8 = (0, 5) x (0, 1), Tb denote the graph of the (constant) function 

v = <5. Assume that the reference forces F° and g° are defined on Qs and dQ8 - F a, 
respectively. Let them be such that there exists a stress field tr°, satisfying the follow
ing conditions: 

(9) ^ e S ^ n r c ^ ' 1 ^ , ) ] 4 , 

(10) <*°, e(w))Qi = f F 0
W j d x + fl°w(ds Vwe V(QS) ; 

Jfl«s J d&6-r6 

(11) 3e > 0 such that 
(1 + £ )y ( r ) e r 0 eP (^ ) , 

where t e 1 is the argument, realizing the maximum of y(t) on the interval I. 
We present the existence result, which is based on the paper by C. Johnson [5], 

Theorem 1. Let the assumptions (9), (10), (11) be satisfied. Then there exists 
a unique solution <r(v) of the state problem (5), (6) on Q(v)for any v e Uad. 
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The Proof will not be given here. It is an easy generalization of the proof of C. 
Johnson, who considered only the case dQ = Fu. To verify the assumptions of his 
theorem, we show that 

(12) y(t)a\{v)eS(Q(v);t) Vie I, Vt>eUad 

and y(f) a°\Q(v) e K(Q(v); ?) follows from (10), (11), (1). 

Remark 1. Sincef is Lipschitz and (l) holds, we may write 

|/WI = |/W-/WI = c||H|, 
(13) J f2(a) dx ^ C f |<r||2 dx -= C\a\2

tQ < + oo V<r e S(Q). 
Jn in 

Consequently, 
rT 

< +oo VveUad 
S(*(v))śCШv)\\lMv)dt 

follows from (13), (4) and Theorem 1. 

Remark 2. From the condition (10) we derive 

div a0 + F° = 0 in Qs, 

a°.v = g° on dQd ~ Fa . 

The latter relation together with (9) implies that g° is a Lipschitz function on any 
side of dQs — r3. The condition (11) restricts the "magnitude" of the stress field 
a0 in a certain sense. 

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS 

Let N be a positive integer and h = 1/N. We denote by Aj9 j = 1,..., N, the sub-
intervals [(j — 1) hjh~] and introduce the set 

U^-faeU^v^eP^Aj) Vj} , 

where Pk denotes the set of polynomials of fc-th degree. 
Let Qh denote the domain Q(vh), bounded by the graph rh of the function vh e Uh

d. 
The domain Qh will be carved into triangles as follows. 

We choose a0 e (0, a) and introduce a uniform triangulation of the rectangle 
0t = [0, a0] x [0,1], independent of vh, if h is fixed. 

In the remaining part Qh — 0t let the nodal points divide the intervals [a0, vh(jKj\ 
into M equal segments, where M = 1 + [(/? — a0) N] and the square brackets 
denote the integer part. Thus we obtain a regular family of triangulations [&~h(vh)}t 

h:-» 0, vheUld. Note that for any vheUh

ad we construct a unique triangulation 
sru(vh). 
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Denoting the triangles of "̂„(y») by 3~, we define the finite element spaces 

Vh(Qh) = {wh e V(Qh) \w„\r s \Px(5r)Y V<r e <FB(„B)} , 

J?h(Qh) = {xe S(Qh) \x\r e [P0(^)f Vf e rh(vh)} 

and external approximations of the set S(Qh; t): 

Sh(Qh; t) = {xh e jeh(Qh) | <TB, e(wB)>flh = Lflh(wB, t) VwB 6 Vh(Qh)} . 

Let n be a positive integer, k = Tjn, 

dam = (<rm - ff"1-1)^, m = l,2, . . . , n , 

f* = mfc , <rw = <r(r) , 

Kh(Qh;r) = #h(Qh;f>)nP(Qh). 

Assume that y is such that a uniform partion D° of I exists such that y is monotone 
in every subinterval [tm~i,tm~\of D°. Henceforth we consider only partitions, 
refining the partition D°. 

