Aplikace matematiky

Eduard Feireisl

Free vibrations for the equation of a rectangular thin plate

Aplikace matematiky, Vol. 33 (1988), No. 2, 81-93

Persistent URL: http: //dml.cz/dmlcz/104290

Terms of use:

(C) Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

FREE VIBRATIONS FOR THE EQUATION OF A RECTANGULAR THIN PLATE

Eduard Feireisl

(Received July 10, 1985)

Summary. In the paper, we deal with the equation of a rectangular thin plate with a simply supported boundary. The restoring force being an odd superlinear function of the vertical displacement, the existence of infinitely many nonzero time-periodic solutions is proved.

Keywords: Thin plate equation, periodic solution, Ljusternik-Schnirelmann theory.
AMS classification: 35L70, 35B10.

We shall investigate the existence of a nonzero periodic (in time) solution of the equation
\{P\}

$$
\begin{equation*}
u_{t t}+\Delta^{2} u+f(u)=0 \tag{P1}
\end{equation*}
$$

where the unknown function $u=u(x, y, t), x, y \in(0, \pi), t \in R^{1}$ satisfies the boundary conditions

$$
\begin{align*}
u(0, y, t)=u(\pi, y, t) & =u_{x x}(0, y, t)=u_{x x}(\pi, y, t)=0 \tag{P2}\\
& \text { for all } y \in[0, \pi], \quad t \in R^{1} \\
u(x, 0, t)=u(x, \pi, t) & =u_{y y}(x, 0, t)=u_{y y}(x, \pi, t)=0 \\
\text { for all } x & \in[0, \pi], \quad t \in R^{1}
\end{align*}
$$

u is 2π-periodic in time, i.e.

$$
\begin{equation*}
u(x, y, t)=u(x, y, t+2 \pi) \text { for all } x, y \in(0, \pi), \quad t \in R^{1} . \tag{P3}
\end{equation*}
$$

The symbol Δ^{2} denotes the biharmonic operator

$$
\Delta^{2}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)^{2} .
$$

The function f is supposed to satisfy the condition $f(0)=0$ and some other additional conditions.

There exists a vast literature concerning the problem of the existence of free vibrations for various kinds of equations (see e.g. [2], [4], [5]). We shall treat the problem involving two space variables. It is known that under such circumstances all techniques used up to now are not applicable in the case of the wave equation. However, if we work with the biharmonic operator the situation turns out to be better. We shall assume that the function f is monotone and odd. This fact allows us to use the Ljusternik-Schnirelmann theory in order to obtain an approximate solution of the problem $\{\mathrm{P}\}$. Then we can pass to the limit using standard arguments of the monptone operator theory.

1. FUNCTIONAL SPACES AND NOTATION USED IN THE TEXT

For the sake of simplicity and convenience we introduce some notation:

$$
\begin{gathered}
Q=\{(x, y, t) \mid x, y \in(0, \pi), t \in(0,2 \pi)\} \\
D=N \times N \times Z
\end{gathered}
$$

where Z denotes the set of all integers and N the set of all positive integers, while

$$
q=\left(q_{1}, q_{2}, q_{3}\right)
$$

is the notation used for elements of the set D.
Further, we introduce the system of functions

$$
e_{(k, l, j)}(x, y, t)=\left[\begin{array}{lll}
\sin (k x) \sin (l y) \sin (j t) & \text { for } \quad j \in N, \quad k, l \in N, \tag{1}\\
-\sin (k x) \sin (l y) & \text { for } j=0, \quad k, l \in N, \\
\sin (k x) \sin (l y) \cos (j t) & \text { for } \quad-j \in N, \quad k, l \in N .
\end{array}\right.
$$

Let φ denote the linear hull of the system (1)

$$
\varphi=\operatorname{lin}\left\{e_{(k, l, j)} \mid(k, l, j) \in D\right\}
$$

We shall use the space of periodic functions of the class L_{p}. The space L_{p} is defined as the completion of the system φ with respect to the norm

$$
\begin{gather*}
\|u\|_{p}=\left(\int_{Q}|u|^{p}\right)^{1 / p} \tag{2}\\
\text { for } 1 \leqq p<\infty \text { and }\|u\|_{\infty}=\operatorname{ess} \sup _{Q} u \text { for } p=\infty .
\end{gather*}
$$

For the function u belonging to L_{1} we introduce the Fourier coefficients

$$
a_{q}(u)=\int_{Q} u e_{q} \text { for } q \in D
$$

Further, we denote the eigenvalues of the operator

$$
\begin{equation*}
L=\frac{\partial^{2}}{\partial t^{2}}+\Delta^{2} \tag{3}
\end{equation*}
$$

with regard to the conditions (P2), (P3) as

$$
\begin{equation*}
\lambda_{(k, l, j)}=\left(k^{2}+l^{2}\right)^{2}-j^{2} \tag{4}
\end{equation*}
$$

where $(k, l, j) \in D$. We denote

$$
\begin{aligned}
& K=\left\{q \mid q \in D ; \lambda_{q}=0\right\}, \\
& R L=\left\{q \mid q \in D ; \lambda_{q} \neq 0\right\} .
\end{aligned}
$$

We shall use the letters c_{i} for positive real numbers which are assumed to be constant in the given context.

