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FREE VIBRATIONS FOR THE EQUATION 
OF A RECTANGULAR THIN PLATE 

EDUARD FEIREISL 

(Received July 10, 1985) 

Summary. In the paper, we deal with the equation of a rectangular thin plate with a simply 
supported boundary. The restoring force being an odd superlinear function of the vertical dis
placement, the existence of infinitely many nonzero time-periodic solutions is proved. 

Keywords: Thin plate equation, periodic solution, Ljusternik-Schnirelmann theory. 

AMS classification: 35L70, 35B10. 

We shall investigate the existence of a nonzero periodic (in time) solution of the 
equation 

{P} 

(PI) utt + A2u + f(u) = 0 

where the unknown function u = u(x, y, t), x, y e (0, n), t e R1 satisfies the boundary 
conditions 

(P2) u(0, y, t) = u(n, y, t) = uxx(0, y, t) = uxx(n, y,t) = 0 

for all ye[0,n], t e R1 , 

u(x, 0, t) = u(x, n, t) = uyy(x, 0, t) = uyy(x, n, t) = 0 

for all x e [0, n] , t e R1 , 

u is 27c-periodic in time, i.e. 

(P3) u(x, y, t) = u(x, y, t + 2%) for all x, y e (0, n) , t e R1 . 

The symbol A2 denotes the biharmonic operator 

4>_(il + ilY. 
\3x2 by2) 
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The function f is supposed to satisfy the condition f(0) = 0 and some other additional 
conditions. 

There exists a vast literature concerning the problem of the existence of free 
vibrations for various kinds of equations (see e.g. [2], [4], [5]). We shall treat the 
problem involving two space variables. It is known that under such circumstances 
all techniques used up to now are not applicable in the case of the wave equation. 
However, if we work with the biharmonic operator the situation turns out to be 
better. We shall assume that the function / is monotone and odd. This fact allows 
us to use the Ljusternik-Schnirelmann theory in order to obtain an approximate 
solution of the problem {P}. Then we can pass to the limit using standard arguments 
of the monptone operator theory. 

1. FUNCTIONAL SPACES AND NOTATION USED IN THE TEXT 

For the sake of simplicity and convenience we introduce some notation: 

Q = {(x, y,t)\x,ye (0, re), t e (0, 2K)} 

D = N x N x Z 

where Z denotes the set of all integers and N the set of all positive integers, while 

g = (gl>g2>g3) 

is the notation used for elements of the set D. 
Further, we introduce the system of functions 

í1) e(кi,Áx> У> 0 = 

-sin (kx) sin (ly) sin (jt) for j e N, k, / e N , 

-sin (kx) sin (ly) for j = 0 , k, / e N , 

-sin (kx) sin (ly) cos (jt) for —jeN, k, / e N . 

Let cp denote the linear hull of the system (1) 

cp = lm{e(kJtj)\(k9lj)eD} . 

We shall use the space of periodic functions of the class Lr The space Lp is defined 

as the completion of the system <p with respect to the norm 

AlP 

(2) 0> 
for 1 ^ p < oo and \u\(X) = ess sup u for p = oo . 

Q 

For the function u belonging to Lx we introduce the Fourier coefficients 

aq(u) ueq for qє D . 
Q 
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Further, we denote the eigenvalues of the operator 

d2 

(3) L = — + A2 
V ' 8t2 

with regard to the conditions (P2), (P3) as 

(4) AiKU) = (k2 + l2)2-j2 

where (k, Ij) e D. We denote 

K = {q | q € D; Xq = 0} , 

KL= {q\qeD; Xq + 0} . 

We shall use the letters ct for positive real numbers which are assumed to be constant 
in the given context. 

2. FORMULATION OF THE MAIN RESULTS IN THE SUPERLINEAR CASE 

We "start with the definition of a solution of the problem {P}. 

Definition. A solution of the problem {P} is a function u,ue Luf(u) e Lt satisfying 

(5) kq aq(u) + aq(f(u)) = 0 for all qeD. 

Recall that the following equivalence holds: 
A function u is a solution of the problem {P} only if f(u) e Lx and the equality 

m+oo 

[u(x9 y, t) (<Ptt(x, y, t) + A2<f>(x, y, t)) + f(u(x, y, t)) ^(x, y, t)] dx dy dt = 0 
- 0 0 

holds for every function 0 which is sufficiently smooth and has a compact support 
in [0,7i] x [0, TC] x JR1 and satisfies the boundary conditions (P2). 