We define the approximate state problem: 

find the array (a*k, a\k,..., <*} 

such that for m = 1, 2, ..., n 

(14) < f c e K B ( Q B ; r ) , <T°, = 0 , 

(15) (da\\, T - <K)a„ = 0 VT e KB(flB; t") . 

Lemma 1.Assume that (10), (11) ho/d. 
Then the approximate state problem has a unique solution. 

Proof. 1° We show that Kh(Qh, tm) * 0 Vm. In fact, (12) yields y(tm)a°\Qhe 
ei(Qh,t

m). From (11), the convexity of / and f(0) --Owe easily deduce that 
y(tm)a°\nheP(Qh). 

Let us introduce a projection mapping rh; S(Qh) -* j^h(Qh) by means of the relation 

(16) <T - r„T, <Th>flh = .0 V<rB e tf„(Qh) • 

Let us write for simplicity <r°|Qh = <r° and show that 

(17) y(tm)rha° = rh(y(tm)aO)e#h(Qh,t
m). 

In fact, given a function wh e Vh(Qh), we have e(wB) e 3tfh(Qh) and wh e V(Qh), so that 

<e(wB), y(f) rB<r°>flh = <e(wh), y(tm) <r°>flh = Lflh(wB, f>) . 

Consequently, (17) holds. 
Furthermore, we have 

r„<т° = (mes ЗГ)- - f a° dx ҶЗГ є ^"„(»в) 
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and the convexity off implies 

(18) y(tm) o°e<% a.e. » y(f) rho° e Si a.e., 

where 
* « { T 6 R , | / ( T ) S 1 } . 

Consequently, y(f) rho° e P(Qh) follows from (11) and (18). Thus we obtain 
y(f)rho°eKh(Qh;t

m), 
Every inequality (15) is equivalent with the minimization of the quadratic functional 

over the set Kh(Qh; t
m). The functional is strictly convex, the set Kh(Qh; t

m) is non
empty, convex and closed in S(Qh). Hence the existence and uniqueness of am

k follows 
by induction scheme for m = 1, 2, . . . , n. 

Proposition 1. Assume that (9), (10), (11) holds. Let {vh}, h = 2~J, j = 1, 2, . . . , 
be a sequence of vh e U*d, such that vh -> v in C([0, 1]). Let {F<y^}^=1 be the solution 
of the problem (14), (15), extended by zero to the domain Qd — Qh. 

Then for any m = 1, 2, . . . , n 

(19) \im Eam
k = am in S(Qd) 

fc->0 

and the functions am satisfy the following conditions: 

(20) am = 0 on .Qa - O(v) , 

(21) <|fi(i;)GK(.Q(v);t-), 

(22) (dam, T - <)D ( y ) .> 0 VT e K(Q(v); tm) , 

with a°k = 0. 

Proof, 1° By an induction scheme, we prove that {Eom
k}h_0 is bounded. In fact, 

we may substitute T = y(tm) rha° into the inequality (15). For m = 1 we obtain 
(cf.(3)) 

K k = v(0 • II t/lk = Hi) • * i / a | v ° | . A g cKlo* = c. 
Consequently 

IK*IU = tv,/2c. 
Assume that F<x™fc

_1 are bounded by a constant, independent of h. Then we may 
write for m > 1 (dropping the indices hk for the time being) 

I M k g (ff™"1, *"%„ + (T, om - om~%h ^ \\om\\Qh \\o
m-%h + 

^(IHk + Ik""1 Ik) = clk1k + Co • 
We conclude that 

(23) HJ.IU.gC, m = l,...,n, 
where C is independent of h. 
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Consequently, there exist a subsequence of {Eam
k}, h -+ 0, (we shall denote it by 

the same symbol) and a function am e S(Qd) such that 

(24) Ea\\ -» am (weakly) in S(Qd) , Vm . 

