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LINEAR TRANSFORMATIONS
OF LOCALLY STATIONARY PROCESSES
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Summary. The paper deals with linear transformations of harmonizable locally stationary
random processes. Necessary and sufficient conditions under which a linear transformation
defines again a locally stationary process are given.
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The notion of a weakly locally stationary process was introduced by Silverman
in [1]. Let {x(), € R,} be a second order random process with a vanishing expected
value and with a covariance function R(+,*) defined on R, x R,. If for every pair
s, t of reals one can write

&@quQG%Qng_m

where R{" > 0 and R\” is a stationary covariance, then, in accordance with [1],
R,(+, ) is a locally stationary covariance function. A process possessing such a co-
variance function is called weakly locally stationary, too. Further, we shall need
some facts about the harmonic analysis of nonstationary random processes. Follow-
ing [2] we say that a random process {x(t), 1€ R,} is harmonizable if it can be
~ written in the form of a stochastic integral understood in the quadratic mean sense

x(1) = [*2 e dé(h)

where {£(4), A€ R,} is a second order random process with zero mean and a co-
variance function y(-,+) of bounded variation on R; x R,. A random process is
harmonizable if and only if its covariance function R,(-, *) is harmonizable, i.e.

R.(s,1) = [[2 2 ddy(A, ).

Let us suppose that the process {x(1), t € R,} is locally stationary and harmonizable.
In the theory of weakly stationary processes linear transformations of these processes
play a very important role. If {x(t), re R} is a weakly stationary process having
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a spectral decomposition x(t) = [*2 ' d&(2), and ¢(+) € Z,(Ry, y(+)) where y(+)
is the corresponding spectral measure, then the process

(1) y(t) = T2 e (1) de(), teRm,

is weakly stationary, too. In the case of a locally stationary process the situation
is not clear. We shall formulate the following problem: if {x(f), e R,} is locally
stationary and harmonizable, under which conditions put on a function ¢(-) the
process (1) will be locally stationary as well.

First, we immediately see that the process {y(t), t € R;} must be of the second
order, i.e. for every s, t € R, the integral

Ry(5.1) = J1+2 €4 9(2) F(s) dy (A, )

must exist. The process {y(f),te R} will be locally stationary if its covariance
function R,(-,-) is a product of R{" and R{?,

R(s.1) = R ({——’) RP(s - 1)

with R{"” > 0 and R{?(+) being a stationary covariance function. Let us consider

the transformation
A+
T:—-2 ’u—-—u, A—p=v

which, under the local stationarity of {x(¢), 1 € R,}, makes it possible to express
R,(+,*)in the form

+
Ry(s, 1) = -ﬂ‘ eluls=0) il +0/2] g (u + %) b <u _ %) dFl(u) dF,(v)

- o

where

(2) ”ExF dFl(“) sz(v) = ,”T"(EXF) ddy(4, 1)

(E x F is a measurable rectangle in Ry x [R,). This relation is in more detail ex-
plained in [3]. Because R((y) = [*2 e dF,(u) is a stationary covariance func-
tion, F(u) must be a distribution function of a nonnegative measure of finite varia-
tion; because Rfc”(') = 0, the Fourier image of Fz(-) must be nonnegative.

Now, if the following separation of the variables u, v

(v 5) 8 (v 5) =t
is possible then

Ry(s,t) = [£2e™C0 f(u) dF(u) (T2 e T2 g(v) dF,(v) .

Further, if {72 e™¢~" f(u) dF,(u) is a stationary covariance function and, simultane-
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ously, if
[+ it6+0/21 g(p) dF,(v) = 0

for every s, te R, then Ry(-,-) will be locally stationary. The following theorem
gives necessary and sufficient conditions on ¢(+) in order that the process {y(t),
t€ R,} may be locally stationary.

Theorem 1. Let {x(t),t€R,} be a harmonizable locally stationary random
process,

x(1) = 15 et de(2).
Then the process {y(t), t € R,} where y(t) = [*% e** ¢(2) d&(4) is locally stationary
if and only if there exist functions f(+), g(*) such that

1° d)(u+g>$<u—g>=f(u)g(v)a.e. [F, x F,],
2° [r2 el f(u) dF,(u) is a stationary covariance function,
3° [tz e g(v)dF,(v) = 0 for every se R, ,

where Fl(-), Fy(+) are induced by the transformation T described above under
the local stationary of {x(t), te R,}.

