
Aplikace matematiky

Ivan Hlaváček
Inequalities of Korn’s type, uniform with respect to a class of domains

Aplikace matematiky, Vol. 34 (1989), No. 2, 105–112

Persistent URL: http://dml.cz/dmlcz/104339

Terms of use:
© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104339
http://dml.cz


34(1989) A P L I K A C E M A T E M A T I K Y No. 2, 105—112 

INEQUALITIES OF KORN'S TYPE, UNIFORM WITH 
RESPECT TO A CLASS OF DOMAINS 

IVAN HLAVACEK 

(Received April 24, 1987) 

Summary. Inequalities of Korn's type involve a positive constant, which depends on the 
domain, in general. A question arises, whether the constants possess a positive infimum, if a class 
of bounded two-dimensional domains with Lipschitz boundary is considered. The proof of 
a positive answer to this question is shown for several types of boundary conditions and for two 
classes of domains. 

Keywords: domain optimization, Korn's inequality, generalized Friedrichs inequality. 

AAJS Subject class.: 49A22, 35J20, 35J55. 

INTRODUCTION 

In the domain optimization for elliptic problems we encounter the following 
question: does a positive constant of the ellipticity condition exist, which is common 
for the whole class of admissible domains? The positive answer is crucial in proving 
the existence of an optimal domain. The present paper is devoted to the above 
mentioned question in two-dimensional problems. 

We formulate the problem for a general elliptic system of equations in Section 1 
and prove a general theorem, using some ideas of Haslinger, Neittaanmaki and 
Tiihonen [ l ] . In Section 2 we show some applications to equations of the second 
order: generalized Friedrichs inequality and the Korn's inequality under different 
kinds of boundary conditions. 

1. INEQUALITY OF KORN'S TYPE FOR A CLASS OF BOUNDARY 
CONDITIONS AND VARIABLE DOMAINS 

Let us define the following class of domains 

Q(v) = {(xu x2) | 0 < xx < v(x2), 0 < x2 < 1} , 
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where v e Wad and 

^ad = <veC(Ohí([0,1]) (i.e. Lipschitz) a ^ v g P, 
dv 

dx-
^ Ci а.e. 

Fig. 1. 

Here a, /? and Cx are given positive constants. Henceforth F(v) will denote the graph 

of the function v. 

In this section we shall deal with a general inequality of Korn's type (cf. [2] — 

Section 1L3.1 or [3]). Let us consider the following Cartesian product of Sobolev 

spaces on the domain Q(v): 

W(Q(v)) = f l HXs(Q(v)) (H** ss W*"2) , 
*«i 

where xs = 1, s = 1,2,..., r. 

We define the following system of differential operators for u = (ut, ...,uF)e 

e W(Q(v))\ 

Xi(u) = t I nisaD
aus, i = l,2,...,k, 

s = l |a |^x-

where nisae R. 

(HI) We assume that there exists a constant c > 0, independent of v e ^ a d and such 

that 
k 

I \\Ni(u)\\2o,a(v) + \\u\\2

0Mv) ^ *Mww» 
1 = 1 

holds for any u e W(Q(v)). 

(Henceforth the subscript 0, Q(v) denotes the norm in L?(Q(v)) and in 

\l}(Q(v))~\r, respectively. The subscript W(Q(v)) denotes the standard norm in 

W(Q(v)).) 
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Let Vp(Q(v)) and V°p(Q(v)) be (closed) subspaces of W(Q(v)). Let us introduce 
the following set 

•2d = {»• I v*(x2) = Kx2) - e, v e ^ a d , e e [0, a/2)} . 

(H2) We assume that an inequality of Korn's type holds on V°(Q(v)) for any v e %^ 
i.e., there exists a constant c(v) > 0 for any v e ^fd, such that 

I M - O I U , ^ <<«0 I-UVCSM) V«eVj(fl(0)). 