2° We show that am = 0 a.e. in Q8 - 0(t>). In fact, let *™ * 0 on a set M c G, -
— Q(v), mes M > 0. Introducing the characteristic function XM of M, we obtain 
for h -> 0 

< £ < , XM<%* ^ « > X M < % , = \\<\\1,M > o 

by virtue of (24). 

On the other hand, 

\<Eam
k,XM<>^\ = \<E<k>°m>ah„M\ = 

= l-5^i||oA • IKIIo^nM - 0 
follows from (23), if we realize that 

lim (mes (Qh n M)) = 0 . 
fc-+0 

Thus we arrive at a contradiction. 
3° We show that 

(25) am\Q(v)eK(Q(v);tm) Vm . 

Let w e V(0(i>)) and denote its extension by zero into Q3 — Q(v) by Ew. There 
exists a sequence {wx}, x -> 0, such that 

wx e [C°°(^)]2 , w„ = 0 in 3 , - .Q(t;) , supp w„ n r(i>) = 0 , 

(26) wx -> £w in [ H 1 ^ ) ] 2 for x -> 0 . 

Obviously, w^j^ e V(Ofc) for all sufficiently small h. Let us consider the interpolates 
%hwx e Vh(Qh) and denote their extensions by zero to Q8 — Qh by the same symbol. 
By definition of $h(Qh; t

m) we have 

<<C> <%^)>flh = LQh(nhw„ tm), 

which can be rewritten as follows 

(27) <£<„ e(nhwx)}Qd = LQd(nhw„ tm) . 

Since 

nhwx -*wx for h ~> 0 in [ H 1 ^ ) ] 2 , 
we have 

e(nhwx)-^ e(wx) in S(.Q,) . 

Passing to the limit with h -* 0 in (27) and using (24), we obtain 

« , e(w„)>^ = L„,(w„, t-). 
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Passing to the limit with x -> 0 and using (26), we arrive at 

« , e(Ew)}Q6 = « , e(w))Q(v) = La&(Ew, tm) = Lft(t?)(*, fm). 

Consequently, <xm 6 <f (0(t?); tm). 
Since P(Qd) is closed and convex in S(Qd), it is weakly closed. 
Any Eam

k belongs to P(Qd) and hence the weak limit <xm e P(Q^ Then <rm\Q(v) e 
eP(Q(v)). 

4° We show that the restrictions of <rm solve the inequalities (22). Let T e K(Q(v); tm) 
be given. First we construct a "shifted" function xx on the domain Qk = Q(v -F A), 
where A is a small positive constant. 

Let us define: 

& = x - y(tm) <x° , 

denote by Em the extension of o) by zero to the negative half-plane (xt < 0) and 

€o\xl9 x2) = Kct>(xi — A, x2) , x e O A . 
We can show that 

(28) <o>\ e(w)}Qji = 0 VweV(£>A). 

In fact, we use the coordinates 

(29) yx = xx - A , j>2 = x2 

and define w(y) = w(j;i + A, j;2) = w(x). Then 

<<*/, e(w)>f3A = Eco^! - A, x2) e(w(x)) dx = 

= f Ec»(y) e(£(y)) dy = f a>(y) e(£(y)) dy = 0 . 
J -?A* J «(t?) 

Here we used the fact that w e V(Q(v)), m = T - y(*m) <r°, T and y(tm) <r° belong 
to <T(:Q(t>); tm). 

If we define 

T* = y(t
m) a° + <?(A) ct>x , 

where 
,(A) = ( I - V ( ^ ) / ( I + V W ) J 

then TA e ^(0A; T) follows from (10) and (28). 
Next we prove that TA e P(Qt). To this end we introduce 

AY) - K<") «°(y) + <?W «>(y), y e fi(f), 

where y is defined as a shift of x by (29). 
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For all xeQx - (0, A) x (0, l) we may write 

(30) ||T*(X) - <r*(y)i = \\y(t») K ( x ) - J(y)\ = 

= y(l) ||<T°(X) - </>(y)| = C||x - y|| = CX, 

making use of the assumption (9). 
One can prove that 

(31) /((l + VA) AY)) = (i + yMfWti) = i 
holds for sufficiently small A and for almost all y e .Q(v). In fact, we have 

(1 + VA) a* = (1 + VA) [y(tm) * 0 + c(r - y(r) a0)] = 

= ľ ( г я ) f f ° ( l + e ) ^ + t ( l - Ą 

and (31) holds for *J(X) < e, since both y(tm) (1 + s) <T° and T belong to the set 
P(Q(v)). 

