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THE DARBOUX THEOREM ON PLANE TRAJECTORIES 
OF TWO-PARAMETRIC SPACE MOTIONS 

ADOLF KARGER 

(Received January 26, 1986) 

Summary. The paper contains the proof of the classification theorem for two-parametric 
space motions with at least 5 points with plane trajectories. The proof is based on [1] and on the 
canonical form of a certain tensor of order 3. The second part of the paper deals with the problem 
of plane trajectories from the differential-geometrical point of view. Some applications are given. 
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A MS Classifivation: 53A17. 

1. INTRODUCTION 

The Lie group $3 of all congruences of the Euclidean space E3 has dimension 6. 
This means that for a 2-parametric space motion we can (in general) prescribe 4 
surfaces as trajectories of 4 points. So we expect that there exist 2-parametric space 
motions which have 4 planes as trajectories of 4 points, and such a motion should 
be determined uniquely by those trajectories. This suggests a natural question about 
the existence of 2-parametric motions with more then 4 plane trajectories. This 
question was answered by G. Darboux in [1], where he gave an example of a 2-para­
metric motion with exactly 10 planes as trajectories of points. He also proved that 
"in general" a 2-parametric space motion can have at most 10 plane trajectories. 
To this end he introduced an ingenious method using quaternionic realization 
of SO(3), and proceeded with rigorousness sufficient at his time. In the present 
paper we follow Darboux's ideas to give a complete proof of the classification 
theorem for 2-parametric space motions with at least 5 plane trajectories. 

In the second part of the paper we discuss the same problem from the point of 
view of differential geometry and we also give some applications. Throughout 
the whole paper we use notation from [3] and suppose that all the 2-parametric 
space motions considered are regular in the sense that their spherical image is a 2-
parametric motion as well. 
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2. QUADRATIC DARBOUX MOTIONS 

Let D denote the ring of dual numbers. It is a 2-dimensional associative and 
commutative algebra over R with unit element 1 and with a base {l,e}, where 
e2 = 0. Let Vn be an n-dimensional vector space over R. Then D ® Vn is a 2n-
dimensional vector space over R which obtains a natural D-module structure by the 
requirement <x(p ® u) = (a/?) ® u for a, f$ e D,ue Vn. For the sake of simplicity 
we will leave out the sign of the tensor product in what follows. 

Let GL(D ® Vn) denote the group of all D-linear 1-1 maps of D ® Vn. If we choose 
a basis in Vn, then GL(D ® Vn) is represented by the matrix group GL(n, D), which 
is the group of all n x n matrices with dual entries and nonzero real part of the 
determinant. This is easy to see if we realize that any g = a + eb e GL(n, D) is 

given by the matrix g = I • ' J, where D ® Vn is considered over R. 

Any bilinear map (u, v) from Vn x Vn into JR can be uniquely extended to a D-
bilinear map from (D ® Vn) x (D ® Vn) into D by the requirement (eu, v) = 
= (u, ev) = e(u, v), (eu, ev) = 0 for all u,ve Vn. Let us further denote by 0(n, D) 
the subgroup of GL(n, D) given by the equation g . gT = E, where E is the unit 
matrix, g e GL(n, D) and gT is the transpose of g. 0(n, D) is a Lie group of dimension 
n(n — 1) and it is given by matrices of the form g = (l + ex) a, where a e 0(n, R) 
and xe£)(n,R), where £)(w, R) denotes the Lie algebra of 0(n, R). This is easy 
to see because g . gT = (l + ex) a . aT(\ + exT) = a . aT + e(xaaT + aaTx) and 
so aaT = E, x + xT = 0. 

Theorem 1. Let Vn be a vector space of dimension n over R with the Euclidean 
scalar product (u, v). Then the group of all R-linear maps of D ® Vn which preserve 
the extended scalar product in D ® Vn is isomorphic with the group 0(n, D). 

Proof. Let us choose an orthonormal basis in Vn and let T b e an K-linear map 
of D ® Vn which preserves the extended scalar product. Then T(ut + eu2) = 
= mut + nu2 + e(pux + ru2), where u1? u2 e Vn, m, n,p,re GL(n, R). For u = 
= ux + eu2, v = vt + ev2 we have g(Tu, Tv) = g(u, v), where g is the scalar product 
in D ® 17. Substitution yields #(u i ?#i) = g(mux + nu2,mv1 + nv2), g(uu v2) + 
+ #(«2> ^i) = 9(vu\ + ru2> rnv1 + nv2) + ^(mWi + nu2, pv1 + rv2). 

a) Put u1 = t?i = 0, u2 = t;2. Then 0 = g(nu2, nu2), so nu2 = 0 and n = 0. 
b) The first equation gives g(ux, vt) = g(mut, mv^), so me 0(n, R). 
c) Let us write p = m . s and put u2 = v2 = 0. Then the second equation yields 

0 = g(msuu mvt) + g(muu msv^) = g(suu vt) + g(ul9 svt), and so s e S)(n, R). 
d) Similarly as above let us write r = m .w and use the second equation again, 

but with v1 = 0. Then we get g(ut,v2) = g(mu1,mwv2) = g(u±,wv2), so 
g(uu v2 — wv2) = 0 and w = E. This proves that T e O(rc, D). The converse is 
obvious. 

418 



Let Sz be the Lie group of all orientation preserving congruences of the Euclidean 
space E3, and let SO(n, D) be the subgroup of 0(n, D) of elements with determinant 
equal to 1. 

Lemma 1. SO(3, D) and S3 are isomorphic Lie groups. 

Proof. Let us write 

M / 0, -x3, 
xv = x2 for x = x3, 0, -

Then the mapping cp: $3 ~> SO(3, D) given by 

(1 + ex) a 
* & - " ) 

1S an isomorphism, because (1 + ex) a(l + ey) b = [1 + e(x + ayaT)T ab, 

(1, 0 \ / l , 0 W l , 0 
+ ayv, ab 

and ayv = (ayaT)v. 
Now let Q be the algebra of quaternions. Then D ® Q obtains a D-algebra structure 

by defining (u1 + eu2) . (u2 + ev2) = uxu2 + e(vxu2 + uxv2), where ux, u2, vu v2 e 
G Q. This D-algebra is called the algebra of dual quaternions. 

For any a = wx + eu2 e D ® Q we define a = u1 + eu2, ae = u! — eu2, where 
the bar denotes the conjugate quaternion. A dual quaternion a is called 
a unit dual quaternion if aa = 1. The set of all dual unit quaternions is a 6-dimensional 
Lie group U and its Lie algebra consists of all pure imaginary dual quaternions. 
This is easy to see, as aa = (ux + eu2)(u1 + eu2) = u1u1 + e(u2u1 + u1u2):»

 s o 

u1u1 = 1, u2ut + u1u2 = 0 (and for the tangent vectors at 1 we have u1 + ux = 0, 
u2 + u2 = 0). 

Lemma 2. There is a Lie homomorphism of U onto <f3 with the kernel {1, —1}. 

Proof. Let us consider the transformation <pa(A) = aAae of the Euclidean space 
E3 of all quaternions A of the form A = 1 + ex, where x is a pure imaginary quater­
nion, a G U (see [2]). Then we get 

<Pa(A) = (ux + eu2) (1 + ex) (u j — eu2) = 1 + e(u1XU1 + u22i! — uiu^) , 

where u2^i ~ w i^2 = u1u2 ~ u2uu so u2ut — u^ is a pure imaginary quaternion. 
If ut = x, then u^u^ = u1u1u1 = u1 = x. This shows that <pa is a composition 
of a rotation with a translation, and so it belongs to Sz. 

Conversely, each translation and rotation can be obtained as <pa for a suitable 
a, (pa is a homomorphism of Lie groups by definition, and the kernel is obvious. 
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Lemma 3. There is a Lie homomorphism of U x U on S0(4, D) with kernel 

{(1,1), (-1,-1)}. 

Proof. Let us consider the mapping <p: U x U -> GL(D ® Q), where D ® g 
is considered as a real vector space of dimension 8 and <p(a, fi) u = aufie, a, ($ e U, 
u G D ® Q. Then <p is a homomorphism of Lie groups. Let us first consider the map 
<p(a, 1). Any unit quaternion a can be written in the form a = (1 + ex) a, where a 
is a real unit quaternion and x is a pure imaginary quaternion. Further, a(ux + eu2) = 
= aux + eaw2. This means that multiplication by a preserves unit real quaternions, 
so <p(a, 1) e O(4, R). As det <p(a, 1) = 1, we have even <p(a, 1) e SO(4, R). 

