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KORN’S INEQUALITY UNIFORM WITH RESPECT TO A CLASS
OF AXISYMMETRIC BODIES

IvaN HLAVACEK

(Received September 15, 1987)

Summary. The Korn’s inequality involves a positive constant, which depends on the domain,
in general. We prove that the constants have a positive infimum, if a class of bounded axisym-
metric domains and axisymmetric displacement fields are considered.
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INTRODUCTION

In the shape optimization of elastic bodies we encounter the following question:
does a positive constant of the ellipticity condition exist, which is common for the
whole class of admissible bodies? The positive answer is crucial in proving the
existence of an optimal body. The present paper is devoted to the question in case
of axisymmetric problems. We have to work with weighted Sobolev spaces, which
stem naturally by transforming the displacement vectors with finite energy into
cylindrical coordinate system.

In Section 1 we formulate the Korn’s inequalities in the cylindrical coordinate
system, restricting moreover the space of displacement functions with finite energy
to the subspace of axisymmetrical vectors. Following some ideas of Haslinger,
Neittaanméki and Tiihonen [1], we prove the uniform Korn’s inequality for
different kinds of boundary conditions in Section 2.

1. FORMULATION OF KORN’S INEQUALITIES IN CYLINDRICAL
COORDINATE SYSTEM

We shall consider a bounded body occupying an axisymmetric domain Q < R?
with Lipschitz boundary (see e.g. [4] — chapter 1). The displacement vector u =
= (uy, 43, u3) belongs to the space W(Q) of functions with finite energy if each
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component u; in the Cartesian coordinate system X = (x;, x5, X3) belongs to the
Sobolev space H'(Q) (see [4] — chapt. 6). Let us denote by

g;(u) = 3(0u;[0x; + Ou;ox;)

the strain tensor components and let us introduce

3
i - [, 3 s ex.
Qi,j=1)
It is well-known, that the following inequality

) le(w)la + lulé.0 = (@) [u]Fa)
holds for all ue W(Q) = [H'(Q)]’.

Henceforth |+ |o,o denotes the norm in [I*(@)]°. For the proof of (1) see e.g.
[4] — chapt. 6, where we called it “coerciveness of strains”. In the literature it is
also called Korn’s second inequality.

Assume that the domain Q is generated by rotation of a two-dimensional domain D
around the z = x; axis (cf. [4] — 7.6.1 and 10.3). Let us pass to cylindrical co-
ordinates r, 9, z.

Let Z map each vector function u € W(Q), defined in Cartesian coordinates, onto
the ordered triple Zu = & = (u,, ug, u,) of the physical components of the same
vector at the corresponding point (r, 9, z).

Then the space W(Q) is transformed into

ZW(D x [0, 2m)).
Denoting
U =u, Ug=1v, U, =Ww,
the inequality (1) can be transformed — via mapping Z — into the following inequality
(2)  §57d9 [p[e2(@) + e35(d) + e2.(&) + 2¢%(h) + 2¢7(d) + 2¢5,(d)] rdrdz +
+ [57d3 [p (u* + v* + wH)rdrdz = ¢(Q) [57d9 [ [u® + v* + w?
+ (3ufor)? + (0w[0z)® + r~*(0v[09 + u)* + (dv[or)® +
+ r7%(0u/0% — v)* + (ow[or)® +
+ (0u/dz)? + r~2(0w[09)* + (0v/0z)*] r drdr,
where the last integral defines the norm of @ in ZW,
e, () = dufor, e.(@) =0w[oz, e(d)=r""(u+ 3v[09),
eo(@) = 27 (r™" 0ul0% + dvjor — vfr),
&.(d) = 271 (ow[or + 0uloz), &, =27'(r ' 0w[d9 + 0v/0z).
Let Wy(D) be the following subspace of axisymmetric displacements with finite