Our goal is to establish the following existence theorem: 

Theorem 1. Let a function f satisfy the following assumptions: 

(51) fe C^R1), f(0) = 0 , f is increasing and odd 

(f(-u)=-f(u)); 
(52) f(w) u < f'(u) u2 for every u e Rl , u + 0 ; 

(53) lim - & L - -
u-> + oo \U p-2 

for a positive constant a and pe(2, + oo). 
Then for an arbitrary real number d there exists a solution u of the problem {P}, 

u is of the class Lp and \\u\\p — d. 
Note that the technique of the proof is applicable to the sublinear case as well 

(see e.g. [2] for the case of a beam equation). 
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3. FINITE DIMENSIONAL APPROXIMATION 

For further consideration we deduce some estimates for the function f. First, let 

us denote 

(6) F(u) = 

Now we can finds > 0 such that 

/(-) ds 
0 

, , a — s a + s 

2 p 

since pe(2, + oo). From (S3) we easily check that 

(8) (a - s) \u\p~2 u - ct ^ f(u) S c2 + (a + s) \u\p~2 u 

for all w „ 0, further 

(9) ^—-$• \u\p - Cl\u\ _ F(u) 
P 

_ C 2 H + ( ^ ± _ L ) | W | P 
P 

for all u e R1 and this implies 

(10) (?—I - - L ± J \ \U\P _ C 3 | t t | ^ i t t / ( M ) _ E(w) for all u e R1 . 

Let us denote by K(L) the closed subspace of L2 

(11) R(L) = {u\aq(u) = 0, qeK}, 

and by P 

(12) P: L2 -> R(L) 

the orthogonal projection (in the sense of the L2-norm) to the space K(L). To obtain 

further estimates we use the following lemma: 

Lemma 1. For an arbitrary real constant a, a > 1, the sum 

v-- 1 
(13) 

is convergent. 

Proof. 

«eRL \Xq\ 

E ттA^ + - E (k,l%RL \(k2 + l2)2 - j 2 \ " t.ítf (k2 + l2)" (k,l%RL \(k2 + l2)2 - j 2 \ * 
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The first term on the right hand side is summable for a. > \. We are going to estimate 
the series 

y - -s y - = 
ik,i%RL \k2 + l2 - j \ * \k2 + l2 + j \ ' - (k,i%RL \k2 + l2Y \k2 + I2 - j \ " 

jeN ' ' ' ' jeN ' ' ' ' 

= y f L__ I 1 \ < 2 y L_ y i_ 
k^N \\k2 + l2\« k4ei%j |k2 + I2 - j|V "" fc,^N |k2 + z2|a i N m a ' 

Now a sufficient condition for the convergence of the sum on the right hand side 
of the inequality is a > 1. 

We can choose a0 such that 

(14) r - - ^ o ( P - 2 ) < 1 

P 

holds and a0 > 1. B 

For u e R(L) we now have 

(15) ||tt||_ S c 3 1 |fl,(«)| _ c5( X |A,|«» a^(u))1/2 (Holder) . 
qeR qeR 

We use the results of the complex interpolation theory in order to obtain 

(16) \\u\\p^c6CZ\^a2(u)y/2 

qeRL 

where the numbers r, p are taken from (14), (S3), respectively. 
In order to approximate our problem, we use the Galerkin method. We define 

the sequence of spaces 

(17) Hn = lin {eq\qe D, \qt\ g n for i = 1, 2, 3} 

for n e N. From the topological point of view, the spaces Hn are considered as finite 
dimensional subspaces of the space L2. Recall that 

(18) cl U Hn = L2 . 
neN 

We consider the approximate problem {P„}: 

{P„} Find the function uneHn satisfying 

(19) £ Xq aq(un) aq(w) + f f(un) w = 0 
qeD JQ 

for every w e Hn. 

Obviously (19) is the Euler necessary condition for the existence of a critical 
point of the functional hn, 
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(20) *.(") = iEAiaJ(w)+ f *(*)-
«€D J (2 

defined on H„. 
We transform the variational problem of finding the critical points of the functional 

hn on the whole space Hn to the problem of the existence of critical points of an 
appropriate functional on the sphere Sn in Hn, 

(21) Sn = {w\weHn,\\w\\2 = l}. 

Due to the symmetry of our problem (the assumption of oddness of the function 
f), we can use the Ljusternik - Schnirelmann theory. 

We define a new functional Jn by 

(22) Jn(w) = mfhn(pu) 
0eRi 

As a consequence of the condition (S3), Jn is well defined on the whole Hn. One 
easily checks that Jn is even and continuous on the set Hw\{0}. Let us consider 
the set 

(23) Mn = {w\weHn, Jn(w) < 0} , 

then Mn is open (due to the continuity of Jn) and the following assertion holds: 

Lemma 2. Jn is of the class C^M,,). 

