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AN ALGORITHM FOR BIPARABOLIC SPLINE
Jikf KoBzA
(Received July 7, 1986)

Summary. The paper deals with the computation of suitably chosen parameters of a biparabolic
spline (of the tensor product type) on a rectangular domain. Some possibilities of choosing
such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for
computation of dispersed parameters (using the first derivative representation) and concentraced
parameters (using the second derivative representation) are given. Both these algorithms repeatedly
use the one-dimensional algorithms.

Keywords. spline functions, biparabolic splines, surface approximation

AMS classification: 41A15, 65D05
1. INTRODUCTION
Let us have a rectangular domain D = {(x,y);a £ x < b,c £ y S d} in the

(x, y)-plane with two sets of knots in each variable (the knots of a parabolic spline
x;, y;; the knots of interpolation t;, v; in the variables x, y)

(4x, At)

Aa=Xg=1ty <X <t <KX <1 < ... <Xy <t 1 <X, <t, =Xy, =0b
(4y, 4v)
C=Yo =0 < Y <0 <P <0< 0. < Yot <Uppoy < Ypu < Uy = Yuae1 = 4d .

As is well-known, under quite weak assumptions on the sets of knots there exists
a unique one-dimensional parabolic spline in each variable interpolating the given
values at the knots of interpolation and fulfilling appropriate boundary conditions
(see e.g. [2], [3], [4]). In the case of bicubic splines it is known how to use one-
dimensional algorithms for computation of the parameters for a two-dimensional
spline on a rectangle (see [4] —[6]). The purpose of this paper is to show that with an
appropriate representation of a biparabolic spline on the rectangle we may choose
such a one-dimensional algorithm for a parabolic spline that we obtain the two-
dimensional algorithm for the biparabolic spline which works completely analogously
to the bicubic case (see also [5], p. 103 —104).
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2. FORMULATION OF THE PROBLEM

The given sets of knots (4x, 4t), (4y, 4v) divide the rectangle D into small rec-
tangles D;; = {(x, y); x€[X;, X;+1)» ¥ €[¥)» ¥;+1]}. Thus, we have three different
types of rectangles D;; — lying in the interior, on the boundary, or at the corners
of the rectangle D. The knots (points) of interpolation P;; = (¢, v;) lie inside, on
the boundary or at the corners of the rectangle D;;, respectively — see Fig. 1.

Yy

0t /

7/3// 0 /D/
Yo=Y /Z/oo i //20

Xg=to X4 t X, t, X,

Fig. 1.

Definition 1. S(x, y) is called a biparabolic interpolating spline on the rectangle
D with the knots (4x, At), (4y, 4v) to the given data (fy;), i = 0(1)n, j = 0(1) m
if it has the following properties:
1° S(x, y) e C1(D) (continuous first derivatives S, = Sy, S, = So1 and mixed
derivative S, = S,);

2° S(x,y)isa polynomial of the second degree with respect to x, y on each rectangle
Dy, i=001)n,j=0(1)m;

3° S(t;,0;) = S(P;)) = fij, i =0(1)n, j=0(1)m (interpolation at the points
Py = (1;,0))).

For S(x, y) we may use the piecewise polynomial representation

(P) S(x, y) =
=do + ax + ¥ + a3x® + auxy + asy? + agx’y + a;xy* + agx’y?
on each rectangle D;; with nine coefficients a,, k = 0(1) 8, which are generally
different on different rectangles D;; (we omit here the indices i, j at the coefficients a).
The questions of existence and uniqueness are generally treated in ([1], [4]); here
we find that with given (dx, 41), (4y, 4v), (f;;), the spline S(x, ) on D is uniquely
determined by the boundary conditions of various types — e.g.
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a) S1o(’i, J’o) s S1o(ti, Vm+ 1) i= 0(1) m
So1(x0,v;),  So1(Xp+1,v;) j=0(1)m (prescribed values)
Sy, k=0n+1, p=0,m+1;

b) Sa0(*0s 0} s Sz0(Xys1,0;) j=0(1)m

SOZ(tia J’o) , Soz(ti, Ym+ 1) i= 0(1) n

Si11xey,), k=0n+1, p=0,m+ 1
(we use the notation, e.g., S15(xi, y;) = Syy(*i> ¥)))-
We will use also another type of boundary conditions in our algorithm (D1) (with
interchanged first derivatives on the horizontal and vertical boundaries as compared
to the case a)); the existence and uniqueness follows from the algorithm and can be
proved analogously.