(H3) Assume finally the following relation between Vp and V°: there exists e0 > 0 
such that: 

{u e Vp(Q(v)), v e Wad, w e «*-, 0 < v(x2) - w(x2) < e0 Vx2 e [0, l]} => 

=>ii |^ ( w )eV^(w)). 

Theorem 1. Assume that the conditions (Hi), (H2) and (H3) are satisfied. 
Then there exists a positive constant c, independent of ve tflad and such that 

(1) I IW«)||o,aw i£ c\\u\\wiam 
i = l 

holds for all u e Vp(Q(v)) and v e °Uad. 

Proof. Let (l) be not true. Then there exist sequences {v„} and {un}, n = 1, 2, ... , 
un e Vp(Qn), vn e %zd (where Qn = Q(vn)) such that 

(2) t \\NM\lon < - M*UU • 
i = i n 

Without any loss of generality we can set 

(3) Hk(*„ , = 1 Vn. 

Since the set ^ a d is compact in C([0, l]) , we can find a subsequence (and denote 
it by the same symbol) of {v„}, such that 

vn--+v in C([0,1]) , ve^ad. 
Then 

(4) lim I ll-V^jg^ = 0 
n ~> oo i - 1 

follows from (2), (3). 
On the other hand, (3), (4) and (Hi) imply that 

(5) KioA == ^ 
holds for n sufficiently large. 
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Let us denote Q(vljm) = Gm. Since Gm c On for n > n0(m), we have 

Í « | |w r (G m ) = | |Un||>Y(fin) ~~ -*" 

and there exists a subsequence of {un} such that 

(6) un~*u (weakly) in W(Gm). 

By assumption V°p(Gm) is weakly closed, so that u e V°p(Gm) follows from (6) and 
(H3), if m is large enough. 

Let m be fixed. Since the functional 
k 

— IM-MSA. 
i = l 

is differentiable and convex on TV(Gm), we have 

S ll^(«)l|S,om ^ Hminf i I lV^)!!?,^ = 0 , 

where (4) has been used in the end. 
Since v1/m e ^fd for m great enough, (H2) implies 

u = 0 on Gm . 
Consequently, 

(7) u„->0 in [L2(GW)]' 

follows from the weak convergence (6) and the compact embedding H^G,,,) c 
= L\Gm). 

On the other hand, 

(8) |«U|SA = \Ml,om + MU-a. 

holds for n > n0(m). We can derive the estimate 

K||o>n~Gm = C m a X KX2) - l /m ~ »n(x2)| 
x2e[0 , l] 

(see [1] — Appendix), with c independent of n, m, v. Consequently, 

(9) NSA-4. = # 

holds for m and n sufficiently large, n > n0(m). Combining (8), (9) and (5), we obtain 

H l o A = 2/4 

for n > n0(m), m sufficiently large. Thus we arrive at a contradiction with (7). 

2. APPLICATIONS TO SECOND ORDER EQUATIONS 

In this section we present several applications of Theorem 1 to second order 
differential equations. 
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2.L The generalized Friedrichs inequality 

Let us choose r = 1, k = 2, Nt(u) = dujdxi9 1 = 1,2, W(£(v)) = H ^ v ) ) . Then 
the assumption (HI) is obviously satisfied with c = 1. In what follows, we shall 
distinguish two classes of boundary conditions: (i) with Dirichlet condition on a part 
of the boundary, (ii) without Dirichlet conditions. 

(i) Let us define 

Vp(Q(v)) = {u e H\Q(v)) \ u = 0 on F^v)} 

where Fx(v) c dQ(v) - F(v), mes Fx(v) ^ a > 0 for all v e ^ a d , with o e U in
dependent of v; 

V2(0(v)) = {u e Hx(Q(v)) | u = 0 on F0(v)} , 

where F0(^) c dQ(v), mes F0(t?) > 0. 
Then (H2) coincides with the well-known generalized Friedrichs inequality 

(10) \\M\lnW ^ <v) \\u\\2
1Mv) Vu 6 Vp(Q(v)) , 

which is true for all v e <?/ad. (Here the norm of Hx(D(v)) stands in the right-hand 
side). 

