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Summary. The paper contains the proof of the classification theorem for two-parametric
space motions with at least 5 points with plane trajectories. The proof is based on [1] and on the
canonical form of a certain tensor of order 3. The second part of the paper deals with the problem
of plane trajectories from the differential-geometrical point of view. Some applications are given.
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1. INTRODUCTION

The Lie group & of all congruences of the Euclidean space E; has dimension 6.
This means that for a 2-parametric space motion we can (in general) prescribe 4
surfaces as trajectories of 4 points. So we expect that there exist 2-parametric space
motions which have 4 planes as trajectories of 4 points, and such a motion should
be determined uniquely by those trajectories. This suggests a natural question about
the existence of 2-parametric motions with more then 4 plane trajectories. This
question was answered by G. Darboux in [1], where he gave an example of a 2-para-
metric motion with exactly 10 planes as trajectories of points. He also proved that
“in general” a 2-parametric space motion can have at most 10 plane trajectories.
To this end he introduced an ingenious method using quaternionic realization
of SO(3), and proceeded with rigorousness sufficient at his time. In the present
paper we follow Darboux’s ideas to give a complete proof of the classification
theorem for 2-parametric space motions with at least 5 plane trajectories.

In the second part of the paper we discuss the same problem from the point of
view of differential geometry and we also give some applications. Throughout
the whole paper we use notation from [3] and suppose that all the 2-parametric
space motions considered are regular in the sense that their spherical image is a 2-
parametric motion as well.
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2. QUADRATIC DARBOUX MOTIONS

Let D denote the ring of dual numbers. It is a 2-dimensional associative and
commutative algebra over R with unit element 1 and with a base {1, e}, where
e? = 0. Let V, be an n-dimensional vector space over R. Then D ® V, is a 2n-
dimensional vector space over R which obtains a natural D-module structure by the
requirement (8 ® u) = (¢f) ® u for «, fe D,u eV, For the sake of simplicity
we will leave out the sign of the tensor product in what follows.

Let GL(D ® V,) denote the group of all D-linear 1-1 maps of D ® ¥,. If we choose
a basis in V,, then GL(D ® V,) is represented by the matrix group GL(n, D), which
is the group of all n x n matrices with dual entries and nonzero real part of the
determinant. This is easy to see if we realize that any g = a + eb e GL(n, D) is
given by the matrix § = (g’ z) , where D ® V, is considered over R.

Any bilinear map (u, v) from ¥, x V, into R can be uniquely extended to a D-
bilinear map from (D ® V,) x (D ® V,) into D by the requirement (eu,v) =
= (u, ev) = e(u, v), (eu, ev) = 0 for all u, ve V,. Let us further denote by O(n, D)
the subgroup of GL(n, D) given by the equation g .g" = E, where E is the unit
matrix, g € GL(n, D) and g" is the transpose of g. O(n, D) is a Lie group of dimension
n(n — 1) and it is given by matrices of the form g = (1 + ex) a, where a € O(n, R)
and x € O(n, R), where O(n, R) denotes the Lie algebra of O(n, R). This is easy
to see because g.g" = (1 + ex)a.a"(1 + ex") = a.a" + e(xaa” + aa"x) and
soaa* = E,x + xT = 0.

Theorem 1. Let V, be a vector space of dimension n over R with the Euclidean
scalar product (u, v). Then the group of all R-linear maps of D @ V, which preserve
the extended scalar product in D ® V,, is isomorphic with the group O(n, D).

Proof. Let us choose an orthonormal basis in ¥, and let T be an R-linear map
of D ® V, which preserves the extended scalar product. Then T(u; + eu,) =
= mu, + nu, + e(pu, + ru,), where u;,u, eV, m,n,p,reGL(n,R). For u =
= u, + eu,,v = v, + ev, we have g(Tu, Tv) = g(u, v), where g is the scalar product
in D ® V,. Substitution yields g(u,v,) = g(mu, + nu,, mo, + nv,), g(uy, v,) +
+ g(uz, v;) = g(puy + ruy, moy + nvy) + g(muy + nuy, po, + rv,).

a) Put u; = v; = 0, u, = v,. Then 0 = g(nu,, nu,), so nu, = 0 and n = 0.

b) The first equation gives g(u,, v,) = g(mu,, mv,), so me O(n, R).

c) Let us write p = m . s and put u, = v, = 0. Then the second equation yields
0 = g(msu,, mv,) + g(mu,, msv,) = g(su;,v,) + g(uy, sv,), and so s € O(n, R).

d) Similarly as above let us write » = m . w and use the second equation again,

but with v, = 0. Then we get g(uy,v,) = g(mu,, mwo,) = g(u;, wo,), so
g(uy, v, — wo,) =0 and w = E. This proves that Te O(n, D). The converse is
obvious.
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Let &5 be the Lie group of all orientation preserving congruences of the Euclidean
space E;, and let SO(n, D) be the subgroup of O(n, D) of elements with determinant
equal to 1.

Lemma 1. SO(3, D) and &5 are isomorphic Lie groups.

Proof. Let us write

x! 0, —x3 x?
x*=|x?] for x=| x% 0, —x!
x3 —-x%3, x', 0

Then the mapping ¢: &3 — SO(3, D) given by

1, O
(p<x", a) =(l +ex)a

is an isomorphism, because (1 + ex) a(l + ey) b = [1 + e(x + aya”)] ab,

1, 0\/1, 0\ (1, 0
x, a)\y, b)  \x"+ ay’, ab),
and ay’ = (aya")".

Now let Q be the algebra of quaternions. Then D ® Q obtains a D-algebra structure
by defining (u; + eu,). (u, + ev,) = uyu, + e(v,u, + uyv,), where uy, u,, v, 05 €
€ Q. This D-algebra is called the algebra of dual quaternions.

For any oo = u, + eu, € D ® Q we define & = i1y + eil,, o, = u; — eu,, where
the bar denotes the conjugate quaternion. A dual quaternion o« is called
a unit dual quaternion if a& = 1. The set of all dual unit quaternions is a 6-dimensional
Lie group U and its Lie algebra consists of all pure imaginary dual quaternions.
This is easy to see, as ad = (uy + eu,) (i, + eiiy) = uqily + e(u,it, + uyii,), so
uyiiy = 1, uyiiy + uyii, = 0 (and for the tangent vectors at 1 we have uy + ii, = 0,
u, + i, = 0).

Lemma 2. There is a Lie homomorphism of U onto &5 with the kernel {1, —1}.

Proof. Let us consider the transformation ¢,(4) = 2A4a, of the Euclidean space
E; of all quaternions A of the form 4 = 1 + ex, where x is a pure imaginary quater-
nion, a € U (see [2]). Then we get

@A) = (u; + euy) (1 + ex) (i#, — eily) = 1 + e(uyxity + uyity — wyil,),
where u,if; — uii, = Ui, — u,ily, SO U,ll; — U i, is a pure imaginary quaternion.
If u; = x, then u,xit; = uu,ii; = u, = x. This shows that ¢, is a composition
of a rotation with a translation, and so it belongs to &;.

Conversely, each translation and rotation can be obtained as ¢, for a suitable
®, ¢, is a homomorphism of Lie groups by definition, and the kernel is obvious.
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Lemma 3. There is a Lie homomorphism of U x U on SO(4, D) with kernel
{11, (=1, ~ )},

Proof. Let us consider the mapping ¢: U x U — GL(D ® Q), where D ® Q
is considered as a real vector space of dimension 8 and <p(oc, ﬂ) u = auf,,« feU,
ue D ® Q. Then ¢ is a homomorphism of Lie groups. Let us first consider the map
¢(e, 1). Any unit quaternion o can be written in the form o = (1 + ex) a, where a
is a real unit quaternion and x is a pure imaginary quaternion. Further, a(ul + euy) =
= au,; + eau,. This means that multiplication by a preserves unit real quaternions,
so ¢(a, 1) € O(4, R). As det ¢(a, 1) = 1, we have even ¢(a, 1) e SO(4, R).