To be able to work with the spline S(x, ) we need the algorithm which for S(x, y)
computes the local parameters on D;; from the global data defining the spline on D.
These local parameters may be concentrated at one point of D;; or dispersed at
several ones.

3. CONCENTRATED PARAMETERS

The piecewise-polynomial representation (P) of the spline S(x, y) defines uniquely
the spline and its derivatives at all points of D;;. On the other hand, given the values
of S(x, y) and its derivatives

(T) S’ SIO’ SOls SZO’ SII’SOZa S215 SIZ:SZZ

at some point (x, y) € D;;, we can compute the coefficients a, of the representation
(P) using the relations

(1) ag =S — xS1o = ySo1 + (x*Sz0 + 2xyS1;1 + ¥*S02)[2 -
(T-P) — (x?ySyy + xy281,)[2 — x?p28,y,[4,
ay = Sio — xS0 — ¥So2 + y2512/2 - xyzSzz/ 2,
ag = Syy — xS31 — yS1s + xySsz,
2a3 = S0 — ¥Sy + y2S22/2, 2a5 = Sp, — xS12 + x2S22/2 >
206 = 831 — ySaz, 2a; = Sy3 — X813,
4ag = S,,.

4. DISPERSED PARAMETERS

From the computational (or practical) point of view we sometimes prefer the local
parameters of the spline to be dispersed and separated at the corners of D;; and at
the points of interpolation. For example, with bicubic splines we use the parameters
S, S10s So1, Sy at each of the corners of the element D;; (see [4]—[6]), to be able
to use repeatedly the one-dimensional algorithm with the first derivatives. For
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a biparabolic spline, we have to choose such parameters which uniquely determine
the biparabolic polynomial on D;; and together with an appropriately chosen one-
dimensional algorithm will result in the two-dimensional algorithm.

At first sight, the nine parameters for the biparabolic polynomial on D;; can be
chosen as follows:

() fiy = S(Py) = S(t;,v) ;
S10» So1 at each of the corners of D;; .

However, these local parameters are not suitable, as the following lemma shows.

Lemma 1. The nine parameters (2) do not generally determine the biparabolic
polynomial S(x, y) on the rectangle D;;.

Proof. When we try to compute the coefficients of Taylor’s expansion

S(x, y) = S(xi, ¥;) + Siolx — x;) + Sos(y — y;) +
+ %[Szo(x - xi)2 + 2311(" - xi) ()’ —-y;) + Soz(y - J/j)z] +
+ 4{S5(x = x)?(y - yj) + Sia(x = x) (v — V¥ + 3Saa(x — x)2 (v — »y)?

of S(x, y) at the point (x;, y;) (all derivatives S, are taken at this point) from the |
given information (2), we obtain a system of linear equations which generally has
no solution.

We obtain the same result when trying to compute the coefficients of Taylor’s
expansion of S(x, y) at the point (t;, v;), or to compute the coefficients of the piece-
wise polynomial representation of S(x, y) on D;; from such data.

We shall explain the details on the following example. Given S, S, at the corners
of the unit square [0, 1] x [0, 1] and the value S(1/2, 1/2) = p, we try to find the
coefficients a, of the (P) — representation to fit the given data. By comparison
we obtain the system of equations

(3) a; = S14(0,0), a;, = S61(0,0),
a, + 2a; = Sm(l, 0) , ap + 2as = Sm(O, 1) s
a, + a, + ag = Soy(1,0),
ay + ay + a; = S;0(0, 1),
a; + 2a; + ag + 2ag + a; + 2ag = Syo(1, 1),
a, + a4 + 2as + ag + 2a; + 2ag = So,(1, 1),
ag + a1/2 + a3[2 + (a; + as + as)/4 + (ag + a7 + ag)[8 = p.