Obviously, the assumption (H3) is satisfied, as well. 

(ii) Let pv: H1(Q(vj) -> R be linear continuous functional defined for v e ^fd, 
such that 

{pv(c) = 0, ceR} =>c = 0 , 

{pv(u) = 0, v e ^ a d , u e H^-Xv))} -^ pJu\Qiw)) = 0 

Vw e *fd, 0 < t? - w < s0 on [0 ,1] . 

For example, we can choose 

Pv(u) = JJ w(0, x2) dx2 . 
Denning 

Vp(Q(v)) = Vp(Q(v)) = {u e H ^ ) ) , vfr) = 0} , 

we easily verify (H3). The satisfaction of (H2) is well-known (see e.g. [2] — 11.3.1). 
In both cases (i) and (ii), Theorem 1 yields the existence of a positive constant c, 

independent of v and such that 

(11) INliU,,) = cl"I?,ow Vu 6 Vp(^)) , Vl?6^ad. 

2.2. The Korn's inequality in two-dimensional elasticity 

Let us choose r = 2, fc = 3, Ati(u) = du^dx^ = £u(u), N2(u) = lj-J2(du1jdx2 + 
+ du2\dx,) = V2ei2(u), JV3(u) = 3u2/3x2 = e22(u), JF(f2(t>)) = \H\Q(v))f. 
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The condition (HI) is a consequence of the "uniform" second Korn's inequality 

(12) f i*?j(u)dx + i \ uUx^cA i'(dJh)2
dx. 

J Q(v) ij =1 i = 1 J Q(v) J Q(v) ij = 1 \OXjJ 

The existence of a positive constant c l s independent of v e ^ a d , follows from the 
results of Nitsche (see [4], Section 3, Remark 5). (We use the fact, that there exists 
a covering and a partition of unity common for all Q(v), v e tftAd.) 

We shall distinguish three classes of boundary conditions: 

(i) with Dirichlet condition on a part of the boundary, 
(ii) with tractions given on the whole boundary (i.e. a "free body"), 

(iii) with a "bilateral" contact on the x2-axis. 

Case (i). Let us define 

V„(Q(v)) = {u e [H\Q(v))Y\ u = 0 on / » } , 
where 

Fx(v) c d.Q(v) - F(v) , mes rx(v) ^ a > 0 

for all v e ^ a d , with a e R independent of v; 

V°p(Q(v)) = {u e [ H 1 ^ ) ) ] 2 ! u = 0 on r0(v)} , 

where F0(i;) c d.Q(v), mes F0(^) > 0. 
Then (H2) coincides with the (first) Korn's inequality on the domain Q(v)9 v e %^d. 

The latter is guaranteed by the positive length of F0(^) (see e.g. [2], Lemma 3.2 in 
chapter 11.3.1). It is easy to see that the condition (H3) is satisfied. 

Case (ii). Let us define the set of rigid body displacements 

0> = {z = (zl9 z2)\ zx = a! - bx2, z2 = a2 + bxl9 ai9 a2, b e R} 

and three linear continuous functionals 

pW:[Hi(Q(v)Y-*R, i = 1 , 2 , 3 , 
such that 

(13) {P^(z) = 0, i = 1, 2, 3, z e ^ } => z = 0 . 

Moreover, let for i = 1, 2, 3 and any v e ^ a d 

(14) ^ ' ) ( u ) = 0=-p ( j ) ( ukw)) = 0 

hold for all u e [ff'(0(t>)]2, w e <%%d, 0 < v - w < s0 on [0 ,1] . For example, we 
can choose 

PvX") = JS »i(0, x2) dx2 , . - . 1 , 2 , 
Pi3)(u) = Jo X2«i(0, x3) dx2 . 