Further, (1 + ex)(u, + eu,) = u; + e(xu, + u,), where multiplication by x
is represented by a skew-symmetric matrix, as for instance i(1, i, j, k) = (i, —1, k, —j),
and similarly for j and k. This shows that x € @O(4, R) and this yields ¢(«, 1) €
€ SO(4, D). A similar result is true for the second variable f.

Now we have to show that ¢ is onto. Let y € SO(4, D) be arbitrary. Then ¢
acts on unit dual quaternions by matrix multiplication (we choose the basis {1, i, j, k}).
Denote l//(l) = y. Then y is a unit dual quaternion and the map ¢(7, 1) ¥ preserves 1.
If we restrict this map to Q only, we get an element of SO(4, R) which preserves 1,
so this element is from SO(3, R). It is a rotation in the space of all imaginary quater-
nions, which is the Lie algebra of the Lie group Q; of all unit real quaternions.
Each rotation in the Lie algebra of Q, can be realized by the adjoint mapping, so
there is an element f in U such that ¢(B, B) = ¢(7, 1) ¥ on Q. This shows that we
may suppose that i is identical on Q. Such a map is given by a skew-symmetric
matrix, u; + eu, > u; + e(u, + xuy), with x skew-symmetric. Such a mapping
can be represented by ¢(1 + ea, 1 + eb) for suitable pure imaginary quaternions a
and b, which is easily verified by computation. This proves that ¢ is onto.

In the end we shall find the kernel of ¢. Let us suppose that auf, = u for all
ue D ® Q. This yields that of, = 1, so f = a,. Further, (1 + ex)a(u; + eu,).
.a(1 — ex) has the real part equal to au,a, so a = +1. Now (1 + ex) u,(1 — ex) =
= u; + e(xu; — u,x) and this yields x = 0.

Definition 1. Let G,/H, and G,/H, be two homogeneous spaces. We say that G,[H,
and G,[H, are locally equivalent if there exists an isomorphism 9: G onto &,
such that 9(9,) = 9,. Local equivalence of homogeneous spaces will be denoted
by ~.

Theorem 2. &3 X &3/65 = SO(4, D)| SO(3, D) = U x U|U, where we identify &
with Diag (65 x &3) and similarly for U.

Prooffollows from Lemmas 1 —3.

Remark. From the point of view of local differential geometry we may consider
locally equivalent homogeneous spaces as equal. The homogeneous space &5 X
X &3|€5 is the so called “kinematical space” of the space kinematics.
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Theorem 3. The kinematical space of space kinematics can be realized as a regular
quadratic surface K of signature (4, 4, 0) in the projective space P, with the trans-
formation group preserving the degenerate scalar product of signature (4,0, 4)
and the quadratic form defining K.

Remark. The isotropy space P; of the scalar product is considered as removed.

Proof. The scalar product preserved by SO(4, D) is given by the quadratic form

od, which for o = u; + eu,, u; = aq + a4i + a,j + ask, u, = by + byi + b,j +
3 3

+ bskis given by Y ai + 2e ) a;b;. The statement now follows from Theorem 1.
i i=0

i=0
Remark. Theorem 3 characterizes the space kinematics as a geometry of Mdbius
type with a metric group of transformations.

Theorem 4. The 3-dimensional projective subspaces of K without isotropic points
are the left and right translates of the unit sphere Q given by the equations u ii; =
= 1, u, = 0, with the opposite points identified. If such a subspace contains 1, it is
of the form . Q,a, a € U, and it corresponds to all rotations around the point u,ii; —
— Uyily, wherea = u, + eu,.

Proof. Let S be a 4-dimensional real vector subspace of D ® Q which determines

a 3-dimensional projective subspace of K, and let 1€ S. Further let & = uy + u +

+ e(vo + v) € S be linearly independent with 1, u,, vy € R, u, v being pure imaginary.

Then 1.1 + paxeK for all A, ue R. This yields v, = 0. Adding a multiple of 1,
3

we get uy, = 0 as well. Thus we have Y a;b; = 0, where u = a,i + a,j + a;k,
i=1
v = byi + b,j + bzk. Now S can be changed by using the group Q, in such a way
that u =i, because (1 + ex)(u + ev)(1 — ex) = u + e(v + xu — ux) and we
3

may choose x such that v + xu — ux = 0, as ), a;b; = 0. This shows that we may
suppose o = i. =1

Now let f = 4j+ uk + eveS. Then 2> + p? 0 and B can be changed to
B =j + ev by using Q,. Then v = 2k for 4 € R and we have (1 — Zei) (j + 2elk).
.(1 + Aei) = j, (1 — Zei)i(1 + Zei) = i. This shows that we may suppose A = 0.
If S contains 1, i, j, it contains k as well and it is unique.

Let 1 € Q,p,. Then aff, = 1, B, = & and for any v e Q, we have

(o) [1 + e(uziiy — uyiiy)] (20%,) = 1 + e(uziiy — uyiiy),

which is verified by direct computation.

Using Lemma 2 we can compute explicitly the matrix of the transformation
of Ej, corresponding to the unit dual quaternion o = u; + eu,, g = ay + a,i +
+ a,j + aszk,u, = by + byi + b,j + bsk. As the result we obtain the matrix
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O, = 1, 0, 0, 0
2(boay—byao+bsa, —byas), ag+ai—a3—a2, 2(a,a,+aea3), 2(aa3—aqa,)
2(boas—bjag+byas—bsay), 2(a,a,—agas), ay— a2 +a3—a’, 2(azas+aeay)
2(boas—bzag+bya; —byas), 2(aeas +ayas), 2(aa3—aea,), ag—ai—aj—a3

Two-parametric space motions can now be studied with regard to the just men-
tioned representation of motion as a submanifold in the kinematical space. From
this point of view it would be interesting to investigate the properties of motions
which lie in linear subspaces of P,. Theorem 4 may serve as an example of
this approach.

For instance, we may investigate properties of motions which lie in a linear subspace
Pg of P,. The simplest case occurs if we suppose that such Pg is the tangent space
of K at some isotropic point. As U x U acts transitively on the isotropic space,
we may suppose that the point of contact of Py is the point e. The equation of the
tangent space of Py at e is ao = 0. A special class of such motions was investigated
by G. Darboux in [1]. In the following part of this section we will follow his ideas

and present some of this results in a more up-to-date way. N
o . . , . 1, 0
Defipition 2. A two-parametric space motion given by the matrix g = (t’ y)'
b

where

(2 a} — a} —aZ, 2a,a,, 2aia;

y = | 2a,a,, —ai + a3 — ag, 2a,a; >
2a,a;, 2a,a;, —a} — a3 + a2

3 3
2 T
Yal=1, t=(t;,1,,1)", t, =y mPasa,, ml =m},
a=1 B.y=1

will be called a 2-parametric Darboux quadratic motion.

Remark. If we drop the condition
3
Ya;=1,
a=1
we can consider a, as homogeneous parameters of the motion in P,.

Remark. In what follows we will use the summation convention for indices
u’ﬁ’}"l’uﬁv = 1’2!3‘

Theorem 5. Let M = (m£?) be as in Definition 2. Then M is a tensor with respect
to SO(3, R).