Proof. Let us suppose that both {x(¢), e R,} and {y(t), t € R,} are locally sta-
tionary. Then the covariance function R,(+,*) of {y(t), t € R,} can be written as the
product

Ry(s. 1) = H "= (2) B(u) ddy(4y ) — RS (%) RO (s - 1)

where R{"(+) = 0 and R{*(+) is a stationary covariance. By means of transformation
T (described above) we can express

+
R(s, 1) = J'J gitlls+n/2] gius—0) g (u + -g) ¢ (u - g) dF,(u) dF,(v)

" where F,(+) is a probability distribution function (without loss of generality we can
put R.(0,0) = 1) and the Fourier image of F,(+) is nonnegative. We immediately
see that

R(59) = RO RYO), R, (3.~ 1) = RO RO

2
and hence
RP(0) R{V(s) = H‘*“’eisv ¢ (u + g) ¢ (u - %) dF,(u) dF,(v),

R((0) RO(r) = ﬂi:e““ ¢ (u + %) & (u - %) dF,(u) dF,(v) .
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In this way we obtain the relation

R,(0, O)H-w iso gitu () <u + >q‘s<u - g) dF ,(u) dF,(v) =
- ﬂ B ) <u + 2) é (u - g) dF (1) dF,(v) x
x Hj:e"" ¢ (u + %) & <u - %) dF () dF,(v)

holding for every pair (s, 1) € R,. Properties of the two-dimensional Fourier transform
imply that

ooﬂ_w <‘<+ ) <x-“~)dF(x)dF(})_
=J Jm([)(\'+}>$<x—§>dF2(y)dF,(x)><
TR o

for every u, ve R;. This fact proves that

0 (e ol oo
ae [F, x F,].

g f d>< g) 7 ( - ) () = () ()
As R{V(+) = Othen

J—je {f:(ﬁ (u ' g) $<u - g) dFl(“)} dF,(v) 2 0

must be nonnegative for every s € R,. Similarly, as R{*)(+) is a stationary covariance

function then
[ oee)o (o= 5)omwfore

must be a stationary covariance function, too. Since F,(+) is a probability distri-
bution function R{*(+) will be a covariance function if and on if

fj:qb(u + %)d)(u - »2->d1~"2(u) >0 ae [F].

o<

60



On the contrary, let the conditions 1°, 2°, 3° of Theorem 1 hold. The covariance
function R(-, -) can be expressed as

+ oo
Ry(s, 1) = Jj eitls+ /2] gints=1) gy <u + %) ¢ (u — %) dFl(u) dF,(v)

because {x(t),1€ R,} is locally stationary. As ¢(u + v/2) d(u — v/2) = f(u) g(v)
a.e.[F; x F,] then

Ry(s, 1) = [[X3 ™60 g(p) &G0 f(u) dF,(u) dF,(v) =
= |12 MEHO2 g(p) dFZ(v) [r2e™C™0 f(u) dF ((u) =

= R§”<s ‘; ‘) R (s —

where R{V(+) = 0 and R{¥(+) is a stationary covariance. We have proved that the
process {y(1),te R,} is locally stationary. Q.E.D.
In Theorem 1 we met an interesting relation concerning the function ¢(+), namely

v
Let us now suppose a somewhat stronger condition, namely

¢>(u " ‘2—’> 7 (u - —) 1) 9(0)

for every u, v € Ry. Then for v = 0 we get

() |p(u)|? = f(u) 9(0) = 0

and similarly foru = 0
v\ - v
o(3)3(-3) =10

* Both the relations together give that (provided f(0) + 0, g(0) # 0)

9(w)]* ¢ (g) 5 (- g)

/(0)¢(0)

#() B(1) '¢(“"> qs(l;“)a(— )—;-")

where K = f(0) g(0), u = (A + p)2, v =24 — p.
As g(v) = [*2 ¢(u + v/2) $(u — v/2) dF,(u) (see Theorem 1), thus g(0) =
= [I%|4(u)|* dF,(«) = 0 and hence the assumption g(0) > 0 is quite natural.