We can eliminate a,, a,, a3, as from the first four equations and a, from the last
equation, but the rest of the system forms a system of four equations with the deter-
minant equal to zero — so we generally have no solution of the whole system.
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5. SUITABLY DISPERSED LOCAL PARAMETERS

5.1. On the rectangle D;; = {(x, ¥); X; £ x £ X;41, ¥; £ ¥ £ y;41} We denote
fij = S(t;,v;) (the function value at the point of interpolation) ;

(Rij) m;; = Sm(xis Uj) s Mipq,; = Slo(xi+ls Uj) s
n;; = SOl(ti’ Uj) sy Mij+r = SOl(th J’j+1)
(the values of the first derivatives at the intermediate points on the boundary
of Dij) 5
Sij = Sta(xis Vi) Sistg = Sit1j = S1(Xiv 1 ¥)
Sij+1 = Sll(xia Yj+1) s Siv1,j+1 = Sll(xi+l’yj+1)
(the values of the mixed derivative at the corners of D;;).

Altogether we again have nine parameters for S(x, y) dispersed on D;; as shown
in Fig. 2.

Sy Sot  Sn Sy \3\01 Sn Sot.Su___ S SoiSn___ S
hY

St °S S10 S, Sm i

SSt  SpSn SSwuSuSi S0
511 501 S“

a) b} c) dj
Fig. 2.

Theorem 1. The nine parameters (R;;) determine uniquely a biparabolic poly-
nomial S(x, y) on the rectangle D,;.

Proof. Let us denote
(4) hi = X010 — X;, kayj+1_yj9
L= X;=Diy, Xjpp—ti=x;+h—t;=h;—p;,
V= Vi=4d;> Virn— =Ytk —v=k—q;,
SIO’ SOI’ SZO’ Sll’ SOZ’ S21’ SIZ’ S22 -
the values of the derivatives of S(x, y) at the point P;; = (t;,v)) .
From Taylor’s expansion of S(x, y) at the point P;;
(T35) S(x,y) = fij + Sio(x = 1) + Soi(y — v)) +
+ 3 S20(x = 1)* + 281,(x — ;) (v — v;) + So2(y — v))*] +
+ 3[Sa1(x = > (v — v)) + Spa2(x = 1) (v — v;)*] +
+ 3S2,(x — 1)* (v — v))?
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we obtain

S10(%, ¥) = Sio + Szo(x — ;) + Sy —v) + Sa(x — 1) (v
+1815,(y = )* + 3S5(x — 1) (v — v)*,

-v)+

S01(x, y) = So1 + Su(x - t) + So2(y — vj) + 185(x — 1;)* +

+ Sp(x — 1) (v — 0)) + 3Saa(x — 1)* (v — v)),
Si1(x, ¥) = Syy + Sau(x — 1) + Siao(y — v)) + Sza(x — 1) (v

- ).

Applying these expansions to the parameters in (R,.j) at the appropriate points,
we get the following system of linear equations for the eight parameters S,,
(k,r =0,1,2):

()

m;; = S1o — PiSa0»

Mir1,; = S1o + (hi — i) S0,

n;; = So1 — quOZ s

nije1 = So1 + (k; — ;) Soz,

8ij = Sy1 — PiS21 — 4;812 + Pi4;S22,

Siv1,; = Su1 + (hi = pi) S21 — 4,81, — (b — pi) 4,822 »
Sij+1 = S11 — PiSay + (kj ~4;) Sz — pi(kj - Qj) S22,

Sivtg+1 = S11 — (hi — pi) Sy + (k; — a;) S12 + (h; — pi) (k;

This system has a unique solution

(R - T) Sz0 = (mi+1,j - mij)//hi » Soz = (ni,j+1 - nij)/kj ’

Sio = mi + My ;. pilhi, So; = ni 4+ nger - qlky,
S22 = (Sivr,je1 = Siv1,j = Sijer + si)[(hik;) 5

S21 = (Si+1,5 — 8ij)[hi + 4822,

S1z = (Si,j41 = Sip)/k; + PiSa2,

S11 = PiS21 + 4;S12 — Piq;S22 + 545

- ‘1]) Sz -

The boundary rectangles Do;, Dy+y,5 Do, D;,nyq can be treated analogously by
putting po =0, pn+1 =0, 9o =0, g,y = 0, respectively.