Proof. The spherical part of a quadratic Darboux motion is given by the condi-
tion a, = 0. For the change of coordinates we therefore must have . 1.8 = 1,
so « = B. Each dual quaternion f with a, = 0 can be written in the form g =
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= u,(1 — 1/2et), where u, € Q,,t = t;i + 1,j + t;k are the components of the
translation. For the change of the orthonormal basis by « € Q; we have f = «fa,
where

B = (1 — 1)2¢f) = au,(1 — 1/2et) & = om,& — 1[2eatd = om&(1 — 1/2ent),
and so #; = au,d, I = ad. Let yj be the corresponding matrix from SO(3). Then
5& = ygaﬁ s ?:z = Ygtﬂ ) 'Zz = mzydﬁdy = )’:tl = 'ﬁgy?;auy;av = ’Yi’mgva;‘av ’

SO

A ~ ~
vemy = minyhyy, Wb = yimiyhy)

which was to be proved.

Remark. We write the symmetric indices as upper ones only for convenience.
Now we shall find the canonical form of the tensor M with respect to the change
of coordinates.

Lemma 4. The origin in the fixed and moving spaces can be changed in such
a way that mg* = mi¥ = 0.

Proof. Let r and s be two pure imaginary quaternions. Then (1 + er).
(1 + es) = Land (1 + er) uy(1 — 1/2et) (1 + es) = uy[1 + e(—1/2t + @;ruy + 5)]
is the result of an arbitrary translation in the fixed and moving spaces.

Let r = rd + ryj + 3k, s = s,i + s,j + s3k. Then

1, ry aj — a} — a3, 2a,a,, 2a,a;

i, | =(r.](a? + a} + a3) + | 2a5a,, —a} +a% — a2, 2a,a,

i, rs 2a,as, 2a,a;, —a? — a3 + a’
53 51
S2| + |12
53 I3

Computation yields
= my + 3rp — 55, WP =mP +ry + 354

This completes the proof.

From now on we may suppose that M satisfies the condition from Lemma 4,
and it remains to find the canonical form of M with respect to SO(3). As the procedure
is not quite straightforward, we shall present it in more detail.

It is well known that the quadratic form (M, M) = m#'m£” is an SO(3) invariant
scalar product in the space V of all tensors M. Tensors which are symmetrical in the
upper indices and have both contractions equal to zero form an invariant subspace
V,, of the space of all tensors of degree 3; V;, has dimension 12. In this space we
have a completely reducible representation of SO(3), given by the natural action
of SO(3).
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We shall try to decompose V,, into invariant subspaces, in which we may describe
the orbits of the action of SO(3) more easily. The space of all completely symmetric
tensors (without asuming zero contractions) is a vector subspace Vi, of dimension
10 in V and it is given by conditions a/ = a¥, a/ = a{*, where (i, j, k) is an even
permutation of (1, 2, 3) and no summation is used. Similar convention will be used
in the following. V;, is generated by the following independent components: three
components m{’, six components m} and one component m;’ = m}>. The condition
for zero contractions is m}* = 0 and it yields m}’ = —m}’ — m}*. This shows that
we have only 7 components left.

Lemma 5. The space V; of all completely symmetric tensors with zero contraction
has dimension 7. Its orthogonal complement Vs in Vy, is given by the following
conditions:

ii

mi=0, mi=—12m{, mP + m* =0, m3®> + m}*> + m3' = 0.

Proof. Let 4 = (a?”) be a tensor orthogonal to all symmetric tensors with zero
contraction. Then mf?a®? = 0 for all m#” in V,. This gives the following equations:
al =2al +a¥, a? +ai’ +a3' =0.

The contraction conditions in V;, are a?* = 0, a%' = 0 and so we get the conditions
ai = 24" + af =2a¥ + o}, —al’ = af’ + a¥* = al' + 4, which yield 24} =
= 2al' + 24}’ + a¥’ + af* = —3a}’. This shows that a}’ = 0 and the statement
follows.

Lemma 6. The representation of SO(3) in Vs is equivalent to the natural repre-
sentation of SO(3) in the space of all symmetric matrices with trace zero and of
order 3.

Proof. After performing necessary transformations of the formula we get, for
the change of Me Vs:
mi® = yemyypyy = mi[y3v3 + 93] + m[yiv3 + y3vi] +
+ m3'[y1y3 + 93] + 3l(m3® — m3?) yiv] + (m3® — m®) 93 +
+ (mi* — my®) 3],
3(m3* — mi’) = 2mi*y3y3 + 2m3'yiy; + 2m3yiys +

+ 3(my® — m3?) () + 3(m3* — mP®) (57)* + &(mP® — m3®) (v3)*.
The remaining formulas are obtained by cyclic permutations of indices.

On the other hand, if a; is a symmetric matrix of degree 3, then for its transforma-
tion under SO(3) we have (@;) = y;a}y4 and therefore

a3 = aj(v3} + v33) + v + vd) + ai(vi3 +00d) +
+ aiyiy} + a3y + a3,
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a; = 239303 + y1v3a; + 2yivias + ai(vD)® + a3(v3)* + a3(»3)* .

If we now define the correspondence x so that y(m}) = ai, x(3(m¥ — m})) = ai,
we immediately see that y determines an equivalence of representations.

The orbits of the natural representation of SO(3) in the space of symmetric matrices
are well known; such matrices can be diagonalized. This shows that we may always
choose frames in the fixed and moving spaces in such a way that mj' = 0 for the
projection of M into V.

Theorem 6. Let a quadratic Darboux motion be given by its tensor M = (mz”).
Then there exist frames in the fixed and moving spaces such that M satisfies the
following conditions:

(3) mi =mi, m=0.

Such frames are uniquely determined iff m{* — mj) & m{' — mi*.

Proof. For the projection 4 of M into V; from Lemma 5 we have a} = 1/3(m{/ —
— m}i). From Lemma 5 we know that we may choose frames such that a;'.i = 0.
These frames are uniquely determined provided the diagonal elements of the matrix
x(A) from Lemma 5 are mutually different. This completes the proof.

Remark. From now on we will suppose that M satisfies (3), and call it the reduced
form of M.

G. Darboux in [1] found all plane trajectories of a quadratic Darboux motion
and gave an explicit example of a motion which attains the maximal number of
plane trajectories. We will repeat his reasoning as follows:

Let a two-parametric quadratic Darboux motion be given by (2). Then the trajec-
tory X, Y, Z of the point x, y, z is given by the following equations:

X(a + a3 + a3) = ty(ay, a5, a3) + (a} — a3 — a3) x + 2a,a,y + 2a,a5z,

Y(ai + a5 + a3) = ty(ay, a5, as) + 2a.a,x + (—ai + a3 — a3) y + 2a,a;z,

Z(ai + a3 + a3) = t3(ay, as, a3) + 2a,a3x + 2a,a3y + (—aj — a3 + a3)z,
where t(ay, a,, as) = my'aga,. We ask whether there exist numbers

3
lys=0,..,3,Y 2 +0
a=1

such that I, + I, X + I,Y + I3Z = O for all a,, a,, a; and given x, y, z.
Substitution yields

(4) lo+Lix — Ly —lLiz+ P =0, Lz+ Ly + P, =0,
lo—lix+ Ly —lz+P,=0, liz+ lyx + P, =0,
lo = lix = Ly + Lz + Py = 0, Ly + Lx + Py =0,
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where P, = Im}, P} = I,m}".
Consequently,
1,Py + L,P, — 3P + 2l,1,z =0, P, + P, + 2], —2l;z=0.
Let us first suppose that I,1,13 + 0. Then
(Py + P,) i1, + L(1,P} + 1,P; — I,P}) + 21,041, = 0
and by cyclic permutations
=2l L1y = (Py + P,) Lil,15 + 13(I, P} + 1,P; — I;P4) =
= (P, + P3) i1 + I3(=1,P} + I,P} + I;P}) =
= (Py + P3) L1 + 13(1,P} — 1P, + 1,P3).
This yields
(5) (I + B)(,P; — LPY) + LP(1} = 17) — LLL(P; — P;)) =0,
where (i, j, k) is again a cyclic permutation of (1, 2, 3).