energy
Wo(D) = {die ZW(D x [0,2n))| v =0, 0u[0% = 0, dw[03 = 0} .
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For ii € W,(D) we have
©) @m)7" Julfa) = @m)~* 2w =
= [p[u? + (oufor)* + (0u[dz)* + u?[r® +
+ w2 + (0w[or): + (ow[oz)*] r drdz = |5, -
The second Korn’s inequality (2) in Wy(D) takes the following form
(4) §o [e2(8) + e35(8) + e2(d) + 26%(d) + u? + w?] rdrdz 2
2 (D) |5, Viie Wo(D).
On the basis of the relation (3) the space W,(D) can be identified with the space
H#(D) = (W5(D) 0 Ly 1(D)) x WEXD),
where W{')(D) denotes the weighted Sobolev space with the norm
lullsro = (o [u* + (Gufor)* + (0u[oz)*] r dr dz)'/?
and L, (D) is the space of functions with the norm
l#llo,1/r,0 = (Jo u?[r drdz)!iz.
Let L, (D) be the space of functions with the norm
lullor.o = (o u?r drdz)'/2.
Lemma 1. The embedding of #(D) into [L, (D)]? is compact.
Proof. Let a subset M be bounded in (D). Since (D) is a Hilbert space, there

exists a subsequence {d,} = M such that

i, — i (weakly) in #(D), (&= (u,w)).
Then

(5) i, — i (weakly) in [W§)(D)]?,

since (D) is continuously embedded into [ W4')(D)]?. In the paper [3] (— Lemma
4) we have proven that the embedding of W§')(D) into L, ,(D) is compact, so that
from (5) the strong convergence

in L, (D) follows. Consequently, the set M is precompact in [L, ,(D)]>. Q.E.D.
We shall consider a specific class of domains D(a), where

D(a) ={(r,2)|0 <r<afz), 0 <z<1}
and the functién o belongs to the following set

Upg = {0 e CY([0,1]) (i.e., Lipschitz function),
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i < 4(2) £ O, |defdz] £ C; 2},

'min

where i, %max and C, are given real constants.

Lemma 2. Let there exist a positive constant & such that the inequality (1) holds
with the constant & for all domains Q(a) = R®, a € U,q, where Q(«) is generated
by the rotation of the domain D(x) around z-axis.

Then the inequality (4) holds for all domains D(«) with the same constant &.

Proof is an easy consequence of the above mentioned transformation by means
of the mapping Z. To this end — see (3) and the relations (cf. [4] —7.6.2, 7.6.3)

(6) le()lo = 2nlle(d)]| 5 =
= 27 [pe, [e2(#) + e35(d) + €2(#) + 2¢%(a)] r drdz,
[ull5.0@ = 27 [ (u* + w?) rdrdz = 2z]d]3 , b »

holding for all & € Wy(D). Q.E.D.

Proposition 1. The Korn’s second inequality (4) in #/(D(x)) holds uniformly
with respect to a € U, (i.e., with a constant ¢ independent of ).

Proof. Let ns consider the class of axisymmetric domains Q(a) = R, a € %,,,
as in the proof of Lemma 2. There exists a set of open parallelepipeds {K j}, j=
=1,2,...,1I, covering Q(oz) for all « € %,4, independent of a and such that:

(i) any part of the boundary 0Q(«) N K is described in a system of local Cartesian
coordinates parallel with the edges of K; by a Lipschitz function with a Lipschitz
constant Lja) (cf. the definition of domains with Lipschitz boundary e.g. in
[4] — Def. 1.1.2);

(ii) there exists a constant Cy, such that

L) £Cp YaeUy, j=1,2,...,1.

From the results of Nitsche ([6] — Section 3) we conclude that there exists a con-
stant & such that the second Korn’s inequality (1) holds for all o € #%,4 with the con-
stant & = ¢(Q(x)). Making use of Lemma 2, we obtain (4) for all domains D(a)
uniformly. Q.E.D.