S(u) g(v) =

and hence
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This fact together with (4) yields that f(u) = 0 for every u € Ry, hence also K > 0.
In the sequel, for simplicity, we will assume K = 1. In this way we have obtained
the following functional equation for the function ¢(*)

) SR)FW - ¢(¥‘)2¢(%H)$(— i;—”) b,

$(0) = 1

which is very close to the local stationarity. If the function g(v) = ¢(v/2) $(—0v/2)
is a characteristic function then the covariance function ¢(+) ¢(+) will be locally
stationary because

and

is a stationary covariance. We see that the linear transformation between two locally
stationary random processes determined by the function ¢(-) is closely connected
with the question which covariances of the type ¢(+) ¢(+) are locally stationary.

Let us try to solve the functional equation (5). At the first sight it is evident that
¢(*) = 1 is a solution of (5) and thus the set of solutions is nonempty. Similarly,
the function ¢(+) equal to 1 at 0 and vanishing otherwise also solves this equation.
Hence, there is a discontinuous solution of (5). It is evident as well that the product
¢1h,(+) solves (5) if ¢,(+) and ¢,(+) are solutions of (5). The equation can be easily
expressed in an equivalent form

du +v)du —v) = Id)(u)]z o) ¢(—v), u,veR,,

$(0) = 1. First we shall be interested in continuous solutions of the equation (5).
Let ¢(+) be a solution of (5) continuous at zero with ¢(4,) = 0, 2o + 0. Then

_ 2 (A — —
0 = §(io) Br) = \qs(@—iﬁ) (/’('Tﬂ) 7 (“—T>
for every real u. For u = 0 we have

CROIS

and hence either ¢(14/2) = 0 or ¢(—4o/2) = 0. In the case of ¢(%,/2) = 0 we again
obtain either ¢(4o/4) = 0 or ¢(—2o/4) = 0. In this way we can construct a sequence
{A} -1, Ay — 0 for n - oo with ¢(4,) = 0. This conclusion contradicts the assump-
tion that ¢(0) = 1. We can summarize; if there exists a continuous at zero solution
¢(+) of (5) then ¢(2) # O for every A€ Ry. Thus 1/¢(+) is a solution of (5) as well.

0=
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We see that all solutions of (5) continuous at zero form a group with respect to
multiplication. Let us describe this group explicitly. At the beginning we must realize
that if ¢(+) is a solution of (5) then the absolute value |¢(+)| solves the same equation,
hence ¢(+)/|¢(+)| is a solution of (5) as well. As |¢(+)/|¢(+)]| = 1 the equation
(5) in this case has the form

(6) d(4) d(w) = </—_2—~i‘> ¢ (“;’.) JpeRy, $0)=1

2

and |¢(2)| = 1 for every A € R,. Then one can write ¢(1) = e*® where a(+) is a real
function, and we have obtained an equivalent transcription of (6)

a-s=(54 (5]

or a(u + v) — alu — v) = a(u) — afv).

We see that A,a(4) = A,x(0) for every A, h € R,. This implies that
w(d) = Coy + C,4

and hence ¢(4) = &'+ P As we demand ¢(0) = 1, we have C, = 0.
The equation (5) for the absolute value A(+) = |¢(+)| has the form

A(2) A() = A (’_él—‘ A <)—;J) 4 ("—;)> . A HER,,

A(0) = 1 and A(2) > 0.
We can write (1) = ¢“» and arrive at the equation

a(l)+a(u)=2a(l_;u) + a(l;#>+ a(“;*>, 2 HER, .

We immediately obtain that a(0) = 0 and the latter relation can be rewritten as

Aza(2) = Aya(0).

AN

Solving the difference equation Aja(1) = 0 we obtain that
a(d) = Ko + KA + K A%

As we need a(0) = 0, we have K, = 0. In this way we have proved that every conti-
nuous at zero solution of (5) has the form

P(2) = 4 e
where Ke R,, Q e C.