Proposition 1. A quadratic Darboux motion is spherical iff the reduced form
of M is equal to zero.

Proof. Let a quadratic Darboux motion be spherical. Then (5) must be satisfied
for any Iy, I,, 1. If we write out explicitly one of (5), we obtain -

(6) H[m*(13 — 1) + LIy(mi®> — mi*)] +

+ L[B1,(3m3® — 2m}') — LIZ3m3? + 2mi') + B3(m3? — m3') + B(m3' — m3®)] +
+ (3 + B)[Bm3* + LI;(m?* — m}®) — Em3*] =0.

This yields my = 0 and m}’ = m{¥, 2m}’ = 3m%, so m} = 0. This completes the

proof.

Theorem 7. (Darboux). If a quadratic Darboux motion has a finite number
of plane trajectories, then they are at most 10.

Proof. For the normal vector of the plane trajectory we have equations (5), which
determine two curves of degree 4 in the projective plane with homogeneous coordi-
nates Iy, I,, I5. Then I, is uniquely determined by I,. This means that we have at
most 16 solutions for [,. Six of them are of the form

Further, we see that any plane trajectory with I; = 0 must satisfy (5) and (4).
We shall prove that any plane trajectory with [; = 0 corresponds to a double solu-
tion of (5) and so it was already counted. Solet I; = 0, I, I3, be a solution of (5).
Let us denote by P;y, P, the corresponding expressions for P;, P; with I, = 0,
I, = Iy, I3 = I3, substituted.
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Then we must have

I,z + I3y + Pjo = l3x + Pyy = I, + P3o =0,
lo — Loy — 30z + Pyg = ly + 130y — l302 + Pyo = Iy — Loy + l30z + P3o = 0.
This yields

Loy = 1/2(P1o — P30), l30z = 1/2(Pyo — Ps3p)
and we obtain
(8) 0P — l30P3 =0,

Bo(P1o = P3o) + I30(P1o — Pao) + 2l20l30P10 = 0.

Let us compute the tangent lines of (5) at the common point I; = 0, I, = l,,,
I3 = I3y, Where I,0P5y — l30P3 = 0. Let l0l30 + 0 (otherwise it is easy). Two
equations of (5) are

(1P} — I3P3 — L,Py) + I3(1,Py — I;P5 + 1,Py) + IiLIs(Py — P3) =0,
B(LP, — I,Py + L,P3) + I3(1,P, — I,Py — I;P}) + LL,I3(P, — P,) = 0.

Equations of the tangent lines are

, oP;, oP;
Li4{Bo| Plo — o[ =2) + Lo|—2 + (P10 — P3o) Laolzop +
oly /o oly Jo

3 ’ ’ a ’ ’
+ LI, — (L,P; — 13P3), + L3, — (I,P; — 13P4) = 0,
al, ol,

, oP, oP,
L {122’0[—P10 = Ly (#) + lzo(6l2> :I + (P20 — Pyy) lzolso} +
1/o 1/0

0 , , 0 , .
+ Lo — (I,Py — 13Py)o + Lil5o — (I,P; — I3P3)y = 0.

These two lines coincide iff
2I§OI§OP,10 + l;OZSO(PIO - P30) + 120lgo(P10 - PZO) = 0
and this is what we need to complete the proof.

Example 1 (Darboux). Let us consider the case m;’ = 1, otherwise mj’ = 0.
Then P; = 0, P; = 1,, and (5) reads

-G+ -1)=0.
We have to consider the following cases:

) =105 =1,s0l,=c¢l,l; =ely,¢e,6 = +1. The solution is: the point
A with a plane trajectory is
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A = [—1/2e,65, —1[2¢e5, —1/2¢,] ,
the plane trajectory is given by the equation
“'1/28283 + X + 82Y+ 83Z = 0‘

We have 4 solutions corresponding to the choice of ¢,, €;.

2) 1, =0, I, = gl;, & = +1. The point with a plane trajectory is 4 = [e, 0, 0],
the plane trajectory is given by the equation Y + ¢Z = 0, ¢ = +1, together with
the cyclic permutations. We have 6 solutions in this case.

Remark. Example 1 proves the existence of a 2-parametric space motion with
exactly 10 plane trajectories.

At the end of this chapter we will discuss the case when the quadratic Darboux
motion has infinitely many plane trajectories. This can occur only if (5) has infinitely
many solutions. It is easy to see that the curves given by (5) cannot coincide, because
in such a case each variable would be at most in the second power and similarly
as in the proof of Proposition 1 we should get that the reduced form of M is zero.

This means that (5) can have infinitely many solutions only if the curves given
by (5) split into curves of lower orders. Such cases must be discussed separately for
each possibility:

1) Let (5) have a common conic section 4l + Bl + CI3 + DI,l, + El I +
+ Fl1; = 0. ‘

a) Let A # 0. Then we may suppose 4 = 1 and (6) can be written as

(If + BI3 + CI3 + DL, + Eljl5 + FLI3) (Byl3 + C,I5 + Fil,13) = 0.

Comparison with (6) yields B, = —C, = m}*, F; = m}> — m}?, where (m}®)? +
+ (m3* — m7*)? # 0. From terms not containing I, we obtain

2Fm3® + (B — C)(m}* —mi*) =0,
F(m}* —mi*) —2(B—- C)m{® = 0.

This yields B= C, F = 0.
Now we use the second equation from (5). B # 0 implies B=C = A = 1. E =
8
= M = 0, the conic section is ) I3 = 0 and we have no real solution. If B = 0,
a=1
then the common conic section is given by I,(I; + DI, + El;) = 0. l; = 0is a solu-
tion for all I, and I; iff I3(P; — P3) + I3(P, — P,) + 2L,1;P1 = O for all I, I5.
This yields D = E = 0 and the common conic section is I3 = 0, which is a special
case of a common straight line; this case will be treated later on-
b) Let A =B = C =0, DEF £ 0. The common conic section is DI, +
+ El 1y + Fl,l3 = 0. (6) can be written as

(Dlllz + Elll3 + Flzls) (Allf + Bllg + Cllg + DllIIZ + Ellll.’: + Fllll3) = 0 .
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‘We have no terms with I3 and I, so mi? = m?3 = m}® = 0, 4; = 0. The term

with I2 gives D, = E, = 0,m3®> = m??and C, = F, = B, = 0, which is impossible.
A similar result is obtained for D = 0.

2) Let (5) have a common cubic curve. Easy computation shows that this cubic
curve must be singular.

3) Let (5) have a common straight line 4l; + Bl, + Cl; = 0 with ABC % 0.
Let us denote m{ — ml = «;,3m3> + 2m}' = B 3m3* + 2m}' = y. Then (6)
changes to

) B[mP(15 = 13) + L] + 1, (Bosy + Ba, + B — LiZy) +
+ (I3 + B3) (Bm3* — my® — La,) =0.
Let us write (6) in the form
(10) (Al; + BI, + CLy) (AL,13 + B L,I5 + C,1,L,l; + D13 +
+ E 2l + FILE+ HB)=0,
Comparison of (9) and (10) gives the following equations:
(11) AA; = —AB, = m}®, AC, =o,, AD, + A;B = a,,
AH; + B,C =a,, AE; + AC+ BC, =8, AF,+ BB+ C,C= —y,
BE, + CD, = —«,, BH, + CF; = —a,, BD;= —m}®,
CH, = m}*, BF, + CE; = m}*> — m}>.
For A, B, C we obtain the following equations:
asAB = B*m?3® — A*m}3,
a;(4* — B*) — 2BCm3}* + a3AC + BAB =0,
(4% — C?) + 2BCm}® — yAC + a,AB =0,
AX(m}? — my®) = m}3(B? — C?) — 20,BC — yAB + BAC,

and their cyclic permutations.
By forming suitable combinations, we arrive at two equatlons

@, BCm?* + a,ACm}> + a3ABmi* =0, o,BC + 0,AC + a3AB = 0.