Further, (1 + ex)(ux + ew2) = ux + e(xux + u2), where multiplication by x 
is represented by a skew-symmetric matrix, as for instance i(l, i, j , k) = (i, — 1, k, — j), 
and similarly for j and k. This shows that x e <3£)(4, R) and this yields <p(a, 1) e 
e S0(4, D). A similar result is true for the second variable />. 

Now we have to show that cp is onto. Let x// e S0(4, D) be arbitrary. Then x// 
acts on unit dual quaternions by matrix multiplication (we choose the basis {1, i, j , k | ) . 
Denote ^( l ) = y. Then 7 is a unit dual quaternion and the map <p(y, l) i/t preserves 1. 
If we restrict this map to Q only, we get an element of SO(4, R) which preserves 1, 
so this element is from SO(3, R). It is a rotation in the space of all imaginary quater­
nions, which is the Lie algebra of the Lie group Qx of all unit real quaternions. 
Each rotation in the Lie algebra of Qx can be realized by the adjoint mapping, so 
there is an element ft in U such that <p(fi, />) = <p(y, l) if/ on Q. This shows that we 
may suppose that \jj is identical on Q. Such a map is given by a skew-symmetric 
matrix, ux + eu2 ~+ ut + e(u2 + xux), with x skew-symmetric. Such a mapping 
can be represented by <p(l + ea, 1 + eb) for suitable pure imaginary quaternions a 
and b, which is easily verified by computation. This proves that <p is onto. 

In the end we shall find the kernel of <p. Let us suppose that aufte = u for all 
u e D ® Q. This yields that afie = 1, so /? = ae. Further, (l + ex) a(ux + eu2) . 
. a(l — ex) has the real part equal to auxa, so a = + 1 . Now (1 + ex) ux(l — ex) = 
= ux + e(xux — uxx) and this yields x = 0. 

Definition 1. Let GX\HX and G2\H2 be two homogeneous spaces. We say that GX\HX 

and G2\H2 are locally equivalent if there exists an isomorphism S: (5X onto (52 

such that 9($yx) = § 2 . Local equivalence of homogeneous spaces will be denoted 
by = . 

Theorem 2. <f 3 x <f 3/<f 3 s SO(4, D)\ SO(3, D) s: U x U/U, where we identify <f 3 

with Diag (<f3 x <f3) and similarly for U. 

Proo f follows from Lemmas 1 — 3. 

Remark . From the point of view of local differential geometry we may consider 
locally equivalent homogeneous spaces as equal. The homogeneous space &3 x 
x $3/cf 3 is the so called "kinematical space" of the space kinematics. 
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Theorem 3. The kinematical space of space kinematics can be realized as a regular 
quadratic surface K of signature (4, 4, 0) in the projective space P7 with the trans­
formation group preserving the degenerate scalar product of signature (4, 0, 4) 
and the quadratic form defining K. 

Remark. The isotropy space P3 of the scalar product is considered as removed. 

Proof. The scalar product preserved by SO(4, D) is given by the quadratic form 
aa, which for a = ut + eu2, ut = a0 + axi + a2j + a3k, u2 = b0 + bxi + b2j + 

3 3 

+ b3k is given by ]T a? + 2 e £ a.b.. The statement now follows from Theorem 1. 
i = 0 i = 0 

Remark. Theorem 3 characterizes the space kinematics as a geometry of Mobius 
type with a metric group of transformations. 

Theorem 4. The 3-dimensional projective subspaces of K without isotropic points 
are the left and right translates of the unit sphere Qx given by the equations u1ui = 
= 1, u2 = 0, with the opposite points identified. If such a subspace contains 1, it is 
of the form ocQidc, a e U, and it corresponds to all rotations around the point u2ux — 
— u!u2, where a = u1 + eu2. 

Proof. Let S be a 4-dimensional real vector subspace of D (x) Q which determines 
a 3-dimensional projective subspace of K, and let 1 e S. Further let a = u0 + u + 
+ e(v0 + v) e S be linearly independent with 1, u0, v0 e R,u,v being pure imaginary. 
Then A . 1 + pieceK for all A, jxeR. This yields v0 = 0. Adding a multiple of 1, 

3 

we get u0 = 0 as well. Thus we have ]T afb. = 0, where u = ati + a2j + a3k, 
i = i 

v = bxi + b2j + b3k. Now S can be changed by using the group Qx in such a way 
that u = i, because (1 + ex) (u + ev) (l — ex) = u + e(v + xu — ux) and we 

3 

may choose x such that v + xu — ux = 0, as £ â b* = 0- This shows that we may 
suppose a = i. 

Now let /? = Aj + pk + ev e 5. Then A2 + /J2 + 0 and /? can be changed to 
P = j + ev by using QX. Then v = 2Ak for A e K and we have (l — Aei) (j + 2eAk). 
. (1 + Aei) = j , (1 — Aei) i(l + Aei) = i. This shows that we may suppose A = 0. 
If S contains 1, i, j , it contains k as well and it is unique. 

Let 1 e aQifie. Then afie = 1, fie = a and for any v e Qx we have 

(ava) [1 + e(u2ui - uiu2)] (aeme) = 1 + e(u2u! - uXu2), 

which is verified by direct computation. 
Using Lemma 2 we can compute explicitly the matrix of the transformation 

of E3, corresponding to the unit dual quaternion a = ux + eu2, ux = a0 + axi + 
+ a2j + a3k, u2 = b0 + bxi + b2j + b3k. As the result we obtain the matrix 
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(1) 
<Pa = I 1, 0, 0, 0 

J 2(b0ai-b1a0 + b3a2-b2a3),al + a\-al-al,2(a1a2 + a0a3),2(a1a3--'a0a2)
] 

\2(b0a2-b2a0+b1a3-b3a1),2(a1a2-a0a3),al~a\ + al-al,2(a2a3 + a0a1) 
\2(b0a3-b3a0+ b2a1~bta2), 2(a0a2 + a1a3), 2(a2a3-a0a^), a2

0-a\-a2

2-a\\ 

Two-parametric space motions can now be studied with regard to the just men­
tioned representation of motion as a submanifold in the kinematical space. From 
this point of view it would be interesting to investigate the properties of motions 
which lie in linear subspaces of P7. Theorem 4 may serve as an example of 
this approach. 

For instance, we may investigate properties of motions which lie in a linear subspace 
P6 of P7. The simplest case occurs if we suppose that such P6 is the tangent space 
of K at some isotropic point. As U x U acts transitively on the isotropic space, 
we may suppose that the point of contact of P6 is the point e. The equation of the 
tangent space of P6 at e is a0 = 0. A special class of such motions was investigated 
by G. Darboux in [1]. In the following part of this section we will follow his ideas 
and present some of this results in a more up-to-date way. 

Definition 2. A two-parametric space motion given by the matrix g 

where 
C; :)• 

(2) la\ — a2

2 — a2

3, 2ata2, 2axa 
-a\ + a2, — a\, 2a2a 

з 

з 
2 . „2 2a2a3, —a\ — a2 + a 

3 

t = (h,t29t3)
T

 9 ta = Yjm{yapay 

will be called a 2-parametric Darboux quadratic motion. 

Remark. If we drop the condition 

IX2 = i, 
a = l 

we can consider aa as homogeneous parameters of the motion in P7. 

Remark. In what follows we will use the summation convention for indices 
a, p, y, X, n, v = 1, 2, 3. 

Theorem 5. Let M = (ma

y) be as in Definition 2. Then M is a tensor with respect 
to SO(3, R). 

Proof. The spherical part of a quadratic Darboux motion is given by the condi­
tion a0 = 0. For the change of coordinates we therefore must have a . 1 . /? = 1, 
so a = p. Each dual quaternion j8 with a0 = 0 can be written in the form /? = 
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= Uj(l — ljlet)9 where ux e Ql91 = lxi + f2j + i>3k are the components of the 
translation. For the change of the orthonormal basis by a e Qt we have j§ = a/?a, 
where 

/? = ux(l — l/2e?) = aux(l — IJ let) a = a^a — ljleata = auxa(l — ljlecctot), 

and so ut = auxa, ? = aJa. Let y% be the corresponding matrix from SO(3). Then 

4 = y«ap , ?a = yjf,, ?a = rtj7a,a, = yfo = m^Y^pf^y = y^m^a^, 

so 
«/mj*v _ tf,pyvi*vv tf,Py _ v

a
mflv

vPvy 
y<zmk — ma yfiy 5 "*a ~ YAmA J>/v 

which was to be proved. 