5.2. Similarly, we can compute all coefficients of the piecewise polynomial repre-

sentation (P) from the data (R;;). Applying (P) to the parameters in (R;;), we obtain
the relations

(6)

406

2
Jij = a0 + agti + az0; + a3t + aytw, + agv) + agtiv, + a.tv; + agtiv;,

miy = ay + 2a3%; + agv; + 2a6x; + a;v? + 2agxp?,

Mije1 = Ay + 2a3%141 + Q05 + 2agx,,10; + a;0] + 2agX;4+ 107,

Ny = a + agl; + 2asy; + a(,tf; + 2a.ty; + 2a31,?y] ,

Mijer = Gz + agty + 2a5y4 1 + agt? + 2a,ty 41 + 20810 Y41,



5, = a4 + 2agx; + 2a,y; + dagxiy;,
Sis1,) = A4 + 2a6Xi41 + 2a7Y; + 4asXi41);,
Sij+1 = a4 + 2aeX; + 2a7y;01 + 433XV,
Sip1,j+1 = Qg + 2agX;4q + 2a7Yj01 + 405X 1Y ;41 .
The last four relations form a system of linear equations for a4, ds, a,, ag with

a unique solution; then we can calculate a,, as, a,, a5 from the second till the fifth
relation and, finally, a, from the first relation. We obtain

R~P) a,= sij = (Sie1,; — sij) Xifhi — (Sij41 = si5) vilk; +
+ (si+1,j+1 = Sit+1,; — Si,j+1 T sij) xiyj/(hikj)
ag = (si+1,j - Sij) Vi+1 — (Si+1.j+1 - Si,j+1) J’j/(2h.-kj)
a; = (Si,j+1 - sij) Xiy1 — (Si+1,j+1 - 5i+1,j) xi/(Zhikj)
ag = (si+1,j+1 ~ Si+1,; — Sije1 T sij)/(4hikj)
a3 = (myje1 — myy)|(2h;) — v(as + agv))
ay = my; — (ag + a;) v; — 2x,(ag + agv;) — 2x,a,
as = (ny;01 — nyy)[(2k;) — tias + agt))
a, = n;; — (a4 + agt;) t; — 2t;y,(a; + agt;) — 2asy;
Ay = fij — ait; — ax0; — ast; — autp; — asv; — agtiv; —

I

— a,tp} — agtv}.
5.3. It is a little surprising that the interchange of the derivatives S, and Sy,
as in Fig. 3 leads to an unsuitable set of parameters for S(x, ).

S:;o
So S N\Sos

ya
7

S
Fig. 3.

rd

Lemma 2. The nine parameters
(Ry))  S(ts, v), S0t 73)> S10(tis ¥i41)> So1(%i> 0), So1(%iv 15 )) 5
Sll(xi’ J’j), Sll(xi+1, )’j), Sll(xi’ )’j+1), Sll(xH-l’ J’j+1)
do not generally determine a biparabolic polynomial on D;;.
Proof. Denoting (for this proof only)
m;; = So(tis Yi)s nij = Soi(x;, v;),  Si; = Sya(%is ¥))

we get analogously to (5) the system of equations with different first four equations

407



(7) m;; = S0 — 4;81;, + 4?512/2,
Mijey = Sio + (kj - ‘Ij) S + (kj - ‘1])2 S1z/2,
n; = So1 — piSyy + P?Sn/z ’
niv1,; = Sor + Sui(hi — pi) + (hi — pi)* 242
The next four equations coincide with those in (5). We have now eight equations,

but six unknowns only (Szo, Sy, do not appear in this system) — the system is over-
determined and generally has no solution.

6. ALGORITHMS FOR ONE-DIMENSIONAL PARABOLIC SPLINES

6.1. Algorithm with the first derivatives

As is known (see e.g. [2], [3], [5]) a one-dimensional parabolic spline S,(x)
for a given set of knots (4x, At) and prescribed values (g;) at the points of inter-
polation (1;) can be expressed by

(8) S2(x) =g;+(x—x; — Pi) [mi + (mi+1 —my) (x - Xx; + pi)/(Zhi)]

for x€[x; x;41], where h; = x4y — X5, Pi = t; — X;, gi = Sy(t:), m; = Sh(x;).
The continuity of S,(x), S5(x) at the knots x;, i = 1(1) n yields the following relations
for the parameters m;, i = 0(1) n + 1:

(m) aimi_l + bim,‘ + CiMm;yq =fi > i = 1(1) n,

where a; = (hi—y — pi-1)* >0,

9) b; = pi(2h; — pi) hi=sfhi + (B}-1 — pi-;) > O,
¢; = P?hi—l/hi >0,

fi = 2hi—1(9i - gi—l)'

