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SMALL TIME-PERIODIC SOLUTIONS
TO A NONLINEAR EQUATION OF A VIBRATING STRING

EDUARD FEIREISL
(Received October 3, 1986)

Summary. In this paper, the system consisting of two nonlinear equations is studied. The
former is hyperbolic with a dissipative term and the latter is elliptic. In a special case, the system
reduces to the approximate model for the damped transversal vibrations of a string proposed
by G. F. Carrier and R. Narasimha. Taking advantage of accelerated convergesnce methods,
the existence of at least one time-periodic solution is stated on condition that the right-hand
side of the system is sufficiently small.

Keywords: Nonlinear string equation, Accelerated convergence, Time-periodic solution.

AMS Classification: 35L70, 35B10.

The problem we shall be concerned with is to demonstrate the existence of a couple
of functions u = [uy, u,] of x €(0, I), t € R satisfying the equations

o%u ou du o*u, Ou
E 1 + o —1 ’ —2 ’ 1 > —1 = B
(E:) a1 < o o o a) 7
0%u, ou; 0%u,
E ~ 0o, (2, TS
(E2) x> : (6x ox? ) f2

together with the conditions
(B) u0,1) = uyl,t) =0 forall teR, i=1,2,
(P) ufx,t+ ) =uyx,t) forall xe(0,1), teR, i=12.

As to the functions a; = 6,(v;, v2, V3, v4), 05 = 0,(v,, v,), we assume that

(0.1) c(0)

0, @(0)=o for i,j=1,2,
ov;
doy do,
(0.2) —(0)=-a, —(0)=d where a,d >0,
0v, v,

480



o, being defined and smooth on some open neighborhood of the point 0 € R®~ %/, i =
= 1, 2. These requirements seem to be the sine qua non condition we are unable to
remove. In particular, the problem with dissipation is studied here since the con-
stant d is strictly positive.

In case we set a(v;, vy, 03, 05) = 0(v3, v, + 303) + dv,, 0,(vy,0;) = —v,0,,
f2 =0, the system (E,), (E,) together with (B) reduces to an integrodifferential
equation of the form

STRVLTNLINEY YN RS

ot ot ax?’ 2l ox

which is the approximate model for the damped transversal vibrations of a string
proposed by G. F. Carrier and R. Narasimha (see [1]).

Observe that the problem above possesses a solution, namely the function u =
= [0, 0], provided we have f = [f,, f,] = [0,0]. We intend to find at least one
solution to (E,), (E,), (B), (P) provided the function f has been chosen small and
smooth enough. Since the corresponding linearized operator “loses” derivatives,
no method seems to be available but that one suggested by J. Nash and J. Moser
taking advantage of the accelerated convergence of approximate solutions.

Similarly as in [2], [3], we prefer to use the Newton iteration scheme directly
rather than refering to some abstract results of Moser (see Section 2). This rapidly
convergent process requires both the existence of smoothing operators and the
invertibility of the linearized operator in a full neighborhood of the function u = 0
(Sections 3, 4). Working with substitution operators, we will need some estimates
proved essentially by J. Moser in [4] (Section 4).

Throughout the paper, the symbol ¢ denotes all strictly positive constants. Using
the symbol ¢(L), we want to emphasize that this constant depends essentially on
the quantity L only.

1. STATEMENT OF THE MAIN RESULT

To agree upon notation, let us consider functionals (norms)

2 1/2
o], = ( f f ds dt) ,
K+JsL Jo Jo

oe- 3,2

K+J

oxK ot!

|xe[o0,1], teR}

Ka.l

for L= 0,1 ... The symbols H- and H{ stand for the completion of all (real) functions
being both smooth and satisfying (P) and (B), (P), respectively, with respect to the
norm | |.. Analogously, we define the spaces C%, C§ using | |L.
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Taking into account the known embedding theorems (see [5, Chapter I]), one
obtains HX*2_» CL and

(1.1) lelle £ e(L) |@|le+, for @eH"*?, L=0,1...

Finally, we set E; = H5 x H5, F, = H- x H. For a vector function w =
= [wy, w,] belonging to E, or F,, the norm is defined as the sum of norms of its
components wy, w,. For the sake of simplicity, the symbol ] ] ¢ will denote this norm
as well. The norms on C* are defined in the same way.

We are on the point of formulating our main existence theorem.