Since/is Lipschitz, we may use (31) and (30) to derive 

/(T*(X)) = /(**(/)) + C||T*(X) - a\y)l = (1 + VA)-1 + CA 3 1 

for sufficiently small A and for almost all x e Qx — (0, A) x (0, 1). In the strip 
(0, A) x (0,1) we have 

T* = y(tm) ff° 
since coA(x) vanishes. Then 

/(T*(x))=/(y(r)<7°(x))=l 

follows from the assumption (11). Thus we obtain 

(32) xx e P(QX) n £(Qx; tm) = K(QX; tm) 

for A sufficiently small. 
Besides, we may write for A -> 0 

(33) ||tA - T [ | O ^ ) = |c(A) ct>A - ©||o f O W = 

= (̂A) ||coA - ©IO^KO) + |fi(A) - 1| |Mo..Q<„) - 0, 
since 

lim Q(X) = 1 
and 

lim | | o A - ©|0ffl(t,) = 0 

(cf. [7] - Theorem 1.1). 
The function tx will now be used to the construction of test functions in the ap

proximate problem (15). It is obvious that Qh c Qx for all h < h0(X). Then 

T%h G S(Qh; tm) n P(Qh) = K(a„; f ) 
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and 

(34) rkx* e Sh(Qh; f) n P(Qh) = Kh(Qh; t
m) 

(cf. the proof of Lemma 1). 
Let QXH be a polygonal domain inscribed into Qx (i.e., QXH <= Qx) and such that 

the following two conditions 

(i) Qh c QXH , 

(ii) the partitions Dh of the interval [0, 1] refine the partition I)H, (i.e., H is a multiple 
ofh), 

hold for the sequence of h under consideration, provided h < hx(fy. 
Let us consider extended regular triangulations 

$~m => rh(vh) 

of the domain .QAH and the projection mapping 

rf: S(QXH) -+ tfh(QXH) 

defined on £ThH by means of the relation parallel to (16). Obviously, rh
H?x is an 

extension of rhx
x onto QXH. 

By definition (15) and using (34), we may write 

(dtrZ,rhT
x-tTZ)Qh^0, m = l , 2 , . . . , n , 

which is equivalent to 

(35) (•£, V \ - « " S r A - f«j« |& + «"*, <-£)„„ ^ 0 . 

First let us consider m = 1. Since <r°fc = 0, we obtain 

(36) (^r.TV^IKIi. 
Passing to the limit with h -> 0, using (20), (24) and 

(37) lim |,-J»t- - « - | 0 A . = 0 , 
A->0 

we deduce that 

(38) « rh*%h = (.Bri, rfx%XH - fa, T% A H = (<rj, T % „ ) . 

The weak convergence (24) and (20) imply 

(39) l i m i n f l K I ^ ^ I K f ^ . 
A-*0 

To prove the strong convergence (19), we insert T = a\ eK(Q(v); t1) (cf. (25)) 
into the previous argument. We obtain — as in (36) — 
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Passing to the limit with h -* 0, we arrive at 

lim sup \\E<xl
hk\\

2
ae £ 02 , (ff*f W ) • 

Passing to the limit with A -> 0 and using (33), we obtain 

lim sup l a f i l J # g K l f l W 
/i-+o 

Combining this result with (39), we are led to 

lim \\EalH - 1^1^. 
ft-+0 

Together with the weak convergence (24) and the equivalence of norms we thus 
obtain that 

EoL 
(strongly) in S(Qd) for h -» 0. 