We have to choose two other (usually boundary or periodicity) conditions to de-
termine the spline uniquely (the simplest possibility is to prescribe m,, m, ., and to
solve the tridiagonal system (m)). As shown in detail in [2], under quite weak con-
ditions on the geometry of the sets of knots (4x, At),

Ibo{ > |CO|' |bn+ll > |an+]l )

the boundary conditions usually used (prescribed values of the first or second
derivative, or linear combinations of their values) lead to a tridiagonal system
of linear equations with strictly dominating diagonal. Periodicity conditions lead
to a system with a cyclic tridiagonal matrix. So in such cases we have a unique
solution (m,;) which can be computed effectively by algorithms for special systems
of this kind.

408



6.2. Algorithm with the second derivatives
We have also another representation for the parabolic spline. Denoting

(10) M; = S3(t), i=0(1)n,
ny = S5(t;) = (gir1 — 99)[(A1:) = (xix1 = 1) (fiey = Xi0q + A1) Mi[(241) ~
— (tiyr — Xi41)* Mi4/(24t), i=01)n—-1,
n, = {gn — Gn-1 + [(xn - tn—l)z M, + (tn - xn) (Atn—x + Xy — ty—q) Mu]/2}:
1At
we have
(11) Sa(x) = g + nix — ;) + My(x — t,)*[2 for xe[x;,%i4q].
The continuity conditions of the spline at the knots lead to the relations
(M) aM;_{ +bM, + My, =f, i=11)n~-1
with a; = [(x; = t;iy)[4t;i- 1] A1,y [(At;-y + A1),
b= [(t; — x;)) (1 + (x; — ti-y)[Ati-y) +
+ (xier = 1) (U+ (tieg = xi00)[A8)][(41:- + A1)
(12) ¢; = [(tis1 — xi41)[48]? 48,/(41,-, + A1)
fi = 2[(giv1 — 99)/At; = (9: — gi-1)/Ati-][(4t;i-; + A1)
for the unknown values M;. Two boundary conditions (e.g. conditions fixing M,
M, ., or the values of the first derivative, or some periodicity conditions) complete

this system to a tridiagonal (or cyclic tridiagonal, under periodicity conditions)
system of linear equations. More details are given in [2].

7. ALGORITHM FOR BIPARABOLIC SPLINE USING THE FIRST DERIVATIVES

7.1. Suppose the biparabolic spline S(x, y) is uniquely determined by the data
(13) (4x, 4t), (A4y, 4v) (the sets of knots),
fiy = S(t,v;) i=0(1)n; j=0(1)m (conditions of interpolation),
my; = Syo(x;0;) i=0n +1; j=01)m
n; =Se(ty;) i=0m+1; i=0(1)n (boundary conditions) .
sij =8u(xpy;) i=0n +1; j=0m+1
The nine dispersed parameters (R;;) defining the spline S(x, y) on each of the rec-

tangles D;; according to Theorem 1 can be computed from (13) via the following
algorithm, based on the one-dimensional algorithm given in 6.1:

Algorithm D 1
1° Compute m;; = S,,(x;, v;), i = 1(1) n on the horizontal lines y = v, j = 0(1) m
from the values f;;, mg;, My 1 ;.
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2° Compute n;; = Soi(ti ¥y), J = 1(1)m on the vertical lines x = t;,i = 0(1)n
using the values fij; fio> Rim+1-
3° Compute s;; = S11(%s» ¥;), j = 1(1) m on two vertical boundaries (i = 0, n + 1)
using the values m;}, Si0> Si,m+1
(here we use the fact that S o(x, y) is a parabolic spline with respect to the variable
y, determined by the values of S;, and the boundary values S,, on a vertical
line; likewise, Sy, is a parabolic spline with respect to the variable x determined
by the values of Sp; and the boundary values Sy, on a horizontal line).
4° Compute s;; = Sq4(x;, y;), i=1(1)n from the values ny;, Soj, Sps1,
j=0(1)m + 1 on horizontal lines.
In all these four steps we use the one-dimensional algorithm as described in 6.1,
working with tridiagonal systems of linear equations. As the result we obtain all the
nine dispersed parameters (R;;) of the spline S(x, y) on each rectangle D,;. Using
relations (R — T) or (R — P), we can pass to either Taylor’s or a piecewise-poly-
nomial representation of S(x, y).
If we need to compute the function value of the spline S(x, y) at a given point
(x, y), we may repeatedly apply formula (8) in the following algorithm.