Let us denote mi* — k¥ = A, m{* — m¥ = o, m{* + mJ/ = B,. Then we obtain
(up to a constant factor)

(12) A=A, B=adidy, C=a3i4,.
The remaining equations are

(13) A+ +4;=0,
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(14) Ay (0 A0 — apdids) = (a3A] — ai3) m33,
(15) 0 ds(aiA; — 03]) — 2m,03434,m3° + ofey A3 +
+ 1/2“1&21112}.3(5ﬂ2 - 0(2) = 0 >

and their cyclic permutations. This means that it is enough to choose a solution
of (13) and (14) and we get a solution of our problem. Equations (13) and (14) have
sufficiently many solutions (for instance o; = 4, is such a solution).

For the point (x, y, z) which has a plane trajectory we have I, Py + 1,P;, — ,Py =
= - 211 lzZ.

Substitution gives
Bm?® + Bm3® — Bm3? + LiLoy — L, + Lla, = 2L bz,
If we now substitute for I3 from Al; + Bl, + Cl3 = 0, for A4, B, C from (12) and
then from (13) and (14), we see that z = const. A similar result is true for x and y.
This shows that infinitely many plane trajectories correspond to a straight trajectory
of a point. We obtain a similar result in the case ABC= 0.

Theorem 8. A quadratic Darboux motion has infinitely many plane trajectories
iff it has a point with a straight trajectory. In addition to this point it can have six
plane trajectories. In the case o 0,034;A,45 + 0 such motions are determined
by the solutions of (13)—(15).

Proof. If we remove the common line A4l; + Bl, -+ Cl; = 0 from (5), we get
two cubic curves with at most 9 common points. Inspection of equation (6) shows
that 3 of those points are points with I, = 0, which are not counted.

Remark. For the sake of simplicity we shall call planes py, p,, p3 independent
if their normal vectors are linearly independent.

Theorem 9. (Darboux). Let a 2-parametric space motion have 4 plane trajectories,
each 3 of them independent. Then, if such a motion has one more plane trajectory,
it is either a quadratic Darboux motion, or all 5 points with plane trajectories
lie on a straight line and each point of this line has a plane curve as its trajectory.

Proof. Let a matrix y = (y,;) of a spherical motion be given by a unit quaternion
o= ag + a;i + a,j + azk. Then there exists a 1-1 linear correspondence between
the homogeneous quadraftic polynomials in a,and the linear equations in y,s, given

by (1). Explicitly, we have

1+?ii—2a(2)=2az?9 i=1’253a Vaa_*>1=4ag!
712 = 2(a,a; + aoa3), 72 = 2(aya, — aeas)

and similarly for other y,;. This shows that from any quadratic homogeneous poly-
nomial in a, we get a linear equation in Y, and the correspondence is linear. The
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converse is obvious from (1), only the constant term of the linear equation must be
multiplied by 1 = a} + a? + a3 + 3.

Now let a motion be given by the matrix g = (tl’ S ) .
ar laf

The trajectory X' of the point x* = (1, xi, x4, x£)T is given by

(1,0 (1
- kt xi S+ o)
The trajectory X' of x* lies in a plane iff there exist I, j = 1, ..., 4, such that
. 3 . 3 .
L4+ YLt + Y 7.x) = 0.
i=1 a=1

Let points x*, x%, x> have plane trajectories given by I', I, I* such that |I}| + 0,
i,j = 1,2, 3, where vertical lines denote the determinant. Then we have

3 3
le;-tj =D =Y lyuxs, i=123.
i=

a,j=1

The solution for ¢; is

3
(16) ty = —|ly, Iy, |7 [l Lo, 1y +_2~1;ja|l,.xa, L, L[].
ja=
3
t, = “llu I, 13l~1 [|l1> la, ls[ +: ZIan[ln ljxaa lsl] s
ja=
3
t3 = —Ills lZs l3|_1 [{lla l23 l4l +. Z;Yjallb Zla ljxa!] )
Ja=

where !; denotes l‘ while /;x, denotes Ix! oo, i, j =1,2,3, written in columns.

Jxe

The substitutlon into tbe 4-th plane trajectory gives the equation
(17) |ll’ 12’ l39 l4| + z y]a |l iXas ll: lZ, | = O
a,j=

where I; now denotes l_;, I;x, denotes l,xa, i,j=1,2,3,4,a=1,2,3. (17) is a linear

equation in y,g, so it gives a homogeneous quadratic equation in ay, ..., as.
First we shall show that (17) is a nontrivial equation. So, let |I;x,, Iy, I, Is| = 0
foralle,j = 1,2, 3. Then|ly, I, I, I,| = 0 and

3 3
=Y 0Il, with Y (0 +0.
i=1 i=1
This yields '
3
=Y O'lix}.
i=1

Substitution for I} yields
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3 3 3
(5 0H)x* = 0ixt and ¥ Ot — x1) = 0.
i=1 i=1 i=1

As x* £ x', i =1,2,3, the last system of equations must have a nontrivial
solution, and this means that the determinant of this system must be equal to zero.
The determinant of the system is equal to ©'©°@3|l,, I,, I;|, where I; denotes
I,i,j=1,2,3.

As |y, 15, I3] # 0, we have ©'0%0° = 0. Let @* = 0. Then I* = O'I' + @1,
which is a contradiction with |I}, I7,If| # 0, i = 1,2, 3, as any 3 plane trajectories
are independent by assumption. This completes the proof.

So far we have shown that g is a two-parametric motion uniquely determined by
points x* and planes I’, i = 1,2, 3, 4. Let us now have one more point x> which has
a plane trajectory determined by I°. This gives a new homogeneous quadratic equation
in ag, ..., as. If we consider a, ..., a; as homogeneous coordinates in the projective
space P5, we get two quadratic surfaces in this space. Two quadratic surfaces in Py
have a 2-dimensional intersection iff they coincide or if they have a common plane.
If they have a common plane, the motion is a quadratic Darboux motion — the
spherical part satisfies a linear equation and translations are quadratic in a,, ..., as,
as we see from (17).

Consequently, we can suppose that the quadratic surfaces determined by (17) are
identical. This means that the corresponding linear equations given by (17) are pro-
portional. Hence there exists a number ©* = 0 such that

Dxi I 1L, 1) = 0% |k, 1L 1L, 1
Bx2, 12, 12, 12 Uxg 11, B, I3
Bx3, B, B, B Bx2, B, B, 1
Bx;, 13, 15, 13 Bxs, 13, 13, 1%

forallj, a = 1, 2, 3. This yields

4
=Y O, I =
i=1 i

O'lixi, where ©'020%°0* +0,
1

Ma

]

i,a = 1,2, 3. (We know only that ©@* # 0, but all x* and I’ play symmetrical roles
in the discussion.) Now, following Darboux, let us consider the following system
of linear equations:

5

(18) 2u;=0,
j=1

(18) is a system of 4 linear equations for unknowns u, ..., us. This system has 3

linearly independent solutions

(0, 0%, 0B, 0%1¢, —I¥), i=1,2,3,

i

5
xu; =0, a=1,2,3,
j=1

because @'0?@> + 0 and |I;, I, I3| + 0. This proves that the rank of the matrix
of (18) is at most 2. The matrix of (18) is
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1, 1, 1, 1, 1 .
(x; 2, %3, x, 5)’ j=123
and this shows that the points x’ lic on a straight line, i = 1, ..., 5.