Let us assume that for m > 1 

(40) limFer^1 -= < _ 1 in S(Q3) (strongly). 
h^O 

Passing to the limit with h -* 0 in (35), we obtain 

(41) Ofi, rAT%h = (£<-£, r f T V „ - K> *%.) 

using also (24) and (20). The same argument yields 

(42) (C'tA-K"1-^). 
Moreover, from (40) and (24), (20) we get 

(43) (̂ wT1* ffwc)«h - (£tfwT » Eohk)a6 ~+(ak~ > °"!t%(t>) • 

The weak convergence (24) implies 

(44) -minfKIil-SKI-X.)-
fc-*0 

Combining (41), (42), (43) and (44), we arrive at 

(«?> T*W) - (ffk ~S T%(u) + (<C ~S «?W) =" J** ||il(i» • 

To prove the strong convergence (19), we insert T = a™ into the previous argument. 
We thus obtain, on the basis of (35), 

OS. r K ) V + 0&'1, «a - »-*«)V = \K\k • 

Passing to the limit with h -> 0 and using (41), (42), (43), we may write 

lim sup \\EoZH ^ « , («?) V > + 0 T 1 . < - 0*T%« • 
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Passing to the limit with X -> 0 and using (33), we obtain 

lira sup lEaZU^HlU)-
Combining this result with (44), we arrive at 

(45) lim|-&r&|o, = ! < & - ) • 

From the weak convergence (24) and the convergence of norms we deduce the 
strong convergence 

(46) J&rJ - <r? 

in S(Qd) for h -> 0. By induction we thus conclude that (46) holds for all m = 
= 1,2, ...,«. 

Finally, let us write (35) in the form 

0 5i (£<-* - E^k-\ r * V - Ea:k)QxH 

and pass to the limit with h -> 0. By virtue of (46) and (37) 

Org Ox?- , -?- 1 , -*-<%(„>. 

Passing to the limit with X -> 0, on the basis of (33) we obtain the inequality (22). 
It is easy to show that there exists a unique array {o\, a\y..., orjj], satisfying 

(21), (22). In fact, every inequality (22) is equivalent with minimization of the follow
ing strictly convex functional 

on a convex closed and non-empty set K(Q(v); tm). From the uniqueness we conclude 
that the whole original sequence {Ea™k}, h -> 0, tends to <rm in S(Q6)9 for any m = 
= l ,2 , . . . ,n . Q.E.D. 

Proposition 2. Assume that (9), (10), (11) holds. Let G be the solution of the state 
problem (5), (6) and let the array {o%}m**i be the solution of the semi-discrete 
problem (21), (22) on the domain Q ^ Q(v). 

Then 
max | |< - *(tm)\\0tn = Ck1'2 

l l ff l^n 

holds for sufficiently small time-steps k. 

Proof. We shall follow some ideas of C. Johnson [5], [6], (cf. also [8]). The key 
role in the proof is played by the following 

Lemma 2. Let the assumptions of Proposition 2 be fulfilled. Then there exist 
positive constants C and k0 such that 

ikid^n^c vfc<fc0. 
m = l 
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To prove the lemma, we shall introduce a penalized semi-discrete problem first, 
as follows. We define the projection mapping n: U^ -> 88 onto the convex set Jf 
with respect to the scalar product < •, • > and the penalty functional 

Jj(x) = (2/t)"1 ||T - m\\2
0ta , T e S(Q) , p>0. 