2. FORMULATION OF THE MAIN RESULTS IN THE SUPERLINEAR CASE

We start with the definition of a solution of the problem $\{\mathrm{P}\}$.
Definition. A solution of the problem $\{\mathrm{P}\}$ is a function $u, u \in L_{1}, f(u) \in L_{1}$ satisfying

$$
\begin{equation*}
\lambda_{q} a_{q}(u)+a_{q}(f(u))=0 \quad \text { for all } \quad q \in D . \tag{5}
\end{equation*}
$$

Recall that the following equivalence holds:
A function u is a solution of the problem $\{\mathrm{P}\}$ only if $f(u) \in L_{1}$ and the equality $\int_{0}^{\pi} \int_{0}^{\pi} \int_{-\infty}^{+\infty}\left[u(x, y, t)\left(\Phi_{t t}(x, y, t)+\Delta^{2} \Phi(x, y, t)\right)+f(u(x, y, t)) \Phi(x, y, t)\right] \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=0$ holds for every function Φ which is sufficiently smooth and has a compact support in $[0, \pi] \times[0, \pi] \times R^{1}$ and satisfies the boundary conditions (P 2).

Our goal is to establish the following existence theorem:
Theorem 1. Let a function f satisfy the following assumptions:

$$
\begin{gather*}
f \in C^{1}\left(R^{1}\right), \quad f(0)=0, \quad f \text { is increasing and odd } \tag{S1}\\
(f(-u)=-f(u)) ;
\end{gather*}
$$

$$
\begin{equation*}
f(u) u<f^{\prime}(u) u^{2} \quad \text { for every } \quad u \in R^{1}, \quad u \neq 0 \text {; } \tag{S2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{u \rightarrow+\infty} \frac{f(u)}{|u|^{p-2} u}=a \tag{S3}
\end{equation*}
$$

for a positive constant a and $p \in(2,+\infty)$.
Then for an arbitrary real number d there exists a solution u of the problem $\{\mathrm{P}\}$, u is of the class L_{p} and $\|u\|_{p} \geqq d$.

Note that the technique of the proof is applicable to the sublinear case as well (see e.g. [2] for the case of a beam equation).

3. FINITE DIMENSIONAL APPROXIMATION

For further consideration we deduce some estimates for the function f. First, let us denote
(6)

$$
F(u)=\int_{0}^{u} f(s) \mathrm{d} s
$$

Now we can find $\varepsilon>0$ such that

$$
\begin{equation*}
\frac{a-\varepsilon}{2}>\frac{a+\varepsilon}{p} \tag{7}
\end{equation*}
$$

since $p \in(2,+\infty)$. From (S3) we easily check that

$$
\begin{equation*}
(a-\varepsilon)|u|^{p-2} u-c_{1} \leqq f(u) \leqq c_{2}+(a+\varepsilon)|u|^{p-2} u \tag{8}
\end{equation*}
$$

for all $u \geqq 0$, further

$$
\begin{align*}
& \frac{(a-\varepsilon)}{p}|u|^{p}-c_{1}|u| \leqq F(u) \tag{9}\\
& \leqq c_{2}|u|+\frac{(a+\varepsilon)}{p}|u|^{p}
\end{align*}
$$

for all $u \in R^{1}$ and this implies

$$
\begin{equation*}
\left(\frac{a-\varepsilon}{2}-\frac{a+\varepsilon}{p}\right)|u|^{p}-c_{3}|u| \leqq \frac{1}{2} u f(u)-F(u) \text { for all } u \in R^{1} \tag{10}
\end{equation*}
$$

Let us denote by $R(L)$ the closed subspace of L_{2}

$$
\begin{equation*}
R(L)=\left\{u \mid a_{q}(u)=0, q \in K\right\} \tag{11}
\end{equation*}
$$

and by P

$$
\begin{equation*}
P: L_{2} \rightarrow R(L) \tag{12}
\end{equation*}
$$

the orthogonal projection (in the sense of the L_{2}-norm) to the space $R(L)$. To obtain further estimates we use the following lemma:

Lemma 1. For an arbitrary real constant $\alpha, \alpha>1$, the sum

$$
\begin{equation*}
\sum_{q \in R L} \frac{1}{\left|\lambda_{q}\right|^{\alpha}} \tag{13}
\end{equation*}
$$

is convergent.
Proof.