Proof. According to the estimates (9), there exists a number fi0 > 0 such that 

Let us differentiate 

further 

Suppose that 

(K(tw)) = tYíÃqa
2

q(w)+ [f(tw)w, 
VD J Q 

£1 
dt2 

(h„(řw)) = Z a » + [f'(tw) 
Ч*I> JQ 

- (KM) = o 
дt 

holds for some t0 > 0, then 

£1 

8t2 
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Now the right hand side is positive by the assumption (S2). Consequently, the function 
t -> hn(

tw) n a s for r > 0 only one critical point — the minimum. Thus /?0 is deter
mined as a solution of the equation 

Pol^qa
2

q(w)+! f(pow)w = 0, po>0. 
q<=D JQ 

The classical implicit function theorem gives the differentiability of the mapping 
w -> p0(w). m 

We are going to show the relation between the functional Jn and the solutions 
of the problem {P„}. 

Lemma 3. Let us denote the duality on L2 by the symbol < , >. Suppose that 

<grad Jn(vn), w> = A<vn, w> 

for some vn e Sn, X e Rl and every w e Hn. Then there exists a positive number fi0 

such that un = fi0vn is a solution of the problem {P„} and 

(24) hn(un) = Jn(vn) 

holds. 

Proof. Choose fi0 > 0 such that 

Jn(vn) = K(PoVn) 

(see the proof of Lemma 3). According to the definition of J„, we now have 

- (K(PoVH + tw) - hn(p0vn)) = - (Jtt(P0v„ + tw) - Jn(P0vn)) = 

= ~(Jn(vn + — w) - Jn(vn)) 
t HO 

for arbitrary t > 0. Setting un = fi0vn and passing to the limit for t -> 0 + we get 

(25) <grad hn(un), w> ^ ^ 2<v„, w> 
Po 

for all w e Hn. We can take w = ±vn, obtaining 

A 
0 = <grad hn(un); ± vn} = — \\vn\\2 . 

HO 

Consequently, X = 0 and from the validity of (25) for every w e Hn we deduce 

grad h,.(u„) = 0 . m 

In order to find the critical points of the functional Jn on the sphere Sn, we use 
the following abstract theorem: 
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Theorem 2. Let H be a Hilbert space of a finite dimension, let S denote the unit 
sphere in H (see (21)). Let us assume that M a H is an open and symmetric set 
(x e M implies — x e M). Further, let J be an even functional (j( — x) = J(x)) 
which is continuously differentiate on the set M. Let the following conditions 
be satisfied: 

(a) There exists a number z e Rl such that the set {x\ x e S p\ M, j(x) g z} 
is closed in H. 

(b) There exist numbers zl9 z2 e (— GO, Z) and linear subspaces L1, L2 of the 
space H satisfying 

(b{) dim (L1) + dim (L2) > dim (H) 

(dim is the symbol for algebraical dimension of a vector space) 

(b„) {x | x e S 0 M; J(x) ^ z2} f) L2 - 0 , 

(biH) {x\xeSf)M;j(x)^zi} 2 (L1 f| S). 

Then there exist z0e S f) M and a real number A0 such that 

(26) <grad J(z0), x> = A0<z0, x> for all xe H . 

Moreover, z2 < zx and 

(27) j ( z 0 ) e [ z 2 . 2 l ] 

holds. 

Proof. The proof is based on the concept of the Ljusternik - Schnirelmann 
category for topological spaces and is contained in [3]. m 

We introduce the notation 

(28) Xn(z) = {w\weHn,aq(w) = 0 for Xq^z), 

Yn(z) ={w\we Hn, aq(w) =- 0 for Xq < z) 

for z e R1. In order to apply Theorem 2 to the functional Jn, we show some helpful 
lemmas. 

Lemma 4. For arbitrary z < 0 there exists a number Q(z) < 0 such that 

(29) [5„ n Xn(Q(z))-\ c {w | w G S„ n M„, j„(w) ^ z} . 

Proof. Choose a number z1 < 0 arbitrarily, let w e X ^ z ^ f ) S,, (in particular, 
w e R(L)). For t > 0 we have 

^ < - A j<2 

According to (9), we obtain 

h„M žit2 £ v2(w) + C2řll 
;.,<zi 



Denote A = c6 £ |>^|r a2(w))1/2. Using the estimate (16) and the Holder inequality, 
we get Xq<Zi 

hn(tw) S - l * 2 | z 1 | 1 - r A2 + c8tA + c4t
pAp . 