We shall consider the penalized semi-discrete problem: find the array 
« > < > • •> O such that ufM e *(fl; tm), 

(47) (OVm, x)Q + < / ; « ) , T>« = 0 VT e <f 0 , m = 1,..., n , 

where <jr£. = 0, 

^ 0 = {T e S(Q) | <T, e(w)>fl = 0 Vw e V(Q)} 

and 

j;(T) = i ( T - 7 T T ) 

is the Gateau derivative of J^ note that J; is monotone and J^ is convex. 
The problem (47) has a unique solution for every m, since <rmM minimizes the 

strictly convex, coercive and continuous functional 

*to = iMln + fc-l» -(«"•- s^o 
on the set (.f(;Q; *m), which is closed and convex in S(O). By the technique of C. 
Johnson [5] the following a priori estimates for G™^ can be proven. Positive constants 
C and k0 exist such that 

(48) max| |<Jfl = C, 

(49) Z f e ^ C O - i C . 
m = l 

(50) Sfc|k;(OUn)^C, 
m = l 

hold for all k ^ fc0 and any /j > 0. Here 

IZ||tl(n)=[||Z||dx. 

Making use of (50), one derives that positive constants C and kt exist such that 

(si) £fc|K.I!o.«^c 
m = l 

holds for all fc _ fcj and all \x > 0. 
Let us consider a sequence JJ, -> 0, /i > 0. From (48) it follows that 
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(52) IM,^(Zfc|KJU1 /2 = c 
m = l 

for all k S k0 and \i > 0. 
Hence a subsequence of {fi} exists such that 

(53) akVL -* <xk (weakly) for // -> 0 

in the space l2(S) of w-arrays, equipped with the norm ||*||/2, introduced in (52). 
Similarly, (51) yields the existence of a subsequence such that 

(54) dakft -> Sk (weakly) for ft -> 0 in 12(S) . 

It is easy to verify that Sk = dak. 
Next we show that ak is a solution of the semi-discrete problem (21), (22). Since 

JM is convex, we have 

(55) J,(Tm) = Jjfe) + <J;((Tm ), Tm - <Tm >fl . 

If Tm e (f (D; tm), then Tm - o^ e <T0 and we may use the equation (47) to obtain 
(we again drop the subscripts) 

/ i'(**m\ ~m **m\ (%~m ~m ~m\ 

\JM hx ~ a >a = ~~\da >T ~~ a h• 

Combining this with (55), we may write 

(dam, Tm - a% + J,(Tm) - J>m) = 0 . 

Let us consider Tm e K(Q, tm), so that JjjT) = 0 and 

(5erm , Tm - <xm )fl = /,«) = 0 VTm e K(Q; tm). 

On the basis of (53), (54) we deduce for any M = 1,2, ...,n 
M M 

(56) 0 g lim sup [ - £ fc(5<„, < ) f l + £ * # • £ , *"%] = 
M-*0 m = l m = l 

M M 

= iim sup l-UKU - i £ K, - -CIS + E *(3«C *"%] ̂  
/.-•O m = l m = l 

M M 

= -1KI2 - i I K - a?_1|S + Z *(*& *"% = 
m = l m = l 

M 

= £fc(35?,T"-^)fl. 
m = l 

We can show that ameK(Q; f) Vm. Recall that a^e^Q; tm) and i(Q; tm) is 
weakly closed in S(Q). From (53) it follows easily that a kfl-* am (weakly) in S(Q). 
Consequently, am e S(Q; tm). 

Making use of the estimate (49), we obtain 

C £ k / „«) = (-V*)"1 HK ~ *<ll* • 
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Then 

||*r - *9tU* = liminf IK, " *<Al.o = *™ Wk~l = 0 

and consequently, dk e P(Q). 
We may thus insert rm = cr™ into (56) for all m < M, if M > 1, to obtain 

(ddM, T - o£% = 0 Vt eK(Q, tM), M > 1 . 

The case M = 1 follows from (56) immediately. 
Since the problem (21), (22) is uniquely solvable, we have 3% = a™ Vm. 
Finally, making use of (54), we arrive at 

t kldaZ\\la ^ liminf £ fc|ar?-|§.0 = C -
m = l /*->0 m= 1 

Thus the Lemma 2 is proved. Modifying slightly the argument of C. Johnson ([6] — 
Theorem 1.) we are now able to prove the Proposition 2. Q.E.D. 