$$
\sum_{(k, l, j) \in R L} \frac{1}{\left|\left(k^{2}+l^{2}\right)^{2}-j^{2}\right|^{\alpha}}=\sum_{k, l \in N} \frac{1}{\left(k^{2}+l^{2}\right)^{\alpha}}+2 \sum_{\substack{(k, l, j) \in R L \\ j \in N}} \frac{1}{\left|\left(k^{2}+l^{2}\right)^{2}-j^{2}\right|^{\alpha}}
$$

The first term on the right hand side is summable for $\alpha>\frac{1}{2}$. We are going to estimate the series

$$
\begin{aligned}
& \sum_{\substack{(k, l, j, j \in R L \\
j \in N}} \frac{1}{\left|k^{2}+l^{2}-j\right|^{\alpha}\left|k^{2}+l^{2}+j\right|^{\alpha}} \leqq \sum_{\substack{(k, l, j) \in R L \\
j \in N}} \frac{1}{\left|k^{2}+l^{2}\right|^{\alpha}\left|k^{2}+l^{2}-j\right|^{\alpha}}= \\
& \quad=\sum_{k, l \in N}\left(\frac{1}{\left|k^{2}+l^{2}\right|^{\alpha}} \sum_{\substack{j \in N \\
k^{2}+l^{2} \neq j}} \frac{1}{\left|k^{2}+l^{2}-j\right|^{\alpha}}\right) \leqq 2 \sum_{k, l \in N} \frac{1}{\left|k^{2}+l^{2}\right|^{\alpha}} \sum_{m \in N} \frac{1}{m^{\alpha}} .
\end{aligned}
$$

Now a sufficient condition for the convergence of the sum on the right hand side of the inequality is $\alpha>1$.

We can choose α_{0} such that

$$
\begin{equation*}
r=\frac{\alpha_{0}(p-2)}{p}<1 \tag{14}
\end{equation*}
$$

holds and $\alpha_{0}>1$.
For $u \in R(L)$ we now have

$$
\begin{equation*}
\|u\|_{\infty} \leqq c_{3} \sum_{q \in R}\left|a_{q}(u)\right| \leqq c_{5}\left(\sum_{q \in R}\left|\lambda_{q}\right|^{\alpha_{0}} a_{q}^{2}(u)\right)^{1 / 2} \quad \text { (Hölder). } \tag{15}
\end{equation*}
$$

We use the results of the complex interpolation theory in order to obtain

$$
\begin{equation*}
\|u\|_{p} \leqq c_{6}\left(\sum_{q \in R L}\left|\lambda_{q}\right|^{r} a_{q}^{2}(u)\right)^{1 / 2} \tag{16}
\end{equation*}
$$

where the numbers r, p are taken from (14), (S3), respectively.
In order to approximate our problem, we use the Galerkin method. We define the sequence of spaces

$$
\begin{equation*}
H_{n}=\operatorname{lin}\left\{e_{q}\left|q \in D,\left|q_{i}\right| \leqq n \text { for } i=1,2,3\right\}\right. \tag{17}
\end{equation*}
$$

for $n \in N$. From the topological point of view, the spaces H_{n} are considered as finite dimensional subspaces of the space L_{2}. Recall that

$$
\begin{equation*}
\underset{n \in N}{\operatorname{cl} \bigcup_{n}} H_{n} \tag{18}
\end{equation*}
$$

We consider the approximate problem $\left\{\mathrm{P}_{n}\right\}$:

$$
\begin{align*}
& \left\{\mathrm{P}_{n}\right\} \text { Find the function } u_{n} \in H_{n} \text { satisfying } \\
& \qquad \sum_{q \in D} \lambda_{q} a_{q}\left(u_{n}\right) a_{q}(w)+\int_{Q} f\left(u_{n}\right) w=0 \tag{19}
\end{align*}
$$

for every $w \in H_{n}$.
Obviously (19) is the Euler necessary condition for the existence of a critical point of the functional h_{n},

$$
\begin{equation*}
h_{n}(w)=\frac{1}{2} \sum_{q \in D} \lambda_{q} a_{q}^{2}(w)+\int_{Q} F(w), \tag{20}
\end{equation*}
$$

defined on H_{n}.
We transform the variational problem of finding the critical points of the functional h_{n} on the whole space H_{n} to the problem of the existence of critical points of an appropriate functional on the sphere S_{n} in H_{n},

$$
\begin{equation*}
S_{n}=\left\{w \mid w \in H_{n},\|w\|_{2}=1\right\} . \tag{21}
\end{equation*}
$$

Due to the symmetry of our problem (the assumption of oddness of the function f), we can use the Ljusternik - Schnirelmann theory.

