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A NOTE ON DIRECT METHODS FOR APPROXIMATIONS 
OF SPARSE HESSIAN MATRICES 

MlROSLAV TUMA 

(Received November 10, 1986) 

Summary. Necessity of computing large sparse Hessian matrices gave birth to many methods 
for their effective approximation by differences of gradients. We adopt the so-called direct 
methods for this problem that we faced when developing programs for nonlinear optimization. 
A new approach used in the frame of symmetric sequential coloring is described. Numerical 
results illustrate the differences between this method and the popular Poweli-Toint method. 

Keywords: Symmetric Graph Coloring, Hessian Matrix Estimation, Large Sparse Optimization, 
Numerical Differences. 
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1. INTRODUCTION 

First we will review some of the known basic facts and recommend information 
sources on this topic. Many optimization methods require estimation of the Hessian 
matrices of the objective function F: Rn -> R. When n becomes very large, it is clear 
that two difficulties can be encountered: there may be not enough storage locations, 
and the computation time required may become too long. Fortunately, however, 
the matrices of these very large problems have a very high proportion of zero elements. 
The ratio of non-zero elements to the total number of matrix elements is called the 
density; a matrix with a high proportion of zero entries is called sparse. Besides 
their low density, these matrices often have a fixed sparsity pattern and in this case 
we can drastically diminish the minimum number of gradient evaluations necessary 
to approximate the matrix elements. 

When the Hessian matrix is dense or in the case when the Hessian matrix is sparse 
but its structure changes, we can obtain its approximation by differencing the gradient 
along the coordinates. With a fixed sparsity pattern we can form differences along 
certain special composite vectors. As a rule the number of these vectors for usual 
Hessian matrices of large problems is only a small fraction of the dimension of the 
problem so that we can spare much of the computation time when we are to approxi-
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mate a Hessian matrix many times for some optimization problem using for instance 
a Newton-like method. 

These composite vectors are chosen with the help of a tool of the discrete mathe
matics — the graph theory. Instead of the sparse matrix we will use its adjacency 
graph. If we denote its node set by {1, ..., n}9 where n is the order of the matrix, 
then an edge is between two nodes i and j iff an element of the matrix with these 
indices is structurally nonzero. The matrix symmetry guarantees that this definition 
is correct. 

Methods used are usually divided into three classes: Direct Methods, Substitution 
Methods and the most general class of Elimination Methods (see [6], [7]). Direct 
methods need the greatest number of the composite directions, as well as the greatest 
number of gradient evaluations, but we obtain the matrix elements directly, without 
any additional effort. As we move towards the class of Elimination Methods, this 
effort increases, numerical stability possibly decreases, but the number of gradient 
evaluations needed decreases as well. The question of accumulation errors is well 
described in [7]. 

The most popular algorithm for the direct method is the one in [7]. Questions 
of the algorithms are studied in detail in [1], and our graph and matrix terminology 
will conform to that used there. Thapa's New Direct Method (see [8]) is one of the 
alternatives which may help reduce the drawbacks of the Powell-Toint algorithm. 

We present here a method based on the symmetric sequential coloring (see [1]) 
that overcomes some of the drawbacks of the Powell-Toint algorithm. Its complexity 

n 

is dominated by the complexity of the symmetric sequential coloring, that is 0( ]T r?), 
i = i 

where rt is the number of nonzero elements in the i-th row of the matrix. The Powell-
n 

Toint algorithm has the complexity dominated by approximately 0( ]T r?) operations. 
i = i 

As the density of the problems in practice tends to decrease as the size of the problem 
increases, to compare the results of the methods is the more important. For some 
problems it is even worth to try both these methods, as the Hessian matrix may 
have to be computed many times and thus the difference between their results is not 
insignificant any more. Our search was motivated by the desire to find a method 
advantageous not only for one type of problems but as generally as possible, and 
to use it in the program system for functional optimization that is being created. 
Although further tests will be done and the research will continue we can use the 
algorithm below as a possible alternative, the best we have tried yet. 

2. MOTIVATION AND ALGORITHM 

The system of programs for the functional optimization UFO (see [4]) will contain 
methods that require to approximate many time sparse Hessian of the same pattern. 
It is worthwhile to have available an effective way, and the possibility of making 
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one's option for the evaluation of the Hessian that is repeated so often. We examined 
the Powell-Toint method and found that it can be very good when used for various 
types of regular grids* but it can behave relatively badly in some cases. The generaliza
tion of a bad example from [7] is as follows: 

E x a m p l e 2.L Graph G = (V, E), p = 3, which is the adjacency graph of a matrix, 
as defined. 

V = V, u V2 , 

Vi = { l , . . . , p } , 

V2 = {p+ l , . . . , 2 p } , 

E = Ex u E2 , 

(V1? Et) is the complete graph on p vertices, 
p 

E2 = \J{Up + 0 • 
j = i 

The Powell-Toint algorithm needs p + 1 colors, that is p + 1 function evaluations. 
Our algorithm will need p colors for the graph. That is p function evaluations. 

Let G = (V, E) denote the adjacency graph of some sparse matrix and v e V. 
The symbol deg2 v will denote the cardinality of the vertex set the members of which 
have the distance 2 from v. The ordering idea, the most promising for us, is the 
following. We want to order the verices for the symmetric sequential coloring so that 
the vertices with great deg2 v might be processed by the sequential symmetric color
ing algorithm as late as possible. On the other hand it is desirable to color the vertices 
with great degrees as early as possible. The third rule embodied is to process earlier 
the locally dense structures of the adjacency graph. We illustrate this point by the 
bipartite graph taken from [1], 

E x a m p l e 2.2. Let G = (V, E), V= {uuu2,vu ...,vn}9E = {{uhvj} \ ieljefi}. 
We have deg2 ut = deg2 u2 = 2; deg2 vt for ieh is equal to n. If we color first 
one of the vertices vt, ien, using the symmetric sequential algorithm, we use only 
three colors and that is optimum. 