Theorem 2. Let the assumptions of Proposition 1 be satisfied. Let the array 
ohk = {a\k, a\k\ ..., alk] be the solution of the approximate state problem (14), (15). 

Let us define 

Л W - fcîc/ľ /2(<)dx, 
^ 1 Jß, 

where ej are the coefficients of the trapezoidal or Simpson's rule. 
Then an increasing positive function H(k) exists such that lim H(k) = 0, 

lim ýhk(ahk) = f(a(v)) , 
fc-*0 

h^Hik) 

where a(v) is the solution of the state problem (5), (6), on the domain Q(v). 

Proof. Using the extensions Eahk and a = a(v) by zero to the domain Q6 — Qh 

and Q3 — Q(v), respectively, we may write 

/(a) = (TF(t) d., F(t) = f /2(<r(f) dx , 
Jo Jntf 

/ * M = k t CjFik, Fi\=[ f\Ea{k) dx . 
J=1 Jo. 

Denoting a{tl) by a3, we also have 

|/2(£<) - /V ) | ^ |/(£^) - /(^)l W*L) + /Ml = 

gCl£<r4-^||(2|/(^)| + C||£<r/lt-<ri). 
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Since f(aJ) g 1 a.e. in Qd, we obtain 

\FJ
k - F(tJ)\ ^ f | /2(£<T4) - / V ) l dx g 

g C |~f \\EaJ
hk - aJ\\ dx + f [ |£< - a

Jf dx] g 
L J nt J a* J 

£ C[|£< - a%,as + \EaL - ^ , n J . 

Making use of Proposition 1 and 2, we may write 

(57) Џ< 7%iQâ й \Џ< - 0J

k\\o,at І.A - o 
for k -> 0, h g H(k) -> 0. 

Consequently, 

(58) lim |E4 - F(tJ)\ = 0 
fc-+0 

h->0,h^H(k) 

holds uniformly with respect to j . 
Next we show that the function F is continuous on I. In fact, let t, s e I. Then 

|F(s) - F(t)\ ^ c[||*(S) - •(»)! .* + K») - ^(Olio.»J 

and the continuity is a consequence of (4). 
For any F e C(I) it holds 

(59) lim 
fc-0 

f F(t)dí-k£c;F(ŕ') 
Jo 1=o 

= 0 . 

Finally, we write 

(60) \f(o(v))-fhk(ahk)\^ \TF(t)dt-ktcjF(t>) 
Jo 1=i 

On the basis of (58), for the last term we have the upper bound 
n 

(61) k £ Cj\F(tJ) - FJ
hk\ ^ Cnksy = CT£t Vs, > 0 , 

+ \klcJ(F(tJ)-FJ
k)\. 

J=í 

i = í 

if k and h = h(k) are small enough. 
Combining (59) and (61), the assertion of the theorem follows from (60). Q.E.D. 
We define the Approximate Optimal Design Problem: find u{

h
k) e Uh

ad such that 

(62) А * Ы « Г ) ) = М°ъАРь)) Vrá e Ua
A

d , 

where ohk(u
{
h

k)) denotes the solution of the approximate state problem (14), (15) on 
the domain Qh = Q(u{

h
k)). 

Lemma 3. Assume that (10) and (11) hold. Then the Approximate Optimal Design 
Problem (62) has a solution for any h = 1/N and k = Tjn. 
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Proof. Denoting by o e R^+i the vector of nodal values 