We define a new functional J_{n} by

$$
\begin{equation*}
J_{n}(w)=\inf _{\beta \in R^{1}} h_{n}(\beta u) \tag{22}
\end{equation*}
$$

As a consequence of the condition (S3), J_{n} is well defined on the whole H_{n}. One easily checks that J_{n} is even and continuous on the set $H_{n} \backslash\{0\}$. Let us consider the set

$$
\begin{equation*}
M_{n}=\left\{w \mid w \in H_{n} ; J_{n}(w)<0\right\}, \tag{23}
\end{equation*}
$$

then M_{n} is open (due to the continuity of J_{n}) and the following assertion holds:
Lemma 2. J_{n} is of the class $C^{1}\left(M_{n}\right)$.
Proof. According to the estimates (9), there exists a number $\beta_{0}>0$ such that

$$
J_{n}(w)=h_{n}\left(\beta_{0} w\right)
$$

Let us differentiate

$$
\frac{\partial}{\partial t}\left(h_{n}(t w)\right)=t \sum_{q \in D} \lambda_{q} a_{q}^{2}(w)+\int_{Q} f(t w) w,
$$

further

$$
\frac{\partial^{2}}{\partial t^{2}}\left(h_{n}(t w)\right)=\sum_{q \in \boldsymbol{D}} a_{q}^{2}(w)+\int_{Q} f^{\prime}(t w) w^{2}
$$

Suppose that

$$
\frac{\partial}{\partial t}\left(h_{n}\left(t_{0} w\right)\right)=0
$$

holds for some $t_{0}>0$, then

$$
\frac{\partial^{2}}{\partial t^{2}}\left(h_{n}\left(t_{0} w\right)\right)=\frac{1}{t_{0}^{2}}\left(\int_{Q} f^{\prime}\left(t_{0} w\right) t_{0}^{2} w^{2}-\int_{Q} f\left(t_{0} w\right) t_{0} w\right)
$$

Now the right hand side is positive by the assumption (S2). Consequently, the function $t \rightarrow h_{n}(t w)$ has for $t>0$ only one critical point - the minimum. Thus β_{0} is determined as a solution of the equation

$$
\beta_{0} \sum_{q \in D} \lambda_{q} a_{q}^{2}(w)+\int_{Q} f\left(\beta_{0} w\right) w=0, \quad \beta_{0}>0 .
$$

The classical implicit function theorem gives the differentiability of the mapping $w \rightarrow \beta_{0}(w)$.

We are going to show the relation between the functional J_{n} and the solutions of the problem $\left\{\mathrm{P}_{n}\right\}$.

Lemma 3. Let us denote the duality on L_{2} by the symbol く, \rangle. Suppose that

$$
\left\langle\operatorname{grad} J_{n}\left(v_{n}\right), w\right\rangle=\lambda\left\langle v_{n}, w\right\rangle
$$

for some $v_{n} \in S_{n}, \lambda \in R^{1}$ and every $w \in H_{n}$. Then there exists a positive number β_{0} such that $u_{n}=\beta_{0} v_{n}$ is a solution of the problem $\left\{\mathrm{P}_{n}\right\}$ and

$$
\begin{equation*}
h_{n}\left(u_{n}\right)=J_{n}\left(v_{n}\right) \tag{24}
\end{equation*}
$$

holds.
Proof. Choose $\beta_{0}>0$ such that

$$
J_{n}\left(v_{n}\right)=h_{n}\left(\beta_{0} v_{n}\right)
$$

(see the proof of Lemma 3). According to the definition of J_{n}, we now have

$$
\begin{aligned}
\frac{1}{t}\left(h_{n}\left(\beta_{0} v_{n}+t w\right)\right. & \left.-h_{n}\left(\beta_{0} v_{n}\right)\right) \geqq \frac{1}{t}\left(J_{n}\left(\beta_{0} v_{n}+t w\right)-J_{n}\left(\beta_{0} v_{n}\right)\right)= \\
& =\frac{1}{t}\left(J_{n}\left(v_{n}+\frac{t}{\beta_{0}} w\right)-J_{n}\left(v_{n}\right)\right)
\end{aligned}
$$

for arbitrary $t>0$. Setting $u_{n}=\beta_{0} v_{n}$ and passing to the limit for $t \rightarrow 0+$ we get

$$
\begin{equation*}
\left\langle\operatorname{grad} h_{n}\left(u_{n}\right), w\right\rangle \geqq \frac{1}{\beta_{0}} \lambda\left\langle v_{n}, w\right\rangle \tag{25}
\end{equation*}
$$

for all $w \in H_{n}$. We can take $w= \pm v_{n}$, obtaining

$$
0=\left\langle\operatorname{grad} h_{n}\left(u_{n}\right) ; \pm v_{n}\right\rangle=\frac{\lambda}{\beta_{0}}\left\|v_{n}\right\|_{2} .
$$