Theorem 1.1. Let an integer M = 11 be given. Suppose that the numbers d, a are
strictly positive and the conditions (0.1), (0.2) are fulfilled. Then there is a number
3,(M) > 0 such that the system (E,), (E,), (B), (P) admits a classical solution
u = [uy, u,] belonging to the space Ep,,,, whenever f e F), and

(1.2) |f|n < 6 -

Remark. Actually, all we need concerning the smoothness of the fanctions o;
is that o; are (M + 2)-times continuously differentiable on their domains, i = 1, 2.
The next section is devoted to the proof of Theorem 1.1.

2. ITERATION SCHEME

We start with an existence result concerning smoothing operators on the scale
(F), L=0,1..

Proposition 2.1. Choose a real number A > 1 and a positive integer M.
Then there exists a sequence {S,,}, n = 0,1... of linear operators such that the
following conditions are valid:

(2.1) S,:Fo—>NFx for n=0,1...,
K=0
(2.2) |S.W|pik < (K) A"|w|, for K,n=0,1...,

(23)  |(Id — S,) w|x < o(K) A% "|w|, for K=0,..,L, n=0,1..,

andforL=0,1..,M,weF, .

In [3], the smoothing operators were constructed on the space HE. Clearly, this
technique applies to our situation as well. .

To simplify notation, we set

! ox Tox Tox2 o) P ax ~ ox?
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Consider a mapping G(W) = [Gi(w), Gy(w)],

Gy(w) = 9

1(D1W) >

2

Gy(w) =

Similarly, we define G'(W) ¥ as

w).

Gi(w)y = ?y, 80,(1) +_1(D1)6y2

or? dv, ox
Jo %y, 0o dy
+ \‘ Dyw) —1 + —1(Dw) =L,
( v ) ox? 604( ! )
,b 0? oo 0 02
Gy(w)y = — ayzz 003, ( w) 2 V1 ﬂ (Dzw) yzl ]
x 0x v, 0x

We solve the sequence of linear equations
(2.4)_, GO)u =f,
(24)y  G'(Sou®)y® = h® where h° = S,e°, e® = —G(u°) + G'(0) u°.
Next, forn = 1, 2, ..., we set )
u" = u° +"fyk, h" = S,e" + (S, — S,,_l)nile".
k=0 k=0

The quantities e* are given as sums e* = 'e* + 2e* where

et = —G(u!) + G ) + G ot

et = (G/(Si-y uTT) - (G )yt

The functions y”" are determined successively as the solutions of the equations
(2.4), G(Su)y' =h", n=1,2..

The iteration scheme just described is analogous to that which was used in [2],
[3]. Ttis a matter of routine to check that

(25) G(un+1) = f_ en+] _ (Id _ S,;)Z ek
k=0
holds foreachn = 0, 1.

Let us pause to list two important results. The proof of the first one 1epresents
the bulk of the paper and is carried out in Sections 3,4.
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Proposition 2.2. Let an integer M = 4 be given. Then we are able to find a number
5,(M) > 0 such that the equation
G'(w)y=h

possesses a unique solu;ion y € E;; whenever he Fy, we Fy, s and
(2.6) - |wls < 6,.

The above conditions being satisfied, we have the estimates

(2.7) |¥le < o(L) (|h], + [W|oss [hlo) for L=0,...M.

Proposition 2.3. Consider an integer N = 1. Take u", y" € Ey,, small enough
so that the quantities €"*! may be well defined.
Then the relations

(2.8) s e) ¥ (1 + U ea) [u0ure [00esez s
Ly+L,+L3y=L
(2.9) lle"H'L = C(L) Z (1 + ]”"IL,M. + ‘Y"|L1+4) lyn‘L2+4 |Y"lL3+z ,
Ly+L+L3=L
(210)  Pertllise@) Y (1 [0 |V |Laea [(1d = S) 0,1
Li+Ly+Ly=L

hold for each n =0,1,...,L=0,1,...,N.
We postpone the proof to Section 4.
Now we are going to solve the iteration equations (cf. [3]). Consider the number
M = 11 which appears in Theorem 1.1. We are able to choose a number D in such
a way that 2D e (M + 1, M + 2). Finally, let the function f e Fy, satisfy

(2.11) |flar < 83

where 5 is, for the present, an arbitrary strictly positive number.
As to the equation (2.4)_,, we claim, in view of Proposition 2.2, that there is a
(unique) solution u®, the norm of which is estimated by

(2.12) ||, £ ¢(L)|f|l, foreach L=0,...,M.