Now observe that 
inf h„(*w) = inf //,,(tAw) . 

teR1 teRi 

Consequently, for a sufficiently large \zx\ the value of Jn(w) is sufficiently small. 
We can choose zt in such a way that (29) is satisfied for Q(z) = zv m 

Lemma 5. Let z < 0 be an arbitrary real number. Then there exists a number 
R(z) < 0 such that 

(30) {w | w e Sn f| Mn9 Jn(w) ^ R(z)} f) Yn(z) = 0 . 

Proof. Choose we Yn(z), w =f= 0. Then according to (9), 

h„(lw) ^ ^ 2z | |w|] 2 + cqt
p\\w\\p

p - cit|]w||i ^ 

^ i£2z||w|]2 + c10^||w||5 - eiit||w||2 for t > 0 . 

Analogously as in the proof of Lemma 4, we obtain the validity of (30) for R(z) < 0 
sufficiently small. m 

Now let us choose z1 < 0 arbitrary. According to Lemma 4, there exists Q(zt) 
satisfying (29). Let L1 = X„(Q(z1)). If n is sufficiently large, we can find y < 0 
such that 

dim (Yn(y)) > dim (Yn(Q(zx)) . 

According to Lemma 5 we find a number z2 = R(y) satisfying (30). We can set 
L2 = Yn(y) and apply Theorem 2 for FI = Hm M = MB. Then 

dim(L2) + dim^L1) > dim(K„(Q(z1))) + dim(yB(Q(z1))) - dim (ifB) 

holds. We have obtained the following result: 

Lemma 6. For an arbitrary number z1? zt < 0 t/iere exists a number z2, z2 < zx 

such that the following assertion holds: 
For every neN, n sufficiently large, there exists a solution un of the problem 

{Pn} satisfying 

(31) iZV«0O+ f PK)e[z2,Zi]. 
qeD JQ 

4. PASSING TO THE LIMIT 

In § 3 we have obtained the sequence { u ^ ^ i of solutions of the problems {PK} 
satisfying (19) and (31). Setting w = un in (19), multiplying by —\ and adding 
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to (31), we have 

(32) i f f(un) un - f F(u„) e [-z1 ? - z 2 ] . 
JQ JQ 

Now we can use the estimate (10) and get 

(33) c10J \un\
p - cllL\ \un\ = -z2. 

Consequently (p > 2), 

(34) | h | , S c12 . 
Further, from (Si), (S3) we deduce 

(35) \\f(u„)\\p. ̂  c13 

where 1/p + \\p = 1. All our estimates are independent of n. Moreover, 

(36) i f f(un) u„ Z -zx + f F(u„) :> - z, > 0 . 
JQ JQ 

We can choose a subsequence (denoted for convenience un again) such that 

(37) un -> u weakly in L^ , 

(38) f(ww) -> g weakly in Lp, . 

We can pass to the limit in (29) for n -* oo and fixed w G H,,. Thus we get 

(39) ZV,("WW) + f ^ = 0. 
<zeD JQ 

Observe that for proving Theorem 1 we only need to show 

(40) lim f(un) un=\ gu . 
n-+cojQ JQ 

In fact, due to (37), (38) and the monotonicity of f, we obtain g = f(w) as a result 
of standard arguments of the monotone operator theory. Moreover, (36) yields 

f(u) u = - zt . 
Q 

The number zx was chosen quite arbitrary. Combining these facts with the estimate 
(8) we see that it is possible to choose z1 in such a way that 

Now we shall prove (40). 

Lemma 7. (i) For arbitrary s > 0 there exists q0 ^ 0 such that 

E Kl al(un) < £ f°r every neN . 
qeD 

\Aq\^qo 
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(ii) The following equality holds: 

lim £ Xq a
2

q(un) = £ Xq a
2
q{u) 

n-*ao qeD qeD 

(iii) P(un) converges to P(u) strongly in the Lp-norm (P is the projection from (12)). 