Consequently, $\lambda=0$ and from the validity of (25) for every $w \in H_{n}$ we deduce

$$
\operatorname{grad} h_{n}\left(u_{n}\right)=0
$$

In order to find the critical points of the functional J_{n} on the sphere S_{n}, we use the following abstract theorem:

Theorem 2. Let H be a Hilbert space of a finite dimension, let S denote the unit sphere in H (see (21)). Let us assume that $M \subset H$ is an open and symmetric set $(x \in M$ implies $-x \in M)$. Further, let J be an even functional $(J(-x)=J(x))$ which is continuously differentiable on the set M. Let the following conditions be satisfied:
(a) There exists a number $z \in R^{1}$ such that the set $\{x \mid x \in S \cap M, J(x) \leqq z\}$ is closed in H.
(b) There exist numbers $z_{1}, z_{2} \in(-\infty, z)$ and linear subspaces L^{1}, L^{2} of the space H satisfying
$\left(\mathrm{b}_{\mathrm{i}}\right) \operatorname{dim}\left(L^{1}\right)+\operatorname{dim}\left(L^{2}\right)>\operatorname{dim}(H)$
(dim is the symbol for algebraical dimension of a vector space)

$$
\begin{aligned}
& \left(\mathrm{b}_{\mathrm{ii}}\right) \quad\left\{x \mid x \in S \cap M ; J(x) \leqq z_{2}\right\} \cap L^{2}=\emptyset, \\
& \left(\mathrm{b}_{\mathrm{iii}}\right)\left\{x \mid x \in S \cap M ; J(x) \leqq z_{1}\right\} \supseteq\left(L^{1} \cap S\right) .
\end{aligned}
$$

Then there exist $z_{0} \in S \cap M$ and a real number λ_{0} such that

$$
\begin{equation*}
\left\langle\operatorname{grad} J\left(z_{0}\right), x\right\rangle=\lambda_{0}\left\langle z_{0}, x\right\rangle \text { for all } x \in H . \tag{26}
\end{equation*}
$$

Moreover, $z_{2}<z_{1}$ and

$$
\begin{equation*}
J\left(z_{0}\right) \in\left[z_{2}, z_{1}\right] \tag{27}
\end{equation*}
$$

holds.
Proof. The proof is based on the concept of the Ljusternik - Schnirelmann category for topological spaces and is contained in [3].

We introduce the notation

$$
\left.\begin{array}{ll}
X_{n}(z)=\left\{w \mid w \in H_{n}, a_{q}(w)=0\right. & \text { for } \left.\quad \lambda_{q} \geqq z\right\}, \tag{28}\\
Y_{n}(z)=\left\{w \mid w \in H_{n}, a_{q}(w)=0\right. & \text { for }
\end{array} \lambda_{q}<z\right\}, ~ l
$$

for $z \in R^{1}$. In order to apply Theorem 2 to the functional J_{n}, we show some helpful lemmas.

Lemma 4. For arbitrary $z<0$ there exists a number $Q(z)<0$ such that

$$
\begin{equation*}
\left[S_{n} \cap X_{n}(Q(z))\right] \subseteq\left\{w \mid w \in S_{n} \cap M_{n}, J_{n}(w) \leqq z\right\} \tag{29}
\end{equation*}
$$

Proof. Choose a number $z_{1}<0$ arbitrarily, let $w \in X_{n}\left(z_{1}\right) \cap S_{n}$ (in particular, $w \in R(L))$. For $t>0$ we have

$$
h_{n}(t w)=\frac{1}{2} t^{2} \sum_{i_{q}<z_{1}} \lambda_{q} a_{q}^{2}(w)+\int_{Q} F(t w) .
$$

According to (9), we obtain

$$
h_{n}(t w) \leqq \frac{1}{2} t^{2} \sum_{\lambda_{q}<z_{1}} \lambda_{q} a_{q}^{2}(w)+c_{2} t\|w\|_{1}+c_{4} t^{p}\|w\|_{p}^{p} .
$$

Denote $\left.A=c_{6} \sum_{\lambda_{q}<z_{1}}\left|\lambda_{q}\right|^{r} a_{q}^{2}(w)\right)^{1 / 2}$. Using the estimate (16) and the Hölder inequality,
we get

$$
h_{n}(t w) \leqq-\frac{1}{2} t^{2}\left|z_{1}\right|^{1-r} A^{2}+c_{8} t A+c_{4} t^{p} A^{p}
$$

Now observe that

$$
\inf _{t \in R^{1}} h_{n}(t w)=\inf _{t \in R^{1}} h_{n}(t A w) .
$$

Consequently, for a sufficiently large $\left|z_{1}\right|$ the value of $J_{n}(w)$ is sufficiently small. We can choose z_{1} in such a way that (29) is satisfied for $Q(z)=z_{1}$.