In order to solve (2.4),, with (2.2) in mind, it is necessary that u® be small in Es.
To achieve this, it suffices to pick out the number J5 in (2.11) small enough. In this
way, taking into account (1.1), we simultaneously obtain that the term e° is well
defined. We conclude that there exists y°,

IY°|. < (L) (|h°) + |So u®|r+5 |h°]o) for L=0,.. .M.
Combining (2.2), (2.8) with (2.12), we deduce
(2.13), |y’ <& foral L=0,...M

where the number ¢ > 0 can be arbitrarily chosen provided the number J; is appro-
priately small.
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Having chosen ¢ > 0 small enough, our aim is to solve (2.4) in each step of the
iteration and to establish the estimate

(2.13),, ly"|e < e4®™Pm™ forall L=0,...,M.

For this purpose, we assume that the existence of such y™ has been already established
for all integers m < n.
In accordance with (2.12), (2.13), we get

o] < ol + S S o o) (1 + 3 472
Using the standard summation r.ule, one obtains '
(214) |t S ec(L) (1 + AETROHED)  L=0,..,M, m
In view of (2.3), we get the estimate
|(Id = S,y ) um*1|, < (L) AEMEED)m+1 - for L=0,...,M.
Since M > D, we can deduce from (2.14) the inequality
(215)  |(Id = Spiq) umY|, S gc(L) AEDMD 1 =0,..,M, m<n.

Now, the terms €”** will be treated. First of all, we are able to set ¢ > 0 in (2.14)
so small that all quantities in Proposition 2.3 may be well defined since D = 6.
Taking into account (2.9), (2.10), (2.13)—(2.15), we summarize that

Iem+llL < g2 C(L) Z (1 + A(L1+4—-D)(m+1)) AWL2+L3+6=2D)(m+1)
Li+Ly+L3=L

IIA

n.

when L=0,...,M — 4 and m £ n. Finally, we get

(2.16) |e™* |, < &2 ¢(L) ALT2PHOMED for L=0,..M -4, m

/AN
=

The following estimate is analogous to (2.14):

IIA

(217) |y o< e?e(L)(1 + ART2P¥OMHD) - L —0,. ..M -4, m=<n.
k=0

Seeing that M + 2 — 2D > 0, we are able to prove the following, using an anal-
ogous argument as in (2.15):

(2.18) |(Id — S;) Y €|, < & (L) A" ~20+6)t+ D)
k=0

foreachL=0,....M —4,andj =n,n + 1.
Eventually, we are to derive estimates related to h"**. According to (2.2), (2.16),
we obtain
(2.19) IS+ 18" YL S (L) AX*D]ert ]y < 6% (L) AE-2D+O)mt 1)
forall L=0,1,...
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Setting Svst — Su = (Surs — 1d) = (S, — Id), we obtain

(2.20) I(S,,H - S,) Ze"lL < &2 (L) AP+ D
k=0

for each L= 0,1, ..., M — 4, (2.18) being taken into account.
On the other hand, it is possible to write

[(Suvr = S X € le < |Surs Y e + S, Y €M =
k=0 K=0 k=0
< (L) A= MHHEED) i €|y-s provided L> M — 4.
k=0

Combining the above relation with (2.17), (2.19) and (2.20), we conclude that
(2.21) [P+, £ % ¢(L) AFT2PHOC+D forall L=0,1...

Having derived all necessary estimates, we focus our effort on solving (2.4), .
In order that all terms appearing in the equation may be defined and the condition
(2.6) be fulfilled, we must be able to keep |u"*!|s small enough. To comply with
this requirement, we set ¢ > 0 in (2.13) sufficiently small. Observe that this can be
done for all steps of the iteration simultaneously since the constant appearing in
(2.14) is independent of n.

By virtue of Proposition 2.2, we obtain the solution y"*! of (2.4),, , satisfying

(2.22) y* e < o(L) (0o + [Sue 0™ Hoes [, 1]o) <
(according to (2.14), (2.21))
< g2 (L) AXT2PHOCED for L=0,1,...,M.

We can choose ¢ > 0 in (2.22) in such a way that the inequality ¢ ¢(L) < 1 holds
foral L= 0, 1, ..., M. Noticing that D = 6, we see that (2.13),,+1 follows.