Corollary 1. Let {x(t),te R} be a harmonizable locally stationary process
x(1) = [+ et de(7)
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Then the process {y(t),te R}, y(t) = (12 e'* eX** 22 d¢(2) with K <0, QeC
is locally stationary, too.
Proof. It is evident that
Ry(s, t) _ ”ti eilsA—tn) (K(22+42) 04 02 ddy(l, ”) .
By means of the transformation T: (A 4+ p)/2 = u, A — p = v and the local station-
arity of {x(), t € R,} we get
R,(s, 1) =
— Ij’i: eiu(s-t) eiv(s+t)/2 e2Ku2 e(Q+Q)u eK(ul/Z) e(Q—Q)u/z dFl(u) sz(U) .

As Q + O = 2 Re Q and e?k*  ¢ZReQv > (),
j‘t: eiu(s-l) eZI(u2 eZReQu dFl(U)

is a stationary covariance function. Similarly (Q — 0)/2 = i Im Q and hence

jf: eit(s+0/2 (1ImQv K(v/2) sz(v) _

= -[.+weiv(s+t)/2 <J’+weir)x \/?_1__) e(‘_ImQ)Z/ZK dX) dFZ(v) =
e —2nK

+ o0 + oo
= J. <j‘ eiv[(s+1)/2+x] sz(U)) “——1__ e(x—lmQ)Z/ZK dx > 0

(—27K)

— o0
- o -

because under the local stationarity of {x(r), 1€ R,} we have

(Y2 e dF,(v) = 0
for every y € R;. Q.E.D.

Corollary 2. Every continuous locally stationary covariance function R(’,-)
of the type
R(s, 1) = é(s) 3(t), R(0,0) =1
has the form
R(S, t) — e—a(52+t2) . ebs+6t ,
where a 2 0, beC.

Proof. In order to be locally stationary the covariance function ¢(+) $(+) must
satisfy

9(s) B(1) = R, ( : ’) Rys — 1)

2

where R,(*) = 0 and R,(+) is a stationary covariance. One immediately sees that
R0 = 0, R = ¢ (2)(~3)
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and thus the function ¢(+) must be a solution of the equation

8() 3(1) = qs(“j‘)zqs(sg’)a(‘j), p0) = 1.

As was proved above the continuous solution of this functional equation is

(ﬁ(),) — ea}.2+bl

where ae R, be C.

Thus RI(X') — Ieax1+bxl2 — eZaxZ . e(b+5)x and

R,(y) = e®0/D7+b3/2 (a(=32)+B(=3/2) _ o@?/2 ob=bp/2

Indeed, we obtain that R (+) = 0; R,(+) must be a stationary covariance. As R,(*)
is continuous it will be a stationary covariance if and only if R,(-)is a characteritic
function. It means that thc coefficient a must be less or equal to zero because the
inequality

R = e < 1

must hold for every y € R,. Then

+
Ry(y) = j el 2n(1— 3 e ®=b/2)22a 4,

-0

inthecasea < 0and

. + o0 . b — E
Ry(y) = f e dF, <u - __>
Y 2
for a = 0 where Fy(v) = 0 for v < 0, Fy(v) = 1 otherwise. Q.E.D.
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Souhrn
LINEARNI TRANSFORMACE LOKALNE STACIONARNICH PROCESU
Jikf MICHALEK
V ¢lanku je YeSena otazka, za jakych podminek je linearni transformace harmonizovatelného
slabé lokaln& stacionarniho procesu opé&t lokaln& stacionarni proces. Jsou nalezeny nutné a

postacujici podminky pro funkci, kterou je tato linearni transformace urlena.

65



Pesome
Jikf MICHALEK
JIMHEVIHBIE ITPEOBPA3OBAHMSA JIOKAJIBHO CTALIMOHAPHEIX ITPOLIECCOB

B cratee penIeH BOOPOC, NPH KaKHX YCIOBHAX JHHERHOE npeoGpaaonarme TapMOHH3YEMOTO
B IIAPOKOM CMBICIIE JIOKAJTBHO CTAIMOHAPHOTO IMPOLECCA OIATH ABJIACTCA JIOKATIbHO CTAlHOHAPDHBIM .

Haiinessl He0OXOOUMBIE M TOCTATOYHbIE YCIOBUS i QYHKUMM, Ompelessiomeit Takoe IMHeHHOe
npeobpa3oBaHme.
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