Lemma 5. Let $z<0$ be an arbitrary real number. Then there exists a number $R(z)<0$ such that

$$
\begin{equation*}
\left\{w \mid w \in S_{n} \cap M_{n}, J_{n}(w) \leqq R(z)\right\} \cap Y_{n}(z)=\emptyset . \tag{30}
\end{equation*}
$$

Proof. Choose $w \in Y_{n}(z), w \neq 0$. Then according to (9),

$$
\begin{gathered}
h_{n}(t w) \geqq \frac{1}{2} t^{2} z\|w\|_{2}^{2}+c_{q} t^{p}\|w\|_{p}^{p}-c_{1} t\|w\|_{1} \geqq \\
\geqq \frac{1}{2} t^{2} z\|w\|_{2}^{2}+c_{10} t^{p}\|w\|_{2}^{p}-c_{11} t\|w\|_{2} \quad \text { for } \quad t>0 .
\end{gathered}
$$

Analogously as in the proof of Lemma 4, we obtain the validity of (30) for $R(z)<0$ sufficiently small.

Now let us choose $z_{1}<0$ arbitrary. According to Lemma 4, there exists $Q\left(z_{1}\right)$ satisfying (29). Let $L^{1}=X_{n}\left(Q\left(z_{1}\right)\right)$. If n is sufficiently large, we can find $y<0$ such that

$$
\operatorname{dim}\left(Y_{n}(y)\right)>\operatorname{dim}\left(Y_{n}\left(Q\left(z_{1}\right)\right)\right.
$$

According to Lemma 5 we find a number $z_{2}=R(y)$ satisfying (30). We can set $L^{2}=Y_{n}(y)$ and apply Theorem 2 for $H=H_{n}, M=M_{n}$. Then

$$
\operatorname{dim}\left(L^{2}\right)+\operatorname{dim}\left(L^{1}\right)>\operatorname{dim}\left(X_{n}\left(Q\left(z_{1}\right)\right)\right)+\operatorname{dim}\left(Y_{n}\left(Q\left(z_{1}\right)\right)\right)=\operatorname{dim}\left(H_{n}\right)
$$

holds. We have obtained the following result:
Lemma 6. For an arbitrary number $z_{1}, z_{1}<0$ there exists a number $z_{2}, z_{2}<z_{1}$ such that the following assertion holds:

For every $n \in N$, n sufficiently large, there exists a solution u_{n} of the problem $\left\{\mathrm{P}_{n}\right\}$ satisfying

$$
\begin{equation*}
\frac{1}{2} \sum_{q \in D} \lambda_{q} a_{q}^{2}\left(u_{n}\right)+\int_{Q} F\left(u_{n}\right) \in\left[z_{2}, z_{1}\right] . \tag{31}
\end{equation*}
$$

4. PASSING to the limit

In $\S 3$ we have obtained the sequence $\left\{u_{n}{ }_{n=1}^{\infty}\right.$ of solutions of the problems $\left\{\mathrm{P}_{n}\right\}$ satisfying (19) and (31). Setting $w=u_{n}$ in (19), multiplying by $-\frac{1}{2}$ and adding
to (31), we have

$$
\begin{equation*}
\frac{1}{2} \int_{Q} f\left(u_{n}\right) u_{n}-\int_{Q} F\left(u_{n}\right) \in\left[-z_{1},-z_{2}\right] . \tag{32}
\end{equation*}
$$

Now we can use the estimate (10) and get

$$
\begin{equation*}
c_{10} \int_{Q}\left|u_{n}\right|^{p}-c_{11} \int_{Q}\left|u_{n}\right| \leqq-z_{2} . \tag{33}
\end{equation*}
$$

Consequently ($p>2$),

$$
\begin{equation*}
\left\|u_{n}\right\|_{p} \leqq c_{12} . \tag{34}
\end{equation*}
$$

Further, from (S1), (S3) we deduce

$$
\begin{equation*}
\left\|f\left(u_{n}\right)\right\|_{p^{\prime}} \leqq c_{13} \tag{35}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$. All our estimates are independent of n. Moreover,

$$
\begin{equation*}
\frac{1}{2} \int_{Q} f\left(u_{n}\right) u_{n} \geqq-z_{1}+\int_{Q} F\left(u_{n}\right) \geqq-z_{1}>0 . \tag{36}
\end{equation*}
$$

We can choose a subsequence (denoted for convenience u_{n} again) such that

$$
\begin{equation*}
u_{n} \rightarrow u \text { weakly in } L_{p}, \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
f\left(u_{n}\right) \rightarrow g \quad \text { weakly in } \quad L_{p^{\prime}} . \tag{38}
\end{equation*}
$$