Proof. 1. Set 

w = £ sgn (Xq) aq(un) eq . 
qЄD 

Ug| | ïqO 

Note that w e R(L) f] Hn so that we can insert w in (19): 

I K|a2(«„)= -f/(«n)w. 
«6D J Q 

U g | ^ 4 0 

Using the Holder inequality and the estimates (16), (35), we obtain 

E K|«2(«n)^c12( £ KK(»»))1/2-
qeD qeD 

UgV^flO U g | ^ q o 

Consequently, 

£ \Xq\al{un)Y'^ci2\qor^. 
qeD 

U g l ^ q O 

For a0 sufficiently large, (i) is satisfied independently of n. 
2. Let 

w = £ sgn (A€) fl€(ii) e€ . 
qeD 

l « f | ^ n 

We can now insert w in (39) obtaining 

I K | a 2 ( « ) = - f aw. 
q6D J<2 

Using (16) we get 

qЄD 
І4<lá» 

E K|a2(«) = c 1 3 . 
qЄD 

І4ťUи 

Consider now the difference 

1 1 Xq a~(«) - £ A4 a
2(«„)| ^ | £ A4(a

2(«) - a2(«„))| + 
qeD qeD qeD 

U g U q O 

+ EW-JW+ E KK(«)-
qeD qeD 

U g l - ^ o U g | ^ q o 

The first term on the right hand side converges to zero because it contains a finite 
number of members only, the second term is small according to part (i), the third 
is the rest of a convergent series. 
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3. Analogously we can estimate the difference 

\\p(u) - p(u„)\\„ ^ c14( £ KK2 («„ - «))' 

using (16). As in 2, observe that 

12 

qeRL 

\\P(u) - P(u„)l -> 0 

since 
a2(un - u) = c14(«qK) + a2

q(u)) . 

According to (19), we have 

(41) £ Xq a
2

q(un) = - I f(un) un = - J /(u„) P(u„) . 
«eD J Q JQ 

Using Lemma 7 and passing to the limit for n -> co in (41), we get 

(42) ^Aqa
2

q(u)= - ! gP(u). 
qeD JQ 

Further, we can set w = un — P(u„) in (39) and thus we obtain 

g(un - P(uw)) = 0 . 

Passing to the limit for n -> oowe have 

(43) gu -
JQ J 

g P(u). 

Combining (41), (42), (43) we obtain the desired result (40). Thus Theorem 1 has 
been proved. 

5. POSSIBLE EXTENSIONS AND OTETER COMMENTS 

1. In the same way as has been presented, we can treat a more general problem 

{P'} 

(PI)' utt(x, y, t) + c2 A2u(x, y, t) + f(x, y, t, u(x, y, t)) = 0 ; 

u defined on (0, a) x (0, b) x R1 satisfying 

(P2)' u(0, y, i) = u(a,y,t) = uxx(0, y, t) = uxx(a, y, t) = 0 , 

u(x, 0, t) = u(x, b, t) = uyy(x, 0, t) = uyy(x, h, t) = 0 ; 

(P3)' u(x, y, t) = u(x, y,t + T) 

where the period T satisfies 

T = r . ~ r , 
\c\n 
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r is an arbitrary positive rational number. If the function f satisfies the conditions 

(S1) —(S3) uniformly with respect to x, y, t and a\b is rational, then Theorem 1 is 

valid for the problem {P'} as well. 

2. If we drop the assumption that f is odd, we can use the dual action method as 

in [2]. In such a way we are again able to show the existence of a weak periodic 

solution of the problem {P'}. 

3. In the nonautonomous case, i.e. when the right hand side of the equation 

(Pi) ' is a nonzero function, we can apply the technique presented in [1]. Let us note 

that we would be able to treat the sublinear case only. 
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S o u h r n 

VOLNÉ VIBRAСE PRO ROVNIСI TENKÉ OBDÉLNÍKOVÉ DESKY 

EDUARD FEIREISL 

V práci jsou vyšetřována nenulová časově periodická řesení rovnice tenké obdélníkové desky 
s voln podepřenými okraji. Je ukázána existence nekoneðné posloupnosti takových řešení 
za předpokladu, že působící síla závisí nelineárně na vertikální výchylce. 

P e з ю м e 

СBOБOДНЫE KOЛEБAHИЯ ДЛЯ УPABHEHИЯ TOHKOЙ 
ПPЯMOУГOЛЬHOЙ ПЛAСTИHЫ 

EDUARD FEIREISL 

B cтaтьe изyчaютcя пepиoдичeкиe вo вpeмeни peшeңия ypaвнeния тoнкoй пpямoyгoльнoй 
плacтины co cвoбoднo oпepтoй гpaницeй. Дoкaзaнo cyщecтвoвaниe бecкoнeчнoй пocлeдoвa-
тeльнocти нeнyлeвыx peшeний пpи пpeдпoлoжeнии, чтo дeйcтвyющaя cилa зaвиcит нeлинeйнo 
oт пoпepeчнoгo cдвигa. 
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