Algorithm FV.
1° Find i,j such that x; £ x < X;41, ¥; £ ¥ £ yj+1 (%, y given).
2° Compute S(x, v;) using my;, S, my,y,; (formula (8)).
3° Compute Sy(x, y;) from s;;, ny;, Sy,
So1(x, J’j+1) from  s; ;415 Mij+1s Siv1,5410

4° Compute S(x, y) using Sos(x, ¥,); S(*, ;) So1(%, ¥;41)-

7.2. Other types of boundary conditions

The algorithm described in 7.1 can be used with boundary conditions of a more
general type

(14) bome; + cojmy; = fo;,
Apyq,jMpj + bn+1,jmn+l,j = fn+1,j’
bionio + ciohis = fio
Aimt1Mim + bims1Mimer = fime1
S5, i=0,n+1; j=0,m+1 given.

i=01)m

i=0(1)n

Such a type of boundary conditions includes several important cases:

a) The values mgj, My41,j> Nios Nim+1 are prescribed as in the basic Algorithm D 1.

b) The values of the second derivatives are given on the boundary
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Toj = Szo(xo, vj) s Tug1,j = SZO(xn+1: vj) y J= 0(1) m+1,
Pio = So2(ti ¥o)»  Pims1 = Soz(tis Ymer)» i=01)n + 1,
500> So,m+1> Su+1,00 Sn+1,m+1 -
(A combination of the first and second derivatives on the vertical and horizontal

lines near the boundary is also possible.) For transforming such boundary conditions
to the type (14), we use the relations

Toj = (ml,j - mo;’)/ho s Tarty = (Myyy, — m,;)[h,
Dio = ("n - nio)/ko , Dim+1 = (ni,m+l - nim)/km'
c) The approximation of the first or second derivatives of S(x, y) using the given

function values f;; and an appropriate formula of numerical differentiation
(if there is no reason to prescribe the boundary conditions diﬁ'etently).

7.3. The periodicity conditions for the one-dimensional spline lead to an algorithm
in which we have to solve a cyclic tridiagonal system of linear equations (see [2]).
With the help of this algorithm (in combination with the foregoing) we get, for the
two-dimensional case on a rectangle:

a) an algorithm for the two-periodical spline,

b) an algorithm for the spline which is periodical in one variable and fulfils some
other type of boundary conditions in the second variable.

8. ALGORITHM FOR BIPARABOLIC SPLINE USING
THE SECOND DERIVATIVES

Using repeatedly the algorithm described in 6.2, we can compute concentrated
local parameters (T') of the spline S(x, y) determined for all D;; by the global values

(14) (4x, 4t), (4y, 4v) (the sets of knots),
fiy=8(t,v) i=01)n, j=0(1)m (interpolation conditions),
Sao(tv)) i=0,n; j=0(1)m
Sox(tisv;)) j=0,m; i=0(1)n p(boundary conditions).
Saa(tv) i=0,n; j=0,m

Algorithm D 2

1° Compute S,o(t;,v;), i=0()n
Sio(tiv;), i=0(1)n (using (10))
from the values f;;, S50(f0» ), S20(ts v;), j = 0(1) m (horizontal lines).
2° Compute Sy (1;,v;), j=0(1)m
Sor(tv)), j=0(1)m
from the values So(t;, vo), So2(tis Um+1)s fi; i = 0(1)n (vertical lines).
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3° Compute S,,(to, v;),
S22(tns ”j) Jj= 0(1) .
S21(to, v;) s S24(ts v))
using the values on vertical boundaries
S20(to> 9;) > S22(ter 00) s S2(tos v,,)
Sao(tus ;) > S22(tws 00) s Sz2(tw,); j=0()m.
4° Compute S,,(t;,v), i=11)n—-1 .
Sualts, vj,% i= 0(1))n j=11)m-1
from the values Sy,(t;, v;), S25(to, v;), S22(1,, v;) on the boundaries,
Soy(tivy), i=11)n -1
Si(tv), i=01)n,
from the values Soy(t;, v;), S21(to, v;), S21(t,, v;) (horizontal lines).
So we have computed all the nine local parameters (T) concentrated at the point
of interpolation for each rectangle D;;. We can obtain a piecewise-polynomial
representation for S(x, y) using relations (T — P) given in 3.