We can pass to the limit in (29) for $n \rightarrow \infty$ and fixed $w \in H_{n}$. Thus we get

$$
\begin{equation*}
\sum_{q \in D} \lambda_{q} a_{q}(u) a_{q}(w)+\int_{Q} g w=0 . \tag{39}
\end{equation*}
$$

Observe that for proving Theorem 1 we only need to show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q} f\left(u_{n}\right) u_{n}=\int_{Q} g u . \tag{40}
\end{equation*}
$$

In fact, due to (37), (38) and the monotonicity of f, we obtain $g=f(u)$ as a result of standard arguments of the monotone operator theory. Moreover, (36) yields

$$
\int_{Q} f(u) u \geqq-z_{1}
$$

The number z_{1} was chosen quite arbitrary. Combining these facts with the estimate (8) we see that it is possible to choose z_{1} in such a way that

$$
\|u\|_{p} \geqq d
$$

Now we shall prove (40).
Lemma 7. (i) For arbitrary $\varepsilon>0$ there exists $q_{0} \geqq 0$ such that

$$
\sum_{\substack{q \in D \\\left|\lambda_{q}\right| \geqq q_{0}}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right)<\varepsilon \quad \text { for every } \quad n \in N .
$$

(ii) The following equality holds:

$$
\lim _{n \rightarrow \infty} \sum_{q \in D} \lambda_{q} a_{q}^{2}\left(u_{n}\right)=\sum_{q \in D} \lambda_{q} a_{q}^{2}(u) .
$$

(iii) $P\left(u_{n}\right)$ converges to $P(u)$ strongly in the $L_{p}-n o r m$ (P is the projection from (12)). Proof. 1. Set

$$
w=\sum_{\substack{q \in D \\ \lambda_{q} \mid \supseteq q_{0}}} \operatorname{sgn}\left(\lambda_{q}\right) a_{q}\left(u_{n}\right) e_{q} .
$$

Note that $w \in R(L) \cap H_{n}$ so that we can insert w in (19):

$$
\sum_{\substack{q \in D \\ \mid \lambda_{q} \backslash \geqq q_{0}}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right)=-\int_{Q} f\left(u_{n}\right) w .
$$

Using the Hölder inequality and the estimates (16), (35), we obtain

$$
\sum_{\substack{q \in D \\\left|u_{q}\right| \geqq q_{0}}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right) \leqq c_{12}\left(\sum_{\substack{q \in D \\\left|\lambda_{q}\right| \geqq q_{0}}}\left|\lambda_{q}\right|^{r} a_{q}^{2}\left(u_{n}\right)\right)^{1 / 2} .
$$

Consequently,

$$
\left.\sum_{\substack{q \in D \\\left|\lambda_{q}\right| \geqq q_{0}}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right)\right)^{1 / 2} \leqq c_{12}\left|q_{0}\right|^{(r-1) / 2} .
$$

For q_{0} sufficiently large, (i) is satisfied independently of n.
2. Let

$$
w=\sum_{\substack{q \in D \\\left|q_{i}\right| \leqq n}} \operatorname{sgn}\left(\lambda_{q}\right) a_{q}(u) e_{q} .
$$

We can now insert w in (39) obtaining

$$
\sum_{\substack{q \in D \\\left|q_{i}\right| \leqq n}}\left|\lambda_{q}\right| a_{q}^{2}(u)=-\int_{Q} g w .
$$

Using (16) we get

$$
\sum_{\substack{q \in D \\|q i| \leqq n}}\left|\lambda_{q}\right| a_{q}^{2}(u) \leqq c_{13} .
$$

Consider now the difference

$$
\begin{aligned}
& \mid \sum_{q \in D} \lambda_{q} a_{q}^{2}(u)-\sum_{q \in D} \lambda_{q} a_{q}^{2}\left(u_{n}\right)|\leqq| \\
&+\sum_{\substack{q \in D \\
\left|\lambda_{q}\right| \leqq q_{0}}} \lambda_{q}\left(a^{2}(u)-a_{q}^{2}\left(u_{n}\right)\right) \mid+ \\
&\left|\lambda_{q}\right| \geqq q_{0} \\
& \lambda_{q}\left|a_{q}^{2}\left(u_{n}\right)+\sum_{\substack{q \in D \\
\left|\lambda_{q}\right| \geqq q_{0}}}\right| \lambda_{q} \mid a_{q}^{2}(u) .
\end{aligned}
$$

The first term on the right hand side converges to zero because it contains a finite number of members only, the second term is small according to part (i), the third is the rest of a convergent series.
3. Analogously we can estimate the difference

$$
\left\|P(u)-P\left(u_{n}\right)\right\|_{p} \leqq c_{14}\left(\sum_{q \in R L}\left|\lambda_{q}\right|^{r} a_{q}^{2}\left(u_{n}-u\right)\right)^{1 / 2}
$$

using (16). As in 2, observe that

$$
\left\|P(u)-P\left(u_{n}\right)\right\|_{p} \rightarrow 0
$$

since

$$
a_{q}^{2}\left(u_{n}-u\right) \leqq c_{14}\left(a_{q}^{2}\left(u_{n}\right)+a_{q}^{2}(u)\right) .
$$