Remark. We write the symmetric indices as upper ones only for convenience. 
Now we shall find the canonical form of the tensor M with respect to the change 

of coordinates. 

Lemma 4. The origin in the fixed and moving spaces can be changed in such 
a way that mf = mf = 0. 

Proof. Let r and s be two pure imaginary quaternions. Then (1 + er). 
. 1(1 + es) = 1 and (1 + er) ut(l - ljlet) (1 + es) = ux[l + e(-\\lt + u1ru1 + s)] 
is the result of an arbitrary translation in the fixed and moving spaces. 

Let r = rxi + r2j + r3k, s = sxi + s2j + s3k. Then 

la\ - a\ - a\9 la^al9 la1a3 \ 
(a\ + a\ + a\) + 2a1a2, -a\ + a\ - a3, 2a2a3 

\la1a39 2a2a3, -a\ - a\ + a\J 

Computation yields 

mf = mf + 3rfi - Sf}, mf = mf + r, + 3S/?. 

This completes the proof. 
From now on we may suppose that M satisfies the condition from Lemma 4, 

and it remains to find the canonical form of M with respect to 50(3). As the procedure 
is not quite straightforward, we shall present it in more detail. 

It is well known that the quadratic form (M, M) = m{ym^y is an 50(3) invariant 
scalar product in the space Fof all tensors M. Tensors which are symmetrical in the 
upper indices and have both contractions equal to zero form an invariant subspace 
F12 of the space of all tensors of degree 3; V12 has dimension 12. In this space we 
have a completely reducible representation of £0(3), given by the natural action 
of 50(3). 
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We shall try to decompose V12 into invariant subspaces, in which we may describe 
the orbits of the action of SO(3) more easily. The space of all completely symmetric 
tensors (without asuming zero contractions) is a vector subspace V10 of dimension 
10 in Vand it is given by conditions a1/ = ay, a]? = a{k, where (i,j, k) is an even 
permutation of (1, 2, 3) and no summation is used. Similar convention will be used 
in the following. V10 is generated by the following independent components: three 
components m", six components m)1 and one component mll = m\2. The condition 
for zero contractions is m*a = 0 and it yields m" = — m{J — mf. This shows that 
we have only 7 components left. 

Lemma 5. The space V7 of all completely symmetric tensors with zero contraction 
has dimension 1. Its orthogonal complement V5 in V12 is given by the following 
conditions: 

m/ = 0 , m/ =- \j2m{J , m{J + mf = 0 , m\2 + m\3 + ml1 = 0 . 

Proof. Let A = (a^y) be a tensor orthogonal to all symmetric tensors with zero 
contraction. Then mfvafv = 0 for all mfv in V7. This gives the following equations: 

a? = 2a/ + a{J , a\2 + a\3 + a\x = 0 . 

The contraction conditions in V12 are a*a = 0, aa
a
l = 0 and so we get the conditions 

a/ = 2a/ + a{J = 2aki + af, -a? = a{J + af = a/ + aki, which yield 2a? = 
= 2a/ + 2a\l + a{J + af = -?>ali. This shows that a\l = 0 and the statement 
follows. 

Lemma 6. The representation of SO(3) in V5 is equivalent to the natural repre­
sentation of SO($) in the space of all symmetric matrices with trace zero and of 
order 3. 

Proof. After performing necessary transformations of the formula we get, for 
the change of Me V5: 

m\2 = ylm^y2y2 = m\2\y\y\ + y\y\\ + m\\y\y\ + y\y\\ + 

+ m\\y\y\ + y2y\] + f [ ( m f - m\2)y2y\ + (m\2 - mf)y\y\ + 

+ (mf-mf )y\y%\, 

i(m\2 - mf3) = 2m\2y\y\ + 2m\1y\y2 + 2mfy\y\ + 

+ | ( m i 3 - mf) (y2)2 + i(m\2 - mf) (y2)2 + f (mf - mf) (y2)2 . 

The remaining formulas are obtained by cyclic permutations of indices. 
On the other hand, if a] is a symmetric matrix of degree 3, then for its transforma­

tion under SO(3) we have (af) = y ^ a ^ a n ( l therefore 

*f = a2My\ + ylvl) + a\(y\yl + y|yf) + a\(y\y\ + y\y\) + 

+ a\y\y\ + a\y\y\ + a\y\y\ , 
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a2 = 2y2y2a2 + 2y\y\a\ + 2y2y2a^ + ^ ( y 2 ) 2 + a\(y\)2 + al(yl)2 . 

If we now define the correspondence x so that xfa1/) ~ ak> x($(mf — m1/)) = a\-> 
we immediately see that x determines an equivalence of representations. 

The orbits of the natural representation of SO(3) in the space of symmetric matrices 
are well known; such matrices can be diagonalized. This shows that we may always 
choose frames in the fixed and moving spaces in such a way that ml- = 0 for the 
projection of Minto V5. 

Theorem 6. Let a quadratic Darboux motion be given by its tensor M = (m°!f). 
Then there exist frames in the fixed and moving spaces such that M satisfies the 
following conditions: 

(3) m\J = mf , mf = 0 . 

Such frames are uniquely determined iff mf — ml
k
J 4- mJ

k
l — mf. 

Proof. For the projection A of Min to V5 from Lemma 5 we have a)1 = l/3(m-J — 
— m1/). From Lemma 5 we know that we may choose frames such that a1/ = 0. 
These frames are uniquely determined provided the diagonal elements of the matrix 
x(A) from Lemma 5 are mutually different. This completes the proof. 

Remark . From now on we will suppose that M satisfies (3), and call it the reduced 
form of M. 

G. Darboux in [1] found all plane trajectories of a quadratic Darboux motion 
and gave an explicit example of a motion which attains the maximal number of 
plane trajectories. We will repeat his reasoning as follows: 

Let a two-parametric quadratic Darboux motion be given by (2). Then the trajec­
tory X, Y, Z of the point x, y, z is given by the following equations: 

X(a\ + a\ + a\) = t1(ai, a2, a3) + (a\ — a\ — a\) x + 2ata2y + 2ata3z, 

Y(a\ + a\ + al) = t2(a±, a2, a3) + 2ata2x + ( — a\ + a\ ~ a\) y + 2a2%z , 

Z(a\ + a\ + a\) = t3(ax, a2, a3) + 2a±a3x + 2a2a3y + ( — a\ — a\ + af) z, 

where t(ax, a2, a3) = mpyapay. We ask whether there exist numbers 

zs,5 = o , . . . ,3 , f ;z 2 + 0 
a=l 

such that Z0 + lxX + l2Y + l3Z = 0 for all au a2, a3 and given x, y, z. 
Substitution yields 

(4) Z0 + I,* - Z2j; - l3z + P1 = 0 , l2z + l3y + P[ = 0 , 

Z0 - lxx + l2y - l3z + P2 = 0 , ltz + l3x + P2 = 0 , 

Z0 - ltx - l2y + Z3z + P3 = 0 , Zty + Z2x + P3 = 0 , 
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where Pf = LmJ', P't = hm{k. 
Consequently, 

hP'i + hP'i ~ hP's + 2lJ2z = 0, P t + P2 + 2l0 - 2/3Z = 0. 

Let us first suppose that hhh + 0. Then 

(P. + P2) M2 + Z3(«iI"i + l2n - Wa) + 2l0hh = 0 

and by cyclic permutations 

-2l0hl2l3 = (P. + P2) ZJ2/3 + tKtiPi + J2P2 - /3P3) = 

= (p2 + p3) hhh + l2l(-hp'l + hp'2 + hp'l) = 

= (Pi + Pz) hhh + iKhP'i - hP'i + hP'3) • 

This yields 

(5) (I2 + I2) (IjP'j - hP't) + lkP'k(l
2 - ij) - IJMPt - Pj) = 0, 

where (i9j9 k) is again a cyclic permutation of (l, 2, 3). 
Proposition 1. A quadratic Darboux motion is spherical iff the reduced form 

of M is equal to zero. 