It remains to prove that any point of the straight line determined by the points
x' has a plane trajectory. We may suppose that x} = x, = 0fori =1,...,5. Let
xi, ILi=1,...,4 be given.

Let us choose an arbitrary x3. Then we have to solve the following equations:

4 4
B=Y06l, x3=Y6Ux, i=123.
j=1 i=1
We have 6 equations for 7 unknowns @J,j = 1,...,4,1;, i = 1,2,3. The rank
of the marix of this system of equations is 6, so I;, @/ are fixed up to a factor, &’
determine I3, so the plane trajectory is uniquely determined. Further, the trajectory
of any point on the third axis depends only on y;3;, which are bound by a linear
equation. This means that the trajectory of such a point depends on a single para-
meter and so it is a curve.

To complete the classification of motions with at least 5 plane trajectories, we have
to consider the remaining cases. So far we have discussed the case of 5 plane trajecto-
ries such that there exist four of them with every three independent. Let us now
consider the other possibility. So, let us have 5 planes, no two of them parallel,
in such a position that every quadruple of them has 3 planes dependent. It is easy
to see that in this case there exist 4 planes parallel to one straight line.

Remark. A 2-parametric motion is called singular if the corresponding spherical
motion is one-parametric.

Lemma 7. Let a 2-parametric space motion have 4 plane trajectories parallel to
a given straight line and such that no two of them are parallel. Then the motion
is singular.

Proof. We proceed in a similar way as above. We suppose I5 = 0,i = 1,..., 4.
Then t5 is arbitrary and we get two linear equations for y,;. This shows that the
motion is singular.

A similar result is obtained if we consider the case when two planes are parallel
and the other 3 are parallel with a straight line. We also get a singular motion.

3. THE SET OF FLAT POINTS

In the third part of the paper we shall present the instantaneous version of the
Darboux theorem. If & is a 2-dimensional surface in E;, we call a point 4 € & flat,
if the second fundamental form of & vanishes at A. A plane is then characterized
as a surface with only flat points.
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Let g be a 2-parametric (regular) space motion. Let us denote by F the set of all
points X in the moving space E; such that the trajectory of X has a flat point at X.
In what follows we shall describe the set F for a general regular 2-parametric space
motion and show some of its properties.

If g = g(uy, u,) is a 2-parametric space motion, then according to [3] we have
the following equalities for the canonical frames % and & in E; and E;, respectively:
dF = F o, dF = FY, o = 1[2(¢ — ¥), n = 1/2(¢ + ), where

0, 0, O, 0

vy, 0, O, ®,
1 =
( 9) @ wo,, 0, 0, —o.]’
0, —®,, ©®;, O
0, 0, 0, 0
_ (BW - ") w; — pw,, O, —a,0; — 4,0,, 0w, + fo,
1 mo; + (n — pv) w,, ajo; + ayw,, O, Bo; + yw,
biw; + byw,, —aw; — fw,, —Pfwo; —yw,, 0
The integrability conditions are
(20) do; = a0, A ©,, do, = a,0; A ©,, N

by = =@z + a(v = w), by =W —ao—w),
—(ay), + (@), +al+a3=p—ay—1,

(B2 — ()1 —2a:8+ ar(a—7y) =0, —(a), + (B); + 2a,8 + a;(x —y) =0,
—(by)2 + (b2)y + bray + bya, + ap + ym — 2fn + (v + w) (1 + p*) =0,
(WB —n), + (p)1 + ay[2n — B(v + w)] + a,(p — m) + b, — ba =0,

— (m), + (n — vB)s + a;(m — p) + ay[2n — B(o + w)] — byy + b =0,

where df = (f); ®; + (f) w, for any function f.
For the trajectory A(uy, u,) of the point 4 € E; at A we have

(21) A4 = 2F0X,, A*A =2F(pw — of + d0) X,

where X , are the coordinates of the point A with respect to &, 4 denotes the ordinary

(symmetric) differential.
X 4 satisfy the following system of differential equations:

(22) dX, = —yX,.

Let X, = (1, x, y, z)". Then the normal vector n of the trajectory of A at A is given by
(23) n=(0,zx — yw,vx + y%, ow + z%)T.

The set of points where n = 0 consists in general of two straight lines given by the

equations
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(24) zx—yw=0, ox+yz=0, vw+22=0.

Let us denote by S the set of all points given by (24). It is the set of singular points
of the trajectories of points — the tangent space of the trajectory of a point from S
has dimension at most 1.

Lemma 8. Let &, be the second fundamental form of the trajectory of the point A.
Then
P, = Ax,y,2)(C0} + C,05 + 2C,0,0,),
where

25
(Cl)= (zx — yw) (ay + (v);) + (vx + yz) (By — ax — 2y) — (vw + 22) (M + 22),
C, = (zx — yw) (B, — 2x + yy) + (vx + yz) (W), — yx) — (ow + 2%) (P + 2z),
Cy = (zx — yw)((¢v)2 + (1 + B)y) + (vx + yz)((w), + (1 = B)x) — (vw + z?) N,
By =2b; + (v),, By,=-2b,+(w);, M=ow+m, P=yw+p,
N=n+v—-w.

Lemma 9. F is given by the equations C; = 0, i = 1,2,3. We have S = F and if

a straight line belongs to F, then it is parallel to the plane z = 0.

Proof. Let a straight line p = X + Au be in F where X is a point, u is a vector,
X = (x,,2)%, u=(a, b, c)". If we substitute p in C; = 0 and look at the terms
of the 3™ degree in 4, we get abc = 0, c(b* + ¢®) = 0, ¢(a* + ¢2) = 0. The only
solution is ¢ = 0. The formulas for C; must be found by direct computation using
(21) and (23).

Lemma 10. If the set F — S is finite, then it contains at most 16 points. If K, =
=1+ ay — B2 = 0, they are at most 15.

Proof.a) Letv = w = 0. Then S is the plane z = 0. So let z % 0. The equations
for F — S are
(26) 2y? + 2z* — x(v); — yB; + zM = 0,
2x? + 222 — xB, — y(w), + zP =0,
2xy + x(v), + y(w); —zN = 0.

It is not difficult to see that (26) may have at most 8 solutions, provided their
number is finite.

b) Let v* + w? = 0. Let us define the following parametrization of the set F:
X = wr + ts,y = tr — vs, z = t with parameters r, s,¢. Then zx — yw = s(t2 + vw),
vx + yz = r(t* + vw),ow + z> = 1* + vw. This shows that 1> + vw = 0 is the
equation of S. For F — S we obtain from (25) the following equations:
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(27) 2t(r* + 1) + a(vs® + wr?) — 2ors — s(v); — rB; + M =0,
2t(s® + 1) + p(vs®> + wr?) + 2wrs — r(w), — sB, + P =0,
2trs — vs*(1 + B) + wr*(1 — B) + r(w); + s(v), — N =0.

The solvability conditions for (27) form 2 curves of order 4 in the r, s plane, so we
may have at most 16 solutions. The terms of the highest degree in r and s are
r(vs®> + wr?) (r(B — 1) + as) and s(vs®> + wr?) (yr + s(B + 1)), which shows that
they are two common points at infinity and one more for K, = 0. On the other
hand, the plane z = + ./(—wvw) intersects the surfaces C; = 0 in 3 straight lines
(apart from the singular line and the line at infinity). These 3 lines have at most 1
common point, which gives at most 2 new points.