According to (19), we have

$$
\begin{equation*}
\sum_{q \in D} \lambda_{q} a_{q}^{2}\left(u_{n}\right)=-\int_{Q} f\left(u_{n}\right) u_{n}=-\int_{Q} f\left(u_{n}\right) P\left(u_{n}\right) . \tag{41}
\end{equation*}
$$

Using Lemma 7 and passing to the limit for $n \rightarrow \infty$ in (41), we get

$$
\begin{equation*}
\sum_{q \in D} \lambda_{q} a_{q}^{2}(u)=-\int_{Q} g P(u) . \tag{42}
\end{equation*}
$$

Further, we can set $w=u_{n}-P\left(u_{n}\right)$ in (39) and thus we obtain

$$
\int_{Q} g\left(u_{n}-P\left(u_{n}\right)\right)=0 .
$$

Passing to the limit for $n \rightarrow \infty$ we have

$$
\begin{equation*}
\int_{Q} g u=\int_{Q} g P(u) \tag{43}
\end{equation*}
$$

Combining (41), (42), (43) we obtain the desired result (40). Thus Theorem 1 has been proved.

5. POSSIBLE EXTENSIONS AND OTHER COMMENTS

1. In the same way as has been presented, we can treat a more general problem $\left\{\mathbf{P}^{\prime}\right\}$
$(\mathrm{P} 1)^{\prime} \quad u_{t t}(x, y, t)+c^{2} \Delta^{2} u(x, y, t)+f(x, y, t, u(x, y, t))=0 ;$
u defined on $(0, a) \times(0, b) \times R^{1}$ satisfying

$$
\begin{align*}
& u(0, y, t)=u(a, y, t)=u_{x x}(0, y, t)=u_{x x}(a, y, t)=0 \tag{P2}\\
& u(x, 0, t)=u(x, b, t)=u_{y y}(x, 0, t)=u_{y y}(x, b, t)=0 \tag{P3}
\end{align*}
$$

where the period T satisfies

$$
T=r \cdot \frac{2 a^{2}}{|c| \pi}
$$

r is an arbitrary positive rational number. If the function f satisfies the conditions $(\mathrm{S} 1)-(\mathrm{S} 3)$ uniformly with respect to x, y, t and a / b is rational, then Theorem 1 is valid for the problem $\left\{\mathrm{P}^{\prime}\right\}$ as well.
2. If we drop the assumption that f is odd, we can use the dual action method as in [2]. In such a way we are again able to show the existence of a weak periodic solution of the problem $\left\{\mathrm{P}^{\prime}\right\}$.
3. In the nonautonomous case, i.e. when the right hand side of the equation (P1)' is a nonzero function, we can apply the technique presented in [1]. Let us note that we would be able to treat the sublinear case only.

References

[1] H. Amann, G. Mancini: Some applications of monotone operator theory to resonance problems. Nonlinear Anal. 3 (1979), 815-830.
[2] K. C. Chang, L. Sanchez: Nontrivial periodic solutions of a nonlinear beam equation. Math. Meth. in the Appl. Sci. 4 (1982), 194-205.
[3] E. Feireisl: On periodic solutions of a beam equation (Czech.). Thesis, Fac. Math. Phys. of Charles Univ., Prague 1982.
[4] V. Lovicar: Free vibrations for the equation $u_{t t}-u_{x x}+f(u)=0$ with f sublinear. Proceedings of EQUADIFF 5, Teubner Texte zur Mathematik, Band 47, 228-230.
[5] P. H. Rabinowitz: Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), 31-68.

Souhrn

volné vibrace pro rovnici tenké obdélníkové desky

Eduard Feireisl

V práci jsou vyšetřována nenulová časově periodická řešení rovnice tenké obdélníkové desky s volně podepřenými okraji. Je ukázána existence nekonečné posloupnosti takových řešení za předpokladu, že působící síla závisí nelineárně na vertikální výchylce.

Резюме

СВОБОДНЫЕ КОЛЕБАНИЯ ДЛЯ УРАВНЕНИЯ ТОНКОЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ

Eduard Feireisl

В статье изучаются периодичекие во времени решения уравнения тонкой прямоугольной пластины со свободно опертой границей. Доказано существование бесконечной последовательности ненулевых решений при предположении, что действующая сила зависит нелинейно от поперечного сдвига.

Author's address: RNDr. Eduard Feireisl, CSc., katedra matematiky a konstruktivní geometrie, fakulta strojní ČVUT. Karlovo nám. 13, 11200 Praha 2.