Let us define 

Vp(fi(«)) = Vp
0(O(.)) = {u e [ f f 1 ^ ) ) ] 2 ! p < » = 0 , i = l , 2 , 3 } . 
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Then the condition (H2) is satisfied (see [3]). The condition (H3) follows from (14). 

Case (Hi). Let us define 

& = {z = (0, a)| aeR}, 

and a linear continuous functional 

- , : [H\Q(v))f - « 

such that 

{pv(z) = 0, z E ^ } => z = 0 . 

Moreover, let (14) hold for pv. For example, we may choose 

Pv(") = jo w2(0? x2) dx2 . 

We define 

Vp(Q(v)) = V°p(Q(v)) = 

= {ue [ H 1 ^ ) ) ] 2 ! Pv(u) = 0, Wl(0, x2) = 0 for x2 e (0,1)} . 

Then (H2) and (H3) are satisfied. Note that the condition 

Ml(0, x2) = wn(0, x2) = 0 , x 2 e ( 0 , l ) 

of the "bilateral contact" corresponds with the bodies symmetric with respect to the 
x2-axis. 

In all 3 cases considered above, Theorem 1 yields the uniform "first" Korn's 
inequality 

(15) £ hj(u)\\2
0Mv) ^ c\\u\\2

wmv}}, Vu e Vp(Q(v)) , 

where the constant c is independent of v e ^ a d . 

Remark 2A. If the displacements vanish on the variable part of the boundary, 
the following subspace has to be considered 

(16) Vp = V(Q(v)) = {u e [ H 1 ^ ) ) ] 2 ! " = 0 on r(v)} . 

We cannot apply Theorem 1, since the condition (H3) is violated. There is, however, 

a simple proof of the uniform Korn's inequality and the result is even more general 

in a certain sense, as we can enlarge the set f̂ad slightly. 

Let us define the set 

with some positive constants a, /?. Then the Korn's inequality (15) holds for all 
u e V(Q(v)) and v e <%°d, with a constant c independent of v e <^ad. 

In fact, we may extend u e V(£2(v)) by zero to a fixed rectangular domain Q8 = 
— (0, 8) x (0, 1), where 3 is any number greater than /?. Obviously, the extension u 
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belongs to the subspace V(Qd) and we have the Korn's inequality 

I h X * ) i o . a , = c*\\4wiOa) V*eV(Q§). 
i,j=l 

Since u = 0 outside Q(v), the uniform Korn's inequality with c = cs follows. 
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S o u h r n 

NEROVNOSТI KORNOVА ТYPU, SТEЈNOM RNÉ VZHLEDEM 
KE ТŘÍD OBLАSТÍ 

ІVАN HLАVÁČEК 

Nerovnosti Kornova typu obsahují kladnou konstantu, závislou obecn na oblasti. Vzniká 
otázka, zda-li tyto konstanty mají kladné infimum, když uvažujeme celou třídu omezených 
rovinných oblastí s lipschitzovskou hranicí. Dokazuje se kladná odpověđ na tuto otázku pro 
několik typů okrajových podmínek a pro dv třídy oblastí. 

Р е з ю м е 

НЕРАВЕНСТВА ТИПА КОРНА, РАВНОМЕРНЫЕ ПО ОТНОШЕНИЮ 
К ДАННОМУ КЛАССУ ОБЛАСТЕЙ 

IVАN Н^АVАСЕК 

Неравенства типа Корна ссдержат положительную псстояную, зависящую от области. 
Возникает вопрос, имеют ли эти посте якые положительБ)ю БЕЖБКЮ грань, если рас
сматривать некоторый класс ограниченных областей в плоскости. Доказывается положи
тельный ответ на этот вопрос для нескольких типов краевых условий и для двух классов 
областей. 

Атпог'а аМге$$: 1п§. Ьап Н^йсек, Ог8с, Мат.ета1юку йз1ау С8АУ, 2йпа 25, 115 67 
Ргапа 1. 

112 


		webmaster@dml.cz
	2020-07-02T06:52:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