Example 2. We will discuss the plane trajectories of 2-parametric motions with
constants invariants. For such a motion we have a, = a, = b, = b, = 0, % —
—ay =1, ap +ym — 2fn + (v + w) (1 + p%) = 0. We shall consider only the
general case, so let v — w =0, w £ 0, v > 0. Let us find all motions of this type
which have at least one plane trajectory, which is not a curve. This means that we
exclude the points of S. Equations (25) yield the following equations for F: ’

(28)

(zx — yw) (ap) + (vx + yz) (—ax — 2y) + (ow + 2%) (—av — m — 22) = 0,
(zx — yw) (=2x + py) + (vx + yz) (—yx) + (ow + 22) (=yw — p — 22) = 0,
2zx —yw)(B+ 1)y + 2(vx + yz2) (1 = B)x — (vw + z2*)(n + v — w) = 0.
Further, (22) yields
(29) (x)r=v—Pw+n—az, (x)=p—-(B—-1)z,
i==-m—-B+Dz, ()y=w+po—n-—yz,
Ey=ax+B+1Dy, (@=0B-1)x+yy.

As do; = dw, = 0, we may write ®; = du, ®, = du, and we can integrate (29)
with respect to u and u,. Integration with respect to u gives a one-parametric subgroup
and its trajectories are

(30)  x(u) = 97 *[ou(B + 1) + xo(a* cos u + (B + 1)%) +
+ yor(B + 1) (cos u — 1) — (z, — 97 %¢) a9 sin Ju],
y(u) = 97— ua + xox(B + 1) (cos Ju — 1) + yo((B + 1)* cos Su +
+a%) — (B + 1) 9sin Su(z, — 97 2%9),
z(u) = 97*[xoa 9 sin $u + yo(B + 1) 9 sin Ju + 9% cos u(z, — 97 2%9) + o],
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where o =am + (B+ 1)(v — pw+n), o= —m(B + 1) + ofv — pw + n), 9 =
= [o® + (B + 1)*]"/%, «® + (B + 1)* * 0. (30) gives the trajectory passing through
the point (xo, Yo, Zo)-

(30) must satisfy (28) for all values of u. We substitute (30) into (28) and consider
only the terms with the highest powers in cos Ju and sin Ju. Let us denote by X, 7, Z
the part of x, y, z in (30) which is linear in sin Su and cos $u, without the absolute
term. Then we get

Z(z? + y%) and z(z* + X%),

which must be zero mod cos? Ju + sin® 9u = 1.

Let us write Z = Acos¢ + using, y =rcos¢ + ssin, ¢ = Ju. Then we

obtain the equations

M2 — 2+ 12 —5%) — 2u(du + 1s) = 0,

p(A? — @ + 12— 5% + 24(An + 1) = 0.
Here either 42 + p> = 0and A= p = 0,0r 2> — p?> + 7> — s> = 0and Ay + rs =
= 0. The second possibility yields 1 = es, u = —er, ¢ = +1. We use the term
Z(z? + x%) to obtain A = p = 0.

This shows that we always have z = 0. This yields xoa + (B + 1)y, = 0, z, =
= 97 2.

It remains to consider the case f + 1 = 0, @ = 0. In this case we use the second
part of (29) similarly as above. Since now (B — 1)*> + > + 0, we get a similar
result.

We have proved so far that if a point has a plane trajectory, it must lie on the
axis p of the one-parametric subgroup (30). Parametric equations of p are

x=B+1)t, y=—at, z=9%, where (B+1>+a>+0.

a) We shall investigate under what conditions all points of p have plane trajecto-
ries. This means that we suppose that p belongs to F — S. Substitution into (28)
shows that then we must have

z = —1/2(aw + yv)
and
(ow + 2 (0 + m + 22) = 0,
(ow + 22)(ow + p + 22) = 0,
(ow+2)(r+0-w) =0.

Let vw + z> = 0. Then o«’*w® + 2(ay + 2)ow + y*»> = 0. The discriminant
of this equation is D = 16(1 + ay) = 1682. We obtain wlo = —(B + 1)*[a® or

wlo = —(B — 1)%/a’. The first possibility gives a singular line, so we may suppose
that
(31) wo? + 8B — 1)2 =0,
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Substitution into the equation z = 972 yields
(32) —m(B+1)+alv—pw+ n)=—12(aw + y) (> + (B + 1)?).
The remaining possibility is acvo + m +2z=yw+p+2z=n+0v—-w=0.
Substitution into the integrability condition shows that in this case p belongs to S.
b) A point of p with a plane trajectory is an isolated solution of (28). This means
that the coordinates of this point with respect to % are constant. From (29) we
obtain n=w+po—yz=pw—v+azm=—-B+1)z, p=(B—1)z, ax +
+(B+1)y=0,(8—-1)x+7yy=0.
The last two equations are compatible as K, = 0; from the first two equations
we get w(l — B) + v(1 + B) = (¢ + ) z.
(28) changes to
?x*(2z + ow + yo) + (ow + 22 (B + 1)2[(1 = )z + w] = 0,
x*(2z + ow + yo) + (vw + 22 [(1 + By z + yw] =0,
20x?*(2z + aw + ) + (ow + 22) (B + ) [yz —v(B+1)] =0,
where we suppose f + 1 = 0.
i) ow + 2% =0, 2z + aw + yv = 0. Here we get a special case of a).
ii) ow + z2 = 0, 2z + aw + yv + 0. Then x = y = 0 and the point is from S.
iii) ow + z? =% 0. Then the determinant of (28) must be zero, which yields az =

=w(l — B), yz = v(1 + B), so ay(vw + z%) = 0 and oy = 0. This implies g = 1,
yz =20, oz = 0. As y = 0 implies v = 0, we may suppose y + 0. Then a = 0,
y=0, z=20y and x»*4 + y*) + (40 + y’w)*> =0, so x =0, 40 + y*w = 0,
ow + z* = vy~ *(4v + wy?) = 0, which is a contradiction and we have no solution
inthe case b)for p + 1 + 0.

Now let f = —1. Then x = 0, x = 1/2yy.

i) « 0. Then y =0. The equality vw + z> = 0 implies y*(aw + 2z) = 0.
While y = 0 gives a singular point, aw + 2z = 0 gives «®> + 4 = 0, which is impos-
sible. Hence vw + z2 # 0 leads to a contradiction.

i) « = 0. Then vw + z® = 0 gives a singular point x = y = 0, and vw + z* # 0
leads to a singular point as well.

Theorem 10. Regular 2-parametric space motions with a 2-dimensional group
of automorphisms are given as products

g(uy, uy) = gy(oguy + Byuy, yauy + 85u,) . go(0uy + Bouy, yauy + S5us),

where g1, s) is a commutative two-dimensional subgroup of &3 and t denotes the

. . . oy B . Lo
angle of rotation, s is a translation, rank( v ’) = 1,i =1, 2. Such a motion is

i Yi

a product of two one-parametric subgroups iff m = wo, p = yo, n = (v + w).
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Proof. If a motion has a 2-dimensional group of automorphisms, then it has
constant invariants and it is an orbit of a 2-dimensional subgroup of &; x &3.
Let G be a 2-dimensional subgroup of &, x &5. Then its canonical projections
pi(G) must be subgroups of &3, as p; is a homomorphism of groups, i = 1, 2. If
p1(G) has dimension 0, then G is isomorphic with a commutative subgroup of &
and the resulting motion is not regular. As any homomorphism between commuta-
tive groups is given by a linear mapping in the canonical coordinates, the first state-
ment of the theorem follows. If such a motion is a product of two one-parametric
subgroups, then ¢ and Y must be functions of one parameter only. This yields
B+Dw+po—n)+ym=0, (B—1)(=w+ po—n)+ym =0, which to-
gether with the integrability condition gives the statement.