Proof. Let a quadratic Darboux motion be spherical. Then (5) must be satisfied 
for any ll9 ll9l3. If we write out explicitly one of (5), we obtain 

(6) l\\m\\l\ - l\) + hh{mf - m\2)] + 

+ /1[/^3(3m33 - 2m11) - /2^(3m^2 + 2m11) + l3
2(m

2
3

2 - m11) + ^(m11 - m33)] + 

+ 01 + l\) \}\m\2 + hh(m\2 - m33) - I > f ] = 0. 

This yields mj/ = 0 and m}1' = mf9 2mi
j
i = 3mf9 so m}* = 0. This completes the 

proof. 

Theorem 7. (Darboux). If a quadratic Darboux motion has a finite number 
of plane trajectories, then they are at most 10. 

Proof. For the normal vector of the plane trajectory we have equations (5), which 
determine two curves of degree 4 in the projective plane with homogeneous coordi­
nates ll9129 h- Then l0 is uniquely determined by la. This means that we have at 
most 16 solutions for la. Six of them are of the form 

(7) lt = 09 IJP'J - lkP'k = 0 . 

Further, we see that any plane trajectory with lt = 0 must satisfy (5) and (4). 
We shall prove that any plane trajectory with lt = 0 corresponds to a double solu­
tion of (5) and so it was already counted. So let lt = 0, /2o> '30 be a solution of (5). 
Let us denote by P i0, Pi0 the corresponding expressions for Pi9 PJ. with lt = 0, 
h ^ ho> h = ho substituted. 

426 



Then we must have 

Z2" + Z3y + Pi0 ~ l3x + P20 = l2x + P30 = 0 , 

h ~ hoy ~ ho* + Pio = h + hoy ~ ho* + P20 = h~ hoy + ho* + P30 = 0 . 

This yields 

l20y = 1/2(P10 - P20), l30z = 1/2(P10 - P30) 

and we obtain 

(8) Z20P20 — Z30P30 = 0 , 

Z2o(-f>io ~" P30) + Z30(Pio "~ -P20) + 2Z20/3oPio ~ 0 • 

Let us compute the tangent lines of (5) at the common point lt = 0, l2 = Z20, 
/3 = /30, where Z20P2o ~" Z30P30 = 0. Let hoho + 0 (otherwise it is easy). Two 
equations of (5) are 

liihPi - / 3 p 3 - hP'i) + iKhP'i - hP's + hP'2) + hhh(Pi - P3) = 0 , 

\\{\2p'2 - hP[ + I3P'3) + i2
2(i2p'2 - I.P', - Z3P3) + 1JMP2 - Pi) = 0 . 

Equations of the tangent lines are 

Zi < ho P'10 ~ ho ( ——- ) + Z2o (-—— 1 + (Pio ~ P30) hoho > + 
I L \SlJo \SlJoJ J 

+ 2̂̂ 30 77" V2P2 ~" Z3P3)o + hho 77" ('2^2 ~" Z3P3)o = 0? 
G72 G/3 

Zi <Z20 - P i 0 - ho ITT") + ' 2 0 ( ~ ~ r ) + ( jF>20 ~~ " > 1 ° ) ' 2 o^3o> + 

ð / / Ð ' 7 D ^ , 7 72 5 

+ Z2Z20 77" ('2^2 ~ Z3P3)o + hho 77" ('2-^2 ~ Z3P3)o — 0 . 
dl2 dl3 

These two lines coincide iff 

2Z2oZ3oPio + Z2oZ3o(-Pio ~" ^30) + Z2oZ3o( îo ~" P20) = 0 

and this is what we need to complete the proof. 

E x a m p l e 1 (Darboux). Let us consider the case mlJ = 1, otherwise m°f = 0. 
Then Pt - 0, P\ = /,, and (5) reads 

(l2-l2j)(l2+l2j-l2
k) = 0. 

We have to consider the following cases: 

1) Z? = Z? = J,?, so Z2 = s2Z1? l3 = 8 3 / 1 , s 2 , s 3 = + 1 . The solution is: the point 

A with a plane trajectory is 
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A = [ - l /2e 2 £ 3 , - l / 2 e 3 , - l / 2 e 2 ] , 

the plane trajectory is given by the equation 

- l/2a2s3 + X + e2Y + e3Z = 0 . 

We have 4 solutions corresponding to the choice of s2, s3. 

2) \t = 0, \k = £fcZj, sfe = + 1 . The point with a plane trajectory is A = [e, 0, 0], 
the plane trajectory is given by the equation Y+ eZ = 0, s = + 1 , together with 
the cyclic permutations. We have 6 solutions in this case. 

Remark . Example 1 proves the existence of a 2-parametric space motion with 
exactly 10 plane trajectories. 

At the end of this chapter we will discuss the case when the quadratic Darboux 
motion has infinitely many plane trajectories. This can occur only if (5) has infinitely 
many solutions. It is easy to see that the curves given by (5) cannot coincide, because 
in such a case each variable would be at most in the second power and similarly 
as in the proof of Proposition 1 we should get that the reduced form of M is zero. 

This means that (5) can have infinitely many solutions only if the curves given 
by (5) split into curves of lower orders. Such cases must be discussed separately for 
each possibility: 

1) Let (5) have a common conic section A\\ + Bl\ + C/3 + D\J2 + E\J3 + 
+ F/2/3 = 0. 

a) Let A =j= 0. Then we may suppose A = 1 and (6) can be written as 

(\\ + Bl\ + C\\ + D\J2 + EIJ3 + F/2/3) (BJ\ + CJl + FJ2\3) = 0 . 

Comparison with (6) yields Bx = -Cx = m\3, Fx = m\3 - m\2, where (m\3)2 + 
+ (m\3 — m\2)2 # 0. From terms not containing \x we obtain 

2Fm\3 + (B - C) (m\3 - m\2) = 0 , 

F(m\3 - m\2) - 2(B - C) m\3 = 0 . 

This yields B = C, F = 0. 
Now we use the second equation from (5). B =f= 0 implies B=*C = A = 1. E = 

8 
= M = 0, the conic section is £ \\ = 0 and we have no real solution. If B = 0, 

a = l 

then the common conic section is given by \i(\1 + D/2 + F/3) =-= 0. lx = 0 is a solu­
tion for all Z2 and Z3 iff \\(PX - P3) + \\(PX ~ P2) + 2Z2Z3Pi = 0 for all Z2, /3. 
This yields D = E = 0 and the common conic section is /jf = 0, which is a special 
case of a common straight line; this case will be treated later on-

b) Let A = B = C = 0, DEF + 0. The common conic section is D\J2 + 
+ E\J3 + F/2/3 = 0. (6) can be written as 

(D\J2 + E\J3 + F/2/3) (AJJ + BJ\ + CJ^ + DJ^ + EJJ3 + Pi/2Z3) = 0 . 
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We have no terms with l2 and l3, so m\2 = m2 3 = m\3 = 0, Ax = 0. The term 
with l\ gives Dt = Ex = 0, m33 = m22 and Cx = Fx = Bx = 0, which is impossible. 
A similar result is obtained for D = 0. 

2) Let (5) have a common cubic curve. Easy computation shows that this cubic 
curve must be singular. 

3) Let (5) have a common straight line Alx + B/2 + C/3 = 0 with ABC =t= 0. 
Let us denote mkk - m\j = och 3m3

2
3 + 2m\l = p 3m2

3
2 + 2m3* = y. Then (6) 

changes to 

(9) l\[m\3(l2
2 - /2) + /./3a,] + /1(/3a3 + l\a2 + l2

2l3p - /2/2y) + 

+ (ll + l\)(l\m\2 - l\m\3 - /2/3ax) = 0 . 

Let us write (6) in the form 

(10) (Alt + B/2 + C / ^ A i / , / 2 + BJJl + CJJ^ + DJl + 

+ F1/
2/3 + F1/2/

2 + #1/3
3) = 0 , 

Comparison of (9) and (10) gives the following equations: 

(11) AAi = - A B i = m2 3 , ACX = ax , ADt + AXB = a3 , 

A#i + BXC = a2 , AEt + AtC + BCX = p, AFt + BXB + CXC = -y , 

BF! + CD! = - a x , B#! + CFX = - a ! , BDX = - m 2
3 , 

C # j = m\2 , BF! + CF! = m^2 - m^3 . 