J=11)m-1

9. IMPLEMENTATION AND NUMERICAL RESULTS

In both algorithms described above we repeatedly have to solve systems of linear
equations with tridiagonal or cyclic tridiagonal matrices. The components of these
matrices depend on the geometry of the sets of knots and on the boundary conditions.
Under several types of boundary conditions we have to solve many systems with
the same matrix (e.g. in the case of prescribed first or second derivatives on the bound-
ary when computing on parallel lines). In such cases the decomposition algorithms
can be used sucessfully.

The first algorithm has been implemented on PMD-85 personal computer
(BASIC-G) with the following possible boundary conditions
— the general type (14) of boundary conditions;

— given the first derivative on the boundary;

— given the second derivative on the boundary;

— the user has no conditions on the boundary (the program automatically approxi-
mates the first derivatives from the given function values);

— periodicity conditions.

We obtained exact results for the biparabolic polynomial S(x, y) = x* — y* +
+ xy — 1 (under proper boundary conditions) and satisfactory results for freely
chosen periodic data (including graphic visualisation in one dimension).
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Souhrn
ALGORITMY PRO BIPARABOLICKE SPLAJNY
Jikf KoBzA

Prace se zabyva vypoétem parametri biparabolického splajnu (typu tenzorového soudinu)
na obdélnikové oblasti. Po prozkoumani ndkterych moZnosti vhodného vybdru parametra
urlujicich takovy splajn (rozloZené parametry (R;;), soustfeddné parametry (7)) jsou uvedeny
algoritmy pro vypodet rozloZzenych parametru (algoritmus D 1 — s prvnimi derivacemi) a sou-
sttedénych parametra (algoritmus D2 — s druhymi derivacemi) z podminek interpolace a
z vhodnych okrajovych podminek. Oba algoritmy opakovand vyuZivaji algoritmd pro vypodet
parametri jednodimenzionalniho splajnu. K vypo¢tu funkénich hodnot splajnu je pak moZno
pouzit (PP)-reprezentace nebo algoritmus (FV) s opakovanym vypoétem hodnoty jednodimen-
zionalniho splajnu.

Pesome
AJICOPUTMBI IS IBYMEPHBIX IMMTAPABOJIMYECKUX CITJIAYIHOB
JiIki KoBza

B pabore u3y4aloTCs aIrOpUTMBI BBIYMCICHHS TapaMeTPOB NOBYMEPHOIO Iapado/M4YccKOro
cniaitHa Ha IpAMOYroJibHuke. MccnenyroTcss BOBMOXHOCTH TOIXOIAIIEro BRIOOpa mapamMeTrpoB
ciiaitna (pasnoxeHHsle napamMeTpsl (R;;), cocpenoroyennpie napamMerpst (7). Ilpusenens! anro-
PUTMBI BEIYHUCIICHUA TAKUX IAPaAMETPOB U3 YCIIOBUI HHTEPIIOJISILMHA U TOAXOAAUIAX KPAaeBhIX YCIOBUL
(anroput™ D1 ucnionb3yer nepeble NPOU3BOJHBIC, airoputM D2 BTOpble npou3sBogubie). OGa
QJITOPETMAa MCIOJbL3YIOT LIMKIMYECKHM 00pa3oM aaropuTMel [T BBHIYKCICHHA NApameTpOB OIHO-
MEPHBIX CIUTAaHOB. {1 BHIYAC/ICHHUS 3HaYEHUs CIUIaiiHa M3 ero napaMeTPoB MOKHO YOJIb30BaThCA
ero MHOrowieHusiM npencrasienuem (PP) mnm anropurmom (FV), B KOTOPOM MOBTOPHO MC-
TOJIB3YETCsl aJITOPUTM BBIYHCIICHUA 3HAYEHUI OXHOMEPHOIO CIUIaiHa.

Author’s adress: Doc. RNDR. Jifi Kobza, CSc. PtF UP Olomouc, Gottwaldova 15,
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