The following theorem has been already proved above.

Theorem 11. A regular space motion with constant invariants, where vw = 0,
— w = 0, has a plane as a trajectory, which is not a curve iff (31) and (32) are
satisfied. In such a case it has infinitely many such points and they are all points
of the axis of ¢,.

14

Remark. In the case when g{u,, u,)is a product of two one-parametric subgroups,
we get that the points of the axis of g, have plane trajectories iff g, is a rotation,
and the axes of g, and g, are mutually orthogonal, as we would expect.

Proof of Remark. We substitute m = wa, p = vy, n = B(v + w) into (31) and
(32). Then we get B(a* + B> — 1) = 0. While B = 0 leads to singular points, a* +
+ B? = 1 is the condition of perpendicularity of axes. Further g, is a rotation iff
am + (B — 1) (—v — pw + n) = 0. Substitution shows that the last equation is
satisfied. The converse is obvious.

Example 3. We shall discuss plane trajectories of a motion given as a rolling
of two isometric surfaces. In such a case we have v = w= =0, ap + ym = 0.
Integrability conditions are

(a2); — (ay), + af + a3 + 1 = —ay,
(M1 = ax(@ =), (®)2 = ay(x~7),
—(n), + (P)y + 2an + ay(p — m) =0,
—(m), + (n); + (m — p)a; + 2a,n=0.

(29) will change to

(x)y= n+ay—az, (x)3= p+ay+z,
(y)1=-—m—a1x—z, ()’)2=—"—02X—?2,
(2= ox+y, (2)2 = =x +yy.
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Equations of F — S are
(33) 222+ y)+mz=0, 2(z22+x*)+pz=0, 2xy —nz=0.

First we shall show that in the case n = 0 there is no solution. So let n = 0. Then
xy =0; let x =0. Then z = —1/2p, y = 1/24, where A = ./(pm — p?). Now
a, = ‘“aplwla a = Pl_l, (P)1 = -1, (P)z = =y, (A)1 = —2m + p, ('1)2 =
= yp, (), = p(e — y) 271, (2), = —ap(e — y) A~*. The first integrability condition
yields (a,); — (ay), + af + aj + 1 = 17%(2pm + ayA® + 2a’p?) = —ay. This im-
plies pm(1 + y?) = 0. As z = 0 is the equation of S, we must have p = 0. Then
m = 0 and so p = 0, which is a contradiction. This shows that we may suppose
n * 0.

The derivatives of (33) yield
(34) amx + y(2on + 3m) + z(2a;n — (m),) =0,

(3p — 2yn) x — ypy + z(2a,n + (p),) =0,
—mx + y(2n + ap) + z(a,(p — m) — (n);) =0,
(ym = 2n)x + py + z(ay(p — m) — (n),) = 0.
Let (34) have more than one nontrivial solution. It is easy to see that any siraight

line passing through the origin has at most one intersection with (33) apart from the
origin. This means that the matrix of (34) must have rank one. This yields

4n* + 4nap — pm(1 + ay) =0,
4n*ay — 12npoe — pm(9 + ay) = 0,
(3 — ay) — 2y(n®* + pm) =0,
mn(3 — ay) + 20¢(n* + pm) =0.

These equations imply (n? — pm) (3 + ay) = 0.

i) Let ay = —3. Then 2n® + 2apn + pm = 0, 3pn — y(n* + pm) = 0, yn = 3p,
—an = 3m and n = 0, which is a contradiction.

ii) Let n®> = pm. Then (3 — ay)®> + 16ay =0, so ay = —1 or ay = —9. If

ay = —1, then p= —na™?, m= —an, if ay = —9, then p= —3na™!, m =
= —1/3na.

Let us write ay = —k?, p= —kna™!, m = —ank™*, where k = 1,3. Then
y=oaxk tory = —kxa '

First, let y = axk™!. Then z = 2ax?>n~'k~1. This implies 2x> + pz = 0 and
from the second equation in (33) we have z = 0, which is a contradiction.

Nowlet y = —kxa~!. Then pz = 2k?*x?a~2 and similarly as above we get a contra-
diction with z # 0. '

Theorem 12. The rolling of two surfaces has at most one plane trajectory which
does not degenerate to a curve. Such motions exist and they have n % 0.
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Proof. It remains to prove the existence of such a motion. For this purpose let us
consider the following example:

Example 4. Let us consider a rolling of two surfaces such that &« = —y = —1,
n + m = —2k, where k is a constant. Then p = m and a, = a, = 0. For a point
with a plane trajectory we get x> = y?; let x = y. Then z = k, x = \/(1/2kn), and
the remaining equations for x are (x); = —(x), = n + k. Integrability conditions
reduce to one equation (n); + (n), = 0. As dw, = dw, = 0, we can write ©; =
= du, + du,, w, = —duy, + du,.

For any function f(u;. u#,) we have

A (. 9 _
ou (N1 = (N> ou, =N+ ().
This yields
O n+ k)= 2%+ K), so x =~ tan (2 J(2) u,)
du, ’ J2 Ve

n = ktan®(2,/(2) u,) and the point (x, y, z) has a plane trajectory. The motion
is realized as a rolling of two isometric ruled surfaces.

Beside the point the rolling determined by two congruent paraboloids of revolution
may serve as an elementary example — the focus of the moving one has a plane
trajectory.
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Souhrn

DARBOUXOVA VETA O ROVINNYCH TRAJEKTORIICH
DVOUPARAMETRICKEHO PROSTOROVEHO POHYBU

ApOLF KARGER

Na zaikladé prace [1] je v &lanku dokdzina klasifikaéni véta pro dvouparametrické
prostorové pohyby majici alespoii 5 bodi s rovinnymi trajektoriemi. Kromé& pohybil s nekone¢né
mnoha rovinnymi trajektoriemi jsou to tzv. Darbouxovy kvadratické pohyby, urfené jistym
tenzorem tietiho rfadu. Pfevedeni tohoto tenzoru do kanonického tvaru je kli¢em k dikazu
klasifikaéni véty. Druhd ¢4dst prace se problémem rovinnych trajektorii zabyva z diferencidlné-
geometrického hlediska a obsahuje n&které aplikace. Clanek se téZ zabyva n&kterymi realizacemi
homogenniho prostoru viech prostorovych shodnosti s pouZitim dudlnich kvaternionii a dudlnich
matic.
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Pesome

IIPOBJIEMA JAPBY O IUIOCKUX TPAEKTOPUSIX IBVIIAPAMETPUYECKUX
ITPOCTPAHCTBEHHBIX JIBVXEHUN

ADOLF KARGER

B pabGore nokazama TeopeMa O KiIacCHPUKAUAM IBYNAPaMETPHYECKHX IIPOCTPAHCTBEHHBIX
JIBMOKEHMI, MMEIOIMX IO KpalHel Mepe 5 IIOCKMX TpaekTopwii. [[0Ka3aTeJIbCTBO OCHOBAaHO HA
pab6ore [1] u Ha mpMBEIEHAN TEH30pa 3-T0 HOPAKA K KaHOHMYECKOMY Buay. Yactb paGoThi 3aHH-
MaeTcsi npobeMOil IUIOCKMX TpaeKTOpMit C TOYKM 3peHus guddepeHnran bHOK TreoMeTpUuH
¥ COINEPXKUT HEKOTOPHIE IIPHUITOKEHMS.

Author’s address: RNDxr. Adolf Karger, CSc., Matematicko-fyzikalni fakulta UK, Sokolovska
83, 186 00 Praha 8.
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