For A, B, C we obtain the following equations: 

a3AB = B2m\3 - A2m\3 , 

ax(A2 - B2) - 2BCm\3 + a 3 AC + £AB = 0 , 

a2(A2 - C2) + 2BCm\3 - yAC + a2AB = 0 , 

A2(m\2 - m\3) = m2 3(B2 - C2) - 2axBC - yAB + £ A C , 

and their cyclic permutations. 
By forming suitable combinations, we arrive at two equations 

0LxBCm\3 + a2ACm2
3 + oc3ABm\2 = 0 , a ^ C + a 2 AC + a3AB = 0 . 

Let us denote m{k - kk/ = Xk, mf - m{3 = ah mkk + m{j = pr Then we obtain 
(up to a constant factor) 

(12) A = axX2X3 , B = &2XXX3 , C = oc3XiX2 . 

The remaining equations are 

(13) X± + X2 + X3 = 0 , 
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(14) <Mi(ai^2a3 "~ ^ i ^ ) = (al^i — ^2) *nl3 > 

(15) a ^ a j A * - a2A?) - 2a2a3A?A2mf3 + a ^ A ^ + 

+ l/2a1a2A1A2A3(5jS2 - a2) = 0 , 

and their cyclic permutations. This means that it is enough to choose a solution 
of (13) and (14) and we get a solution of our problem. Equations (13) and (14) have 
sufficiently many solutions (for instance at = Xt is such a solution). 

For the point (x9 y9 z) which has a plane trajectory we have l^l + l2P2 — l3P3 = 
== j-,t1i2z. 

Substitution gives 

llml3 + l2
2m

x
2 - l2

3m\2 + lJ2oc3 ~ hh<*i + hh%i = 2lJ2z . 

If we now substitute for l3 from Alx + Bl2 + Cl3 = 0, for A9 B9 C from (12) and 
then from (13) and (14), we see that z = const. A similar result is true for x and y. 
This shows that infinitely many plane trajectories correspond to a straight trajectory 
of a point. We obtain a similar result in the case ALBC= 0. 

Theorem 8. A quadratic Darboux motion has infinitely many plane trajectories 
iff it has a point with a straight trajectory. In addition to this point it can have six 
plane trajectories. In the case a1a2a3A1A2A3 + 0 such motions are determined 
by the solutions of (13) — (15). 

Proof. If we remove the common line Alt + B/2 + Cl3 = 0 from (5), we get 
two cubic curves with at most 9 common points. Inspection of equation (6) shows 
that 3 of those points are points with lt = 0, which are not counted. 

R e m a r k . For the sake of simplicity we shall call planes pl9 p29p3 independent 
if their normal vectors are linearly independent. 

Theorem 9. (Darboux). Let a 2-parametric space motion have 4 plane trajectories, 
each 3 Of them independent. Then, if such a motion has one more plane trajectory, 
it is either a quadratic Darboux motion, or all 5 points with plane trajectories 
lie on a straight line and each point of this line has a plane curve as its trajectory. 

Proof. Let a matrix y = (7^) of a spherical motion be given by a unit quaternion 
a = a0 + at\ + a2j + a3k. Then there exists a 1-1 linear correspondence between 
W\a \\omo%ejt\eous, qvxadxatlc potyuomiate in a aand the linear equations in ya(i, given 
by (l). Explicitly, we have 

1 + yu - 2a2
0 = 2a? , i = 1, 2, 3 , yaa + 1 = 4a0

!, 

y12 = 2(axa2 + a0a3), y21 = l(a^a2 - a0a3) 

and similarly for other ya/?. This shows that from any quadratic homogeneous poly­
nomial in aa we get a linear equation in yap and the correspondence is linear. The 
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converse is obvious from (l), only the constant term of the linear equation must be 
multiplied by 1 = a% -f a\ + a\ + a2. 

Now let a motion be given bv the matrix g = ( ' ) . 
Va> lafij 

The trajectory X1 of the point x* = (1, x[, x29 x3)T is given by 

x'-f1'°V1W 1 \ 
\t, y) \xl) \t + yx'J ' 

The trajectory X1 of x' lies in a plane iff there exist lj, j — 1,..., 4, such that 

ll + E ^ + I v ^ ) = o. 
j = l a = l 

Let points x1, x2, x3 have plane trajectories given by Z1, /2, /3 such that |/}| 4= 0, 
i,j = 1, 2, 3, where vertical lines denote the determinant. Then we have 

E'JO*8 - f t - Z ^ i . i = 1,2,3. 
1=1 « , 1 = 1 

The solution for tj is 

(16) *-. = -\h, h> hY1 [\h> h, h\ + hyj*\ij*.. h, h\l • 
1,«=i 

3 

h = - | * l , ?2, ^ l " 1 [| 'l, ^4? '3 | + E ^ l ' l ' */*«> h\] -
./,«=! 

3 

3̂ = - | * 1 , *2? ̂ l " 1 [|'l, h, h\ + Etyo.|'l> J2? ljXa\] , 
1,a=l 

where /,- denotes /} while ljXa denotes IjX^., a, i, 7 = 1, 2, 3, written in columns. 
The substitution into the 4-th plane trajectory gives the equation 

(17) - \h, h, h, h\ + I Via \h*» h, h, h\ = 0 , 
a , j = l 

where /,- now denotes /}, ljXa denotes l)x\, i,j = 1, 2, 3, 4, a = 1, 2, 3. (17) is a linear 
equation in yafi, so it gives a homogeneous quadratic equation in a0,..., a3. 

First we shall show that (17) is a nontrivial equation. So, let \ljXa, h>h>h\ = 0 
for all a, j = 1, 2, 3. Then |/1? /2, Z3, /4| = 0 and 

$ ' = £oг/J, with І(Ê 
1 = 1 І — 1 

This yields 

Substitution for Jí yields 

3 

lX = Iб>''lK-
i = l 
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(S.в'/5)x* 
1 = 1 

І o ' j K a " d Z ' j j ( x 4 - x ' ) = 0 . 

As x 4 4= x1, i = 1, 2, 3, the last system of equations must have a nontrivial 

solution, and this means that the determinant of this system must be equal to zero. 

The determinant of the system is equal to 010203\l1, l2, l3\9 where lj denotes 

l)JJ= 1,2,3. 

As \li9 Z2, Z3| 4= 0, we have 010203 = 0. Let 03 = 0. Then Z4 - 01!1 + 02l2, 

which is a contradiction with \l\9 Z?, ?4| 4= 0, i = 1, 2, 3, as any 3 plane trajectories 

are independent by assumption. This completes the proof. 

So far we have shown that a is a two-parametric motion uniquely determined by 

points x1 and planes l\ i = 1, 2, 3, 4. Let us now have one more point x 5 which has 

a plane trajectory determined by I5. This gives a new homogeneous quadratic equation 

in a0:)..., a3. If we consider a0,..., a3 as homogeneous coordinates in the projective 

space P3, we get two quadratic surfaces in this space. Two quadratic surfaces in P3 

have a 2-dimeiisional intersection iff they coincide or if they have a common plane. 

If they have a common plane, the motion is a quadratic Darboux motion — the 

spherical part satisfies a linear equation and translations are quadratic in a0,..., a 3 , 

as we see from (17). 

Consequently, we can suppose that the quadratic surfaces determined by (17) are 

identical. This means that the corresponding linear equations given by (17) are pro­

portional. Hence there exists a number <94 4= 0 such that 

Z1*1 l1 l1 l1 

Ljxa> *1> *2> L3 

l2x2 I2 I2 I3 

Ljxa9 n > *2> L2 13X3 l3 l3 l3 

t j A a , i l 9 t 2 > l3 

7 4 Y 4 l4 l4 l4 

Ljxa'> *1> *2> L3 

ZV 
ljЛa, 

n, *2> lì = 6>4 

í2x2 

ljлa-> 
n l2 

*2> 
n 

l3.x3 

Lj лa > 
l3 

LІ9 
z 3 

*2> 

l3 

Z 5 x 5 

Ljлa9 

l5 
l 1 9 z 5 

*2> 

l5 
Lз 

for all j , a = 1, 2, 3. This yields 

4 4 

l5i = Z 0iH > l\xl = X 0J'H4\ where 0i020304 4= 0 , 
1=t 1=i 

i, a = 1, 2, 3. (We know only that <94 ?- 0, but all xl and Z* play symmetrical roles 

in the discussion.) Now, following Darboux, let us consider the following system 

of linear equations: 

(18) X ^ 0 ' Y4uj = 09 a= 1 ,2 ,3 . 
1=i 1=i 

(18) is a system of 4 linear equations for unknowns ul9 . . . , u 5 . This system has 3 

linearly independent solutions 

{01l1,02ll03l3,0ni-l5), i= 1,2,3, 

because 010203 4= 0 and |/ l 9 Z2, Z3| 4= 0. This proves that the rank of the matrix 

of (18) is at most 2. The matrix of (18) is 
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( 1 2 3 4 5 / ' . / — !>--'? 5 
Лj , xj , X j , xj , Xj ) 

and this shows that the points xl lie on a straight line, i = 1,..., 5. 