We have found that the following compromise can be used with many sparse 
matrix structures. Our aim is to find the ordering vl9 ...,vn of the vertices of the graph 
G = (V, E) corresponding to the adjacency graph of some symmetric sparse matrix. 

O r d e r i n g 2.3.: Set Gx = G = (V, E), k = 1. Let all vertices be unmarked. 
2) Find the vertex vk of Gk with the maximum degree. 
3) Order its unmarked neighbors using the smallest-last ordering (see |5|). Denote 

them vk+1,...,vk+p. 
4) Mark all unmarked neighbors of the set vk,..., vk+p. Mark also the elements 

of this set. 
5) k = k + p + 1, Gk is the graph induces by the unmarked vertices of G. 
6) If Gk is not empty then go to 2). 
7) Mark all the rest of the graph using the smallest-last ordering. 
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Using this ordering we found even small examples showing that it locally out
performs the others. The smallest of them is as follows. 

Example 2.4. Let G = (V, £), V= {1, ..., 12), £ = {{1,2}, {1, 3}, {2, 3}, 
{4, 5}, {4, 6}, {11, 12}, {5, 6], {1, 7}, {4, 8], {7, 8}, [2, 9}, {5, 10}, {9, 10}, {3, 11}, 
{6,12}}. 

Our approach needs three colors whereas the Powell-Toint algorithm needs five 
colors. 

3. EXPERIMENTS WITH DIRECT METHODS 

Experimental results in the cited papers are based on only a small part of the sparse 
patterns (see [2]), mostly on grids. Although the problem is important for many 
applications, there is still lack of experimental results for various classes of data sets. 
Moreover, the concomitant lack of analytic results on heuristics requires that any 
comparison of algorithms must be empirical. Our experiments are not exhaustive, 
either. We have concentrated on two main groups of problems. The first contains 
the problems on grids, similar to those used for the problems of heat transfer (see 
[3], [9]). The matrix structures were created by means of the Sparse Matrix Structure 
Generator, which facilitated the work and will be part of the program system UFO 
(see [4]). The results obtained appear in Table 1. For these grids our algorithm 
seems to be a bit less advantageous. The other group, on which we could see possible 
advantages of the symmetric sequential coloring with our ordering, consists of 
matrices whose elements were generated randomly; however, we did not use the 
uniformly random sparsity pattern but generated regions with the density increased 
to 50 — 70%, while the rest was random. The density of the whole matrix was kept 
at 0-15 — 1%. We assumed that for these problems our algorithm could be of advantage 

Table 1. Grid Patterns 

n d% pt ss 

180 1-2 6 6 
220 1-2 8 8 
330 1-7 8 8 
505 1-8 9 9 
520 1-8 9 10 

660 1-2 7 7 
755 1-7 9 9 
856 1-1 6 6 
869 1-2 6 • 6 
940 0-9 5 5 
960 1-2 8 8 
1200 1-4 10 10 
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N o t a t i o n . 
n number of graph nodes, that is, the order of the matrix; 
d% matrix density; 
pt number of colors found by the Powell-Toint algorithm; 
ss number of colors obtained by our method. 

Table 2. Randomly Generated Patterns (see the description in the text). The columns are denoted 
in the same way as in Table. 1. 

n đ% pt ss 

100 1 6 6 
200 1 10 10 
300 1 9 9 
400 1 12 12 
500 1 10 9 
600 0-5 11 12 
700 0-5 12 11 
800 0-5 13 13 
900 0-5 7 7 
1000 0-25 6 5 
1100 0-25 9 9 
1200 0-15 10 9 

We can see that the experiments are promising and that both the alternatives 
for the approximation of sparse Hessian could be useful when embedded in the 
program system UFO. Let us draw no exaggerated conclusion from the simple 
test. Nonetheless, it is seen that for less regular patterns we can offer other ways 
of solution to our problem, although the Powell-Toint algorithm has been found 
to be more stable. 
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S o u h r n 

POZNÁMKA K PŘÍMÝM METODÁM APROXIMACE 
ŘÍDKÝCH HESSOVÝCH MATIC 

MIROSLAV TŮMA 

V práci je uveden alternativní algoritmus pro efektivní aproximaci řídkých Hessových matic, 
který byl vyvinut a testován v SVT ČSAV v souvislosti s potřebou rychlého chodu optimalizač
ních programů pro rozsáhlé úlohy. Jsou zde uvedeny výsledky praktických experimentů a po
rovnání s algoritmem Powella a Tointa. 

Р е з ю м е 

ЗАМЕЧАНИЕ ПО ПРЯМЫМ МЕТОДАМ АППРОКСИМАЦИИ РАЗРЕЖЕННЫХ 
МАТРИЦ ГЕССА 

МIКОЗ^АV ТйМА 

В статье описан новый алгоритм для эффективной аппроксимации разреженных матриц 
Гесса, который был разработан й опробован в связи с необходимостью быстрой оптимиза
ции больших систем. В конце статьи приведены результаты практических экспериментов 
и их сравнение с результатами алгоритма Повелла и Тоинта. 

Лшког'з аййгезз: 1п§. МггозШ Тита, 8УТ С8АУ, Рос! Vоа,а^еп8кои УШ 2, 182 07 РгаЬа 8. 
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