Repeating the procedure just described, we get, by induction on m, the existence
of a sequence {y"} satisfying (2.13),. In particular, the sequence {u"} admits a limit
uin E; , L, < D being chosen arbitrarily. As a consequence of the inequality D = 6
and by continuity of G, we obtain

(229) J6w) — Gl - 0.
On the other hand, employing (2.5), we get
IG(u**) — fllo < c(le"*], + |(Id — S,) Y €*],) < &2ca® 2P0+ D,
k=0
Consequently, G(u) = f by (2.23), which completes the proof of Theorem 1.1.

486



3. LINEAR EQUATIONS

In this section, our main goal is to show some existence and regularity results
related to the system of linear equations

2 62 2
(L,) PO L TR e TS K FRE 1 S S L Y

ot? ot ox? 0x o0x ox?

+pt Py
ot
%y, dy %y

L - =224 =L L =h
(L2) ox? ox ox? 2

where the unknown functions yy, y, of x€(0, 1), t € R are required to satisfy (B),
(P). As is easily seen, such results will be a suitable tool for proving Proposition 2.2.
We have used the symbols b/, j = 1,...,6 for functions b’ e C¥*1 the symbols
h;, i = 1,2 stand for functions belonging to the space HY, M appearing in Pro-
position 2.2.

We start with the inequality

(3-1) [Wx]J{Wz}K < (J,K) ([Wl]x {Wz}nx—t + [Wilrek-r {Wz}r) >

which is an easy consequence of the Nirenberg interpolation inequality and of the

well known relationa. b < a”.r™ ' + b°. 57, r7! 4+ 57! = 1.In (3.1), we suppose

0 <I<J,K and the symbols [ ], { } can be replaced both by | | and by| |.
Besides, we have the Poincaré inequality

ow

62 f J 0x

As a rule, all we need for solving linear problems are suitable a priori estimates.
Let us multiply (L,) and (L) by the expressions

2L 2L+1 2L
(- 1) <d aa 2142 aa ZH{I) and (—1)-222
t t

2 o Ml
dx dt = (o, l)J‘ j |w]* dxdt, weH;.
0 0

respectively. Summing the results, integrating by parts and using (3.2), we get

L 6
63 DAL (E Wl Z0.K) + W)
Zo /=

L=0,1,....,M ..
We have denoted

L L+1 L

E(Y, L) = Iy 6_2)_2 g._y_%
ot |, ox ot% |, at* |,
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We only sketch the way how to treat the most difficult term:

azy 62L+1y 1ab3 6L+1y 2
1)E b3 L Ldxdt = 1) dxdt +
=9 J J ox? ot 02 0t \ ax ot-
o L L+ 1 aL+l Kb3 6"“y1 aL-i-ly1
+ Y -
0oJo k0 |\ K ) art+1-K 9x oK ox o

B aL+1-—Kb3 aK+1y 6L+1 d dt
ox ot-~K ox ot% ortt?

Using (3.1), (3.3), the estimates
(3.4 2y, L) < <(L) (é;lubfum IWlo + [A],)

can be derived for L=0,1,.... M by induction, since

(3.5) |jbf[|1 < .
=1
The number 6, > 0 has to be chosen small enough.

Having obtained a priori estimates (3.4), we are able to employ the Galerkin
approximate method based on the system {e, ;} = {sin (tkl™'x)sin (2njo~'t),
sin (tkl™'x) cos 2mjw~'t) | k = 1,/2,...,j = 0,1,...} so that the existence of
a (unique) pair y = [y;, y,] may be stated, which satisfies

o Ml 2
(3.6) -—-—6);‘+d§¥—1+b1@—}i+b2@)—z+b4a—yi o+
oJo \ Ot ot 0x 0x ot

3 o
%a—('o—-?—y—la(b (p)d dt = hiedxdt,
0x 0x ox Ox oJo

o rl 5 w
(3.7) W00 | s, W A0°0) g hy dx dt
0Jo Ox Ox 0x ox Ox od o

for all smooth function ¢ satisfying (B), (P). Obviously, the estimates (3.4) remain
true.

Now, from (3.6), (3.7) we can deduce

69) P2 < o(3 [V s + (8.