It remains to prove that any point of the straight line determined by the points 

x{ has a plane trajectory. We may suppose that xi = x\ = 0 for i = 1, ..., 5. Let 

x3, J1, i = 1,..., 4 be given. 

Let us choose an arbitrary x\. Then we have to solve the following equations: 

I5 = E »'*/ > *?*! = I « y ' W > * = 1, 2, 3 . 
7 = 1 7 = 1 

We have 6 equations for 7 unknowns (9^/ = 1, ...,4,/f, i = 1,2,3. The rank 

of the marix of this system of equations is 6, so /f, 0J are fixed up to a factor, 0J 

determine /|, so the plane trajectory is uniquely determined. Further, the trajectory 

of any point on the third axis depends only on yi3, which are bound by a linear 

equation. This means that the trajectory of such a point depends on a single para­

meter and so it is a curve. 

To complete the classification of motions with at least 5 plane trajectories, we have 

to consider the remaining cases. So far we have discussed the case of 5 plane trajecto­

ries such that there exist four of them with every three independent. Let us now 

consider the other possibility. So, let us have 5 planes, no two of them parallel, 

in such a position that every quadruple of them has 3 planes dependent. It is easy 

to see that in this case there exist 4 planes parallel to one straight line. 

R e m a r k . A 2-parametric motion is called singular if the corresponding spherical 

motion is one-parametric 

Lemma 7. Let a 2-parametric space motion have 4 plane trajectories parallel to 

a given straight line and such that no two of them are parallel. Then the motion 

is singular. 

Proof. We proceed in a similar way as above. We suppose Z3 = 0, i = 1,..., 4. 

Then t3 is arbitrary and we get two linear equations for yap. This shows that the 

motion is singular. 

A similar result is obtained if we consider the case when two planes are parallel 

and the other 3 are parallel with a straight line. We also get a singular motion. 

3. THE SET OF FLAT POINTS 

In the third part of the paper we shall present the instantaneous version of the 

Darboux theorem. If Sf is a 2-dimensional surface in E3, we call a point A e Sf flat, 

if the second fundamental form of Sf vanishes at A. A plane is then characterized 

as a surface with only flat points. 
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Let g be a 2-parametric (regular) space motion. Let us denote by F the set of all 
points X in the moving space E3 such that the trajectory of X has a flat point at X. 
In what follows we shall describe the set F for a general regular 2-parametric space 
motion and show some of its properties. 

If g = g(ui, u2) is a 2-parametric space motion, then according to [3] we have 
the following equalities for the canonical frames &* and 3F in E3 and E3, respectively: 
d$F - &q>9 cW = ~F\}/, co = lj2(<p - \j/), n = lj2(cp + i» , where 

/0, 0, 0, 0 \ 

(19) co = H> °> °> °* , 
v J wco2, 0, 0, - c o j 

\0, -G)2 , COi, 0 / 
^0, 0, 0, 0 \ 
(ftw — n) cOi — pco2, 0, — 01^01 — ci2co2,

 aft>i + /ta>2 I 
mcoi + (n — /fo) O)2, aiCOi + a2co2, 0, /?c0i + yco2 I * 

^biOJi + b2co2, -acot - £co2, -j#coi - yco2, 0 / 

The integrability conditions are 

(20) dc0i = alco1 A co2 , dco2 = a2c0i A CO2 , 

bi = ~(v)i + ai(v - w), b2 = (w)i - a2(v - w), 

- (01)2 + (a2)i + «i + a2 = jr52 - ay - 1 , 

($2 ~ W i - 2^/? + a2(a - 7) = 0 , - ( a ) 2 + ( $ 1 + 2a2p + fll(a - 7) = 0 , 

~ (b i ) 2 + (b2)i + b1a1 + b2a2 + ap + ym - 2pn + (v + w) (1 + £2) = 0 , 

(w^ - rc)2 + (p)i + at[2n - P(v + w)] + a2(p - m) + b^ - b2a = 0 , 

- (m)2 + (n - 0jB)i + ai(m - p) + a2[2« - j8(t? + w)] - bjy + b2p = 0 , 

where df = (f)1 cox + (f)2 co2 for any function f. 
For the trajectory A(u1? u2) of the point A e E3 at A we have 

(21) A A = 2<FcoXA , A2A = 2^(<pco - c # + Aco)K^ , 

where XA are the coordinates of the point A with respect to 3F, A denotes the ordinary 
(symmetric) differential. 

XA satisfy the following system of differential equations: 

(22) dXA=~^XA. 

Let XA = (1, x, y, z)T. Then the normal vector n of the trajectory of A at A is given by 

(23) n = (0, zx — yw, vx + yz, vw + z2)T . 

The set of points where n = 0 consists in general of two straight lines given by the 
equations 
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(24) zx — yw = 0 , vx + yz = 0 , vw + z2 = 0 . 

Let us denote by S the set of all points given by (24). It is the set of singular points 
of the trajectories of points — the tangent space of the trajectory of a point from S 
has dimension at most 1, 

Lemma 8. Let <PA be the second fundamental form of the trajectory of the point A. 
Then 

<PA = X(x, y, z) (C^l + C2CD2
2 + 2C3OJ1CD2) , 

where 

(25) 

C! = (zx - yw) (ay + (v)t) + (vx + yz) (B1 - ax - 2y) - (vw + z2) (M + 2z), 

C2 = (zx - yw) (B2 - 2x + yy) + (vx + yz) ((w)2 - yx) - (vw + z2) (P + 2z) , 

C3 = (zx - yw) ((v)2 + (1 + p) y) + (vx + yz) ((w\ + (1 - p) x) - (vw + z2) N, 

B! = 2b! + (v)2 , B2 = - 2 b 2 + (w)X , M = av + m , P = yw + p, 

N = n + v — w . 

Lemma 9. F is given by the equations Ct = 0, i = 1, 2, 3. We have S cz F and if 
a straight line belongs to F, then it is parallel to the plane z = 0. 

Proof. Let a straight linep = X + hi be in F where X is a point, u is a vector, 
X = (x, y, z)T, u = (a, b, c)T. If we substitute p in C{ = 0 and look at the terms 
of the 3 rd degree in X, we get abc = 0, c(b2 + c2) = 0, c(a2 + c2) = 0. The only 
solution is c = 0. The formulas for Ct must be found by direct computation using 
(21) and (23). 

Lemma 10. If the set F — S is finite, then it contains at most 16 points. If K0 = 
= 1 + ay — fi2 = 0, they are at most 15. 

Proof, a) Let v = w = 0. Then S is the plane z = 0. So let z + 0. The equations 
for F - S are 

(26) 2j/2 + 2z2 - x(v)t - yBt + zM = 0 , 

2x2 + 2z2 - xB2 - y(w)2 + zP = 0 , 

2xj; + x(v)2 + y(w)X - zN = 0 . 

It is not difficult to see that (26) may have at most 8 solutions, provided their 
number is finite. 

b) Let v2 + w2 + 0. Let us define the following parametrization of the set F: 
x = wr + ts, y = tr — vs, z = t with parameters r, s, t. Then zx — yw = s(t2 + vw), 
vx + yz = r(t2 + vw), vw + z2 = t2 + vw. This shows that t2 + vw = 0 is the 
equation of S. For F — S we obtain from (25) the following equations: 
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(27) 2t(r2 + 1) + a(t;s2 + wr2) - 2vrs - s(v)t - rB± + M = 0 , 

2l(s2 + 1) + y(vs2 + wr2) + 2wrs - r(w)2 - sB2 + P = 0 , 

2lrs - t>s2(l + p) + wr2(l - p) + r(w)t + s(v)2 - N = 0 . 