Vh(ih) ~ flh * = °> !>•••,#> 
it is readily seen that 

vheUh
adoaestf, 

where ja/ is a compact set. 
One can prove that the function 

* »-> /«(***(*)) 
is continuous on the set J / . In fact, the conditions 

<•(**). •SDow.) = - W * * . O Vw„ e FA(0A(o)) 

are equivalent with linear systems 

(63) Am(a)s m = Fm(o), m = 1, 2, . . . , n , 

where sm denotes the vector of values of am
k in the triangles 2T e ^h(a) and the 

functions a t-> Am(a), a i—> Fm(o) are continuous. The conditions am
k e P(Qh(a)) are 

equivalent with the following system of inequalities 

(64) / K W ^ l V ^ 6 ^ f t ( o ) , 

which are independent of o. 
The coefficients of the quadratic functional 

**(,«) = *(T) = ifl-||£h(0) _ « " ! , T)fl(i(o) 

depend continuously on o. The minimizer sm(a) of <P*(sm) with the constraints (63), 
(64) exists by virtue of Lemma 1 for any o e stf. Consequently, we can prove that 
the functions o h-> sm(a) are continuous. The continuity of fhk(vhk(ay) then follows 
easily from the properties of the yield function f. 

Theorem 3. Assume that (9), (10) and (11) hold. Let {uj;fc)}, k -> 0, h -> 0 be a se
quence of solutions of the Approximate Optimal Design Problem (62), such that 
h ^ H(k) (i.e., h is sufficiently small with respect to k), h = 2~J, j = 1, 2, ..., and 
k = Tjn. 

Then a subsequence {u^} exists such that 

(66) i i jp -m in C([0, 1]), 

(67) max \\Ea%(uf>) - am(u)\\QtQ6 - 0 

for k -> 0 , hS H(k) -> 0 , 

where u is a solution of the Optimal Design Problem (7), am(u) is the solution of 
(5), (6) at t = tm, extended by zero to Qd — Q(u): 

Proof. Let v e Uad be given. There exists a sequence {vh}, h -> 0, such that vh e U*d, 
vA converge uniformly to v on the interval [0, 1] (cf. [9] — Lemma 7A). 
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Since L7ad is compact in C([0, 1]), a subsequence {wĵ } exists such that (66) holds 
and u e Uad. By the definition (62) we have 

SafaaM**)) = M'M) • 
Passing to the limit with k -> 0 and h ^ H(k) -> 0, on the basis of Theorem 2 

we obtain 
/K«)) g;/(<-(«>)), 

so that u is a solution of the problem (7). The convergence (67) follows from the 
estimate (57), by virtue of Propositions 1 and 2. 

Corollary. Let (9), (10) and (11) hold. Then there exists at least one solution 
of the Optimal Design Problem (7). 

Proof is an immediate consequence of Lemma 3 and Theorem 3. 

Remark. The limit of any uniformly convergent subsequence of {u(k)} represents 
a solution of (7) and (67) holds for the corresponding stress fields. 
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S o u h r n 

OPTIMALIZACE TVARU PRUŽNĚ-DOKONALE PLASTICKÉHO TĚLESA 

I v AN HLAVÁČEK 

Minimalizuje se účelový funkcionál vzhledem k části hranice, na níž je (dvojrozměrné) těleso 
upevněno. Kritériem optimality je integrál z čtverce funkce plasticity. V rámci Prandtlova-Reussova 
modelu je stavová úloha zformulována v napětích pomocí evoluční variační nerovnice. Pomocí 
metody konečných prvků se definuje přibližné řešení a dokazuje se konvergence k řešení původní 
optimalizační úlohy. 
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Резюме 

ОПТИМИЗАЦИЯ ФОРМЫ УПРУГО-ПЛАСТИЧНОГО ТЕЛА 

IVАN НЬАУА6ЕК 

Минимизируется целевой функционал относительно части границы, на которой (двумерное) 
тело фиксировано. Критерием оптимальности служит интеграл функции пластичности. 
В рамках модели Прандтла-Ройса задача состояния формулирована в напряжениях посредс
т в о м эволюционного вариационного неравенства. При помощи метода конечных элементов 
определяется приближенное решение и доказывается сходимость к решению проблемы 
оптимизации. 

Ашког'з аМгезх: 1п§. Ъап НШ&Ъек, Т>тЗс, Магетаиску йаХг\ С8АУ, Игла 25, 115 67 
РгаЬа 1. 
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