2
0x* |o

%y,
0x2 |,

The generalized derivatives of y satisfy

2 2 N 2
(39) aa—'y-1=M+d%+bla_y}_+b2_a_¥_2.+bsayl+
ox*  or ot ox ox ax?
g
ot
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2
(3.10) yr _ s L g O Py, h, .
0x? 0x ox?*

ForK =0,1,....M —2and J =0,1,..., M — (K + 2) we apply the differential
operator 0%+7/gx* dt’ successively to both sides of (3.9), (3.10). Keeping (3.1) in mind,
we get by induction

K+J+2
(3.11) 0

Vi

6
k"2 op|, < (K, J)(j; 16|+ s+2 hlo + |hlcssst)
Combining (3.4), (3.11) with (3.6), (3.7), one finally obtains

Lemma 3.1. Let M = 4, P e CM*! for j = 1,...,6. Then we can find a number
05(M) > 0 such that the condition

(3.12) i ”bjul < Js

guarantees the existence of a unique classical solution y = [y, y2] of (Ly), (L2)s
(B), (P) for arbitrary h € F,;. Moreover, y € E) and for each L= 0, ..., M we have
the estimate

(3.13) I¥le = e(L) ( Z 16/l 1 [Blo + |hl2) -

Remark. Actually, we have obtained somewhat better estimates concerning y,
than in (3.13).

4. PROOFS OF AUXILIARY LEMMAS

The last section is devoted to completing the proofs of Propositions 2.2, 2.3.
To this end, some estimates connected with a substitution operator are needed.
According to Moser ([4]), we have

Lemma 4.1. Let ¢: R" - R be a mapping ® being N-times continuously differ-
entiable on some neighborhood of the point 0 € R". Suppose that all derivatives
of @ up to the order N are bounded by a constant B > 0.

Then for functions w;e C¥, i = 1, ..., n we have the estimate

(a.1) (9001, -l < c(8) B(1 + % )

provided (wy, ..., w,) ranges in the domain of ®.

With help of Lemma 4.1, it is not difficult to complete the proof of Proposition 2.2,
the results of Section 3 being taken into account.

As to Proposition 2.3, let us treat the quantity e3*’, for instance. In view of the
Taylor expansion formula, we have

g1 j (1 - ) (Dz(u +sy))< x> +
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0’0, 0y1
4+ 2 ——=—(Dy(d" + sy")) —
ov, 602( o r)) ox

az}’1

ox?
820'2 62y1 2
+ D,(u" + sy" ds
ov? (Do r) <6x2
Combining Lemma 4.1, the estimates (1.1) and the Holder inequality, we get a relation
analogous to (2.9). The other terms are treated in a similar way.
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Souhrn
MALA PERIODICKA RESEN{ NELINEARNI ROVNICE STRUNY
EDUARD FEIREISL

V ¢lanku je studovana soustava nelinedrnich rovnic, z nichZ prvni je hyperbolického typu
s disipaénim &lenem a druha eliptickd. Ve specidlnim pripad rovnice predstavuji model pro
tlumené kmity struny navrZzeny G. F. Carrierem a R. Narasimhou. UZitim metod urychlené
konvergence je dokazana existence periodického feSeniza pfedpokladu, Ze prava strana soustavy
je dostate¢né mala.

Pesome

MAJIBIE TIEPMOJMYECKUME PEHIEHWS HEJIMHENHOI'O YPABHEHU S
CTPVHbBI

EDUARD FEIREISL

B cTtabTe n3yvyaercs cucTeMa HeIMHEHHBIX YPaBHEHMI, B KOTOpOil NE€pBOE YpaBHEHHWE SIBISIETCS
ypaBHeHHEM TunepOONMYECKOro THNA C JMCCHIIALEHl M BTOPOE SBIISICTCS YPAaBHEHHMEM SJUIMAIITH-
4eCKOro Tvna. B 4acTHOM cilyyae 3Ta CHACTeMa NpPeACTaBIACT MOJENb ISl NONEPEYHbIX KOneOaHmit
cTpyHbl. [ToNb3ysSCh METOIOM YCKOPEHHOM CXOJMMOCTM, aBTOpP [OKa3biBaeT CYIIECTBOBAaHHE IIO
Kpaifeit Mepe OJHOrO NEPHOIMYECKOTO PEIIEHMS] C BIIy4ae JOCTATOYHO Majioil GyHKLMH B mpaBOi
YacT¥ YPaBHCHMS.
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