The solvability conditions for (27) form 2 curves of order 4 in the r, s plane, so we 
may have at most 16 solutions. The terms of the highest degree in r and s are 
r(vs2 + wr2) (r(P — 1) + as) and s(vs2 + wr2) (yr + s(p + 1)), which shows that 
they are two common points at infinity and one more for K0 = 0. On the other 
hand, the plane z = + yj(-vw) intersects the surfaces Ct = 0 in 3 straight lines 
(apart from the singular line and the line at infinity). These 3 lines have at most 1 
common point, which gives at most 2 new points. 

E x a m p l e 2. We will discuss the plane trajectories of 2-parametric motions with 
constants invariants. For such a motion we have ax = a2 = b1 = b2 = 0, p2 — 
— ay = 1, ap + ym — 2fin + (v + w) (1 + ft2) = 0. We shall consider only the 
general case, so let v — w + 0, w + 0, v > 0. Let us find all motions of this type 
which have at least one plane trajectory, which is not a curve. This means that we 
exclude the points of S. Equations (25) yield the following equations for F: 

(28) 

(zx — yw) (ay) + (vx + yz) ( — ax — 2y) + (vw + z2) ( — av ~ m — 2z) = 0 , 

(zx — yw) ( — 2x + yy) + (vx + yz) ( — yx) + (vw + z2) ( — yw — p — 2z) = 0 , 

2(zx - yw) (p + 1) y + 2(vx + yz) (1 - p) x - (vw + z2) (n + v - w) = 0 . 
Further, (22) yields 

(29) (x)i = v - pw + n - az , (x)2 = p - (p - 1) z , 

(y)t = - m - (p + 1) z , (y)2 = w + Pv ~~ n - yz , 

(z)i = ax + (P + 1) y , (z)2 =(p-l)x + yy. 

As da>1 = dco2 = 0, we may write co1 = du, co2 = dux and we can integrate (29) 
with respect to u and ux. Integration with respect to u gives a one-parametric subgroup 
and its trajectories are 

(30) x(u) = #-2[(7 u(P + 1) + x0(a2 cos 9u + (p + l)2) + 

+ y0a(p + 1) (cos Su - 1) - (z0 - S~2Q) a# sin Su] , 

y(u) = 5 ~ 2 [ - c / u a + x0a(p + 1) (cos 9u - 1) + y0((P + I)2 cos Su + 

+ a2) - (P + 1) 5 sin 3u(z0 - S~2Q) , 

z(u) = $~2[x0a 3 sin 3u + y0(p + 1) & sin Su + Q2 cos 9u(z0 - 9~~2Q) + 0] , 
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where a = am + (P + 1) (v — pw + n), Q = — m(P + 1) + ct(v — f$w + n), 3 = 
= [a2 + (/? + 1)2]1 / 2 , a2 + (p + l ) 2 4= 0. (30) gives the trajectory passing through 
the point (x0, y0, z0). 

(30) must satisfy (28) for all values of u. We substitute (30) into (28) and consider 
only the terms with the highest powers in cos 9u and sin #u. Let us denote by x, y, z 
the part of x, y, z in (30) which is linear in sin #u and cos #u, without the absolute 
term. Then we get 

z(z2 + y2) and z(z2 + x2), 

which must be zero mod cos2 3u + sin2 $u = 1. 
Let us write z = k cos <p + fi sin <p, y = r cos <p + s sin <p, <p = #u. Then we 

obtain the equations 

k(k2 - fi2 + r2 - s2) - 2/<A/* + rs) = 0 , 

//(A2 - /r2 + r2 - s2) + 2A(A/i + r) = 0 . 

Here either k2 + /x2 = 0 and k = \i = 0, or A2 - \x2 + r2 - s2 = 0 and A^ + rs = 
= 0. The second possibility yields A = es, // = - e r , e = + 1 . We use the term 
z(z2 + x2) to obtain A = \i = 0. 

This shows that we always have z = 0. This yields x0a + (/? + 1) y0 = 0, z0 = 
= ^~ 2 o . 

It remains to consider the case ft + 1 = 0, a = 0. In this case we use the second 
part of (29) similarly as above. Since now (/? - I)2 + y2 + 0, we get a similar 
result. 

We have proved so far that if a point has a plane trajectory, it must lie on the 
axis p of the one-parametric subgroup (30). Parametric equations of p are 

x = (0 + 1) t , y = -at, z = S~2Q , where (P + l ) 2 + a2 + 0 . 

a) We shall investigate under what conditions all points of p have plane trajecto­
ries. This means that we suppose that p belongs to F — S. Substitution into (28) 
shows that then we must have 

z = — l/2(aw + yv) 

and 

(vw + z2) (ocv + m + 2z) = 0 , 

(vw + z2) (yw + p + 2z) = 0 , 

(vw + z2) (n + v - w) = 0 . 

Let tnv + z 2 = 0. Then a2w2 + 2(ay + 2) vw + y V = 0. The discriminant 
of this equation is D = 16(1 + ay) = 1602. We obtain w\v = -(p + l)2 /a2 or 
w/fl = -( /f - l)2/a2 . The first possibility g j v e s a singular line, so we may suppose 
that 

(31) wa2 + v(p _ 1)2 = 0 m 
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Substitution into the equation z = 8 2Q yields 

(32) - m(0 + 1) + a(v - pw + n) = -l/2(aw + yv) (a2 + (p + l ) 2 ) . 

The remaining possibility is av + m + 2z = yw + p + 2z = n + v — w = 0. 
Substitution into the integrability condition shows that in this case p belongs to S. 

b) A point of p with a plane trajectory is an isolated solution of (28). This means 
that the coordinates of this point with respect to W are constant. From (29) we 
obtain n = w + pv — yz = fiw — v + az, m = — (P + 1) z, p = (/? — 1) z, ax + 
+ (0 + 1) y = 0, (j3 - 1) x + yy = 0. 

The last two equations are compatible as K0 = 0; from the first two equations 
we get w(l - P) + v(l + p) = (a + y) z. 

(28) changes to 

a2x2(2z + aw + yv) + (vw + z2) (p + l)2 [(1 - p) z + av] = 0, 

x2(2z + aw + yv) + (vw + z2) [(1 + p) z + yw] = 0, 

2ax2(2z + aw + yv) + (vw + z2) (jS + 1) [yz - v(p +1)] = 0, 

where we suppose P + 1 + 0. 

i) vw + z2 = 0, 2z + aw + yv = 0. Here we get a special case of a). 

ii) vw + z2 = 0, 2z + aw + yv + 0. Then x = y = 0 and the point is from S. 

iii) vw + z2 4= 0. Then the determinant of (28) must be zero, which yields az = 

= w(l — /?), yz = v(l + p), so ay(vw + z2) = 0 and ay = 0. This implies j8 = 1, 
yz = 2v, az = 0. As y = 0 implies v = 0, we may suppose y + 0. Then a = 0, 
y = 0, z = 2v/y and x2y2(4 + y2) + (4v + y2w)2 = 0, so x = 0, 4v + y2w = 0, 
vw + z2 = vy~2(4v + wy2) = 0, which is a contradiction and we have no solution 
in the case b) for p + 1 + 0. 

Now let p = - 1 . Then x = 0, x = \\2yy. 

i) a + 0. Then y = 0. The equality vw + z2 = 0 implies j;2(aw + 2z) = 0. 
While y = 0 gives a singular point, aw + 2z = 0 gives a2 + 4 = 0, which is impos­
sible. Hence vw + z2 + 0 leads to a contradiction. 

ii) a = 0. Then vw + z2 = 0 gives a singular point x = y = 0, and vw + z2 + 0 
leads to a singular point as well. 

Theorem 10. Regular 2-parametric space motions with a 2-dimensional group 
of automorphisms are given as products 

g(uu u2) = g^Ui + pxu2, Y ^ + SjU2) . g^oc^ + p2u2, y ^ + 52u2) , 

where gf(r, s) is a commutative two-dimensional subgroup of $3 and r denotes the 

angle of rotation, s is a translation, rank ( " ;/ } ^ 1, i = 1, 2. Such a motion is 
\jh <>ij 

a product of two one-parametric subgroups iffm = wa, p = yv, n = p(v + w). 
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Proof. If a motion has a 2-dimensional group of automorphisms, then it has 
constant invariants and it is an orbit of a 2-dimensional subgroup of <f3 x &3. 
Let G be a 2-dimensional subgroup of <?3 x g^ Then its canonical projections 
pt(G) must be subgroups of <f3, as pt is a homomorphism of groups, i = 1, 2. If 
Pi(G) has dimension 0, then G is isomorphic with a commutative subgroup of &3 

and the resulting motion is not regular. As any homomorphism between commuta­
tive groups is given by a linear mapping in the canonical coordinates, the first state­
ment of the theorem follows. If such a motion is a product of two one-parametric 
subgroups, then <p and \j/ must be functions of one parameter only. This yields 
(P + 1) (w + pv - n) + ym = 0, (/? - 1) ( - w + pv - n) + ym = 0, which to­
gether with the integrability condition gives the statement. 

The following theorem has been already proved above. 

Theorem 11. A regular space motion with constant invariants, where vw + 0, 
v — w =f= 0, has a plane as a trajectory, which is not a curve iff (31) and (32) are 
satisfied. In such a case it has infinitely many such points and they are all points 
of the axis of g2. 

Remark. In the case when g(u1? u2) is a product of two one-parametric subgroups, 
we get that the points of the axis of g2 have plane trajectories iff g± is a rotation, 
and the axes of g1 and g2 are mutually orthogonal, as we would expect. 

Proof of Remark. We substitute m = wa, p = vy, n = P(v + w) into (31) and 
(32). Then we get p(a2 + p2 - 1) = 0. While p = 0 leads to singular points, a2 + 
+ p2 = 1 is the condition of perpendicularity of axes. Further gt is a rotation iff 
am + (P — 1) ( — v — Pw + n) = 0. Substitution shows that the last equation is 
satisfied. The converse is obvious. 

Example 3. We shall discuss plane trajectories of a motion given as a rolling 
of two isometric surfaces. In such a case we have v = w = p = 0, ap + ym = 0. 
Integrability conditions are 

(02)1 ~ (01)2 + a\ + a2
2 + 1 = -ay, 

0)i = a2(a - y) , (a)2 = ax(a - y) , 

~OO2 + 001 + 2«i« + 02(P - m) = 0, 

— (m)2 + (n)± + (m — p) a1 + 2a2n = 0 . 

(29) will change to 

(x)x = n + axj/ - az, (x)2 = p + a2y + z , 

OOi = - m - fl^x - z , (j)2 = -n - a2x - yz , 

(z)i = ax + y , (z)2 = - x + yy . 
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Equations of F — S are 

(33) 2(z2 + y2) + mz = 0, 2(z2 + x2) + pz = 0, 2xy - nz = 0. 

First we shall show that in the case n = 0 there is no solution. So let n = 0. Then 

xj = 0; let x = 0. Then z = —1/2/?, y = 1/2/,, where 2 = >/(/?m — p2). Now 

a t = -ap/T1, a2 = /?A~\ (p^ = -A, (/?)2 = - Ay, (A)-. = -2m + /?, (A)2 = 

= y/?, (oc)1 = /?(a — 7) A"1, (a)2 = —ocp(oc — y) A"-1. The first integrability condition 

yields (a2)t - (at)2 + a\ + a2 + 1 = A~2(2/?m + ayA2 + 2a2/?2) = -ay. This im­

plies /?m(l + y2) = 0. As z -= 0 is the equation of 5, we must have p #= 0. Then 

m = 0 and so /? = 0, which is a contradiction. This shows that we may suppose 

n + 0 . 

The derivatives of (33) yield 

(34) amx + y(2ocn + 3m) + z(2axn — ( m ) ^ = 0 , 

(3/? - 2yn) x - ypy + z(2a2n + (/?)2) = 0 , 

— mx + y(2n + a/?) + z(ai(/? — m) — (n) x) = 0 , 

(ym - 2n) x + py + z(a 2 (p ~ m) - (n)2) = 0 . 

Let (34) have more than one nontrivial solution. It is easy to see that any straight 

line passing through the origin has at most one intersection with (33) apart from the 

origin. This means that the matrix of (34) must have rank one. This yields 

4n 2 + 4nocp — pm(l + ay) = 0 , 

4n2ay — 12npa — pm(9 + ay) = 0 , 

pn(3 — ay) — 2y(n2 + pm) = 0 , 

mn(3 — ay) + 2oc(n2 + pm) = 0 . 

These equations imply (n2 — pm) (3 + ay) = 0. 

i) Let ay = —3. Then 2n 2 + 2ocpn + pm = 0, 3pn — y(n2 + pm) = 0, yn = 3/?, 

— an = 3m and n = 0, which is a contradiction. 

ii) Let n2 = pm. Then (3 - ay)2 + 16ay = 0, so ay = - 1 or ay = - 9 . If 

— 9, then p = — 3 n a _ 1 , m = 

where k = 1, 3. Then 

First, let y = a x k - 1 . Then z = 2ax2n~1fc~1. This implies 2x 2 + pz = 0 and 

from the second equation in (33) we have z = 0, which is a contradiction. 

Now let y = — kxa_1.Then/?z = 2fc2x2a~2 and similarly as above we get a contra­

diction with z + 0. 

Theorem 12. The rolling of two surfaces has at most one plane trajectory which 

does not degenerate to a curve. Such motions exist and they have n 4= 0. 
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ay = — 1 , then /? = —noc \ m = — an, if ay = = - 9 , 
= -1/Зna. 

Let us write ay = — k2, /? = — fcna"1, m = — anfc 

y = a x k " 1 or y = — kxa"1. 



Proof. It remains to prove the existence of such a motion. For this purpose let us 
consider the foliowing example: 

Example 4. Let us consider a rolling of two surfaces such that a = — y = — 1, 
n + m = —2k, where k is a constant. Then p = m and a x = a2 = 0. For a point 
with a plane trajectory we get x2 = y2; let x = y. Then z = k, x = y/(íj2kn)9 and 
the remaining equations for x are (x)x = — (x)2 = n + k. Integrability conditions 
reduce to one equation (n)t + (n)2 = 0. As áco1 = dco2 = 0, we can write co1 = 
= dux + du 2, co2 = — du x, + du 2 . 

For any funct ion f^. u2) we háve 

f = C/)i - (f)2 . ^ = (/). + Wa • 
GWj Gu2 

This yields 

— = 2(n + fe) - 2k" 1 (2x 2 + k2) , so x = 4 " t a n ( 2 V( 2 ) u i ) . 
dUi 7 2 

n = k tan 2 (2 ^/(2) u t ) and the point (x, y, z) has a plane trajectory. The motion 
is realized as a rolling of two isometric ruled surfaces. 

Beside the point the rolling determined by two congruent paraboloids of revolution 
may serve as an elementary example — the focus of the moving one has a plane 
trajectory. 
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Souhrn 

DARBOUXOVA VĚTA O ROVINNÝCH TRAJEKTORIÍCH 
DVOUPARAMETRICKÉHO PROSTOROVÉHO POHYBU 

ADOLF KARGER 

Na základě práce [1] je v článku dokázána klasifikační věta pro dvouparametrické 
prostorové pohyby mající alespoň 5 bodů s rovinnými trajektoriemi. Kromě pohybů s nekonečně 
mnoha rovinnými trajektoriemi jsou to tzv, Darbouxovy kvadratické pohyby, určené jistým 
tenzorem třetího řádu. Převedení tohoto tenzoru do kanonického tvaru je klíčem k důkazu 
klasifikační věty. Druhá část práce se problémem rovinných trajektorií zabývá z diferenciálně-
geometrického hlediska a obsahuje některé aplikace. Článek se též zabývá některými realizacemi 
homogenního prostoru všech prostorových shodností s použitím duálních kvaternionů a duálních 
matic. 
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Р е з ю м е 

ПРОБЛЕМА ДАРБУ О ПЛОСКИХ ТРАЕКТОРИЯХ ДВУПАРАМЕТРИЧЕСКИХ 
ПРОСТРАНСТВЕННЫХ ДВИЖЕНИЙ 

А^о^р КАЯОЕК 

В работе доказана теорема о классификации двупараметрических пространственных 
движений, имеющих по крайней мере 5 плоских траекторий. Доказательство основано на 
работе [1] и на приведении тензора 3-го порядка к каноническому виду. Часть работы зани­
мается проблемой плоских траекторий с точки зрения дифференциальной геометрии 
и содержит некоторые приложения. 

Ашког'ь аййге$$: 1Ш1)г. Аа"о1/Каг§ег, С 8 с , Ма1етатлско-гу21ка1т ГакиНа ШС, З о к о ^ з к а 
83, 186 00Ргапа8. 
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