2. THEOREMS ON UNIFORM FIRST KORN’S INEQUALITY

The following inequality
™ le(@)a = () |#]H e

is called Korn’s first inequality. It does not hold, however, for any u e W(Q) Instead,
it is true on same subspaces of W(&), such as the subspace of functions vanishing on
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a part of the boundary 0Q. In the present section, we show several kinds of subspaces,
where the inequality (7) holds even uniformly, i.e. with a constant independent of
Q(a), o€ U,q. We again restrict ourselves to axisymmetric fields of displacement
functions defined on axisymmetric bodies.

Theorem 1. Let us define
Usg = {a, | o(2) = a(z) — &, x € Uuq, £€ [0, 0[2]} .

Assume that V,(D(«)) and Vy(D(x)) are subspaces of 3#(D(«)) satisfying the fol-
lowing two conditions:

(H1) there exists &g € (0, ttpin/2) such that
{ie V(D(x)), a€ Upg, BEUig, 0 < a(z) — B(2) < &, ¥z€[0,1]} =
= ipg) € V3(D(B)) ;

(H2) Korn’s first inequality holds on Vo(D(B)) for all e %y, i.e., there exists
a constant c,(f) such that

(®) le(@)[[5is) 2 €1(B) ]2
holds for all & e V(D(P)), where the left-hand side has been defined in (6).

Then Korn’s first inequality holds on V,(D(«)) uniformly with respect to «, i.e.,
there exists a positive constant ¢, independent of o € U,q, such that

) le(w)|5@ = clllZmay Vie Vy(D(x)).

Proof is based on same ideas of the Appendix in the paper [1]. Let (9) be false.
Then there exist sequences {«,} and {&,}, n = 1,2,..., @&, V(D,), &, € U,4 (Where
D(a,) = D,), such that

(10) le(@) |5, < ™ @, -
Without any loss of generality we can set
(11) |40, =1 Vn.

Since the set %,4 is compact in C([0, 1]), we can find a subsequence (and denote it
by the same symbol) of {a,}, such that

a0, = a in C([0,1]), ae,,.
Then

(12) (@), ~ 0
follows from (10), (11) for n — oo.
Using Proposition 1, (11) and (12), we conclude that

(13) 15,0, = €2
for n sufficiently large.
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Let us denote D(a — 1/m) by G,,. Since G,, < D, for n > ng(m), from (11) we
obtain

2.y £ 1 VY1 > ng(m).

There exists a subsequence {#} of {#,} such that

(14) it - i (weakly) in #(G,).
The subspace V(G,,) is weakly closed. Then (14) and (H1) imply that
(15 4 V()

if m is large enough. Since the functional

i — ()],

is convex and differentiable, it is weakly lower semicontinuous. Consequently, we
have

le(@)|5,, < lim inf [le(,)[G,, = ©
k=
as follows from (12). The assumption (H2) and (15) imply that

=0
in G,,, provided m is large enough.

Using (14) and Lemma 1, we obtain
(16) i, -0 in [L,,(G.)]*.
On the other hand,

(17) l@5.r.0. = 85,06, + 185 560
holds for k > ko(m).
‘We can derive the estimate

(15 16013 00-, S ¢ max o) = 1m = ()]
ze[0,1]
with ¢ independent of k, m and «a. In fact,

3.0, D=6, = man |86 - 6

and for the norm in [I*(D, — G,,)]* the estimate (18) holds (see [1] — Appendix).
Consequently, we have

(19) |83 -6 < €[4
for m and k sufficiently large, k > ko(m). Combining (19), (17) and (13), we arrive at
|2]5.r.6., = ¢/4

for k, m sufficiently large, k > ko(m), which contradicts (16). Q.E.D.
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Let I be a part of the boundary 0D — 0, where @ denotes the z-axis and I' has
a positive length. In (D) we can define the trace operator. In fact, since any
component u or w of & belongs to WEI}(D), we can use the linear continuous mapping

y: WD) - Ly T)
(see e.g. [3] — Section 1).

Next we present several examples of boundary value problems, to which Theorem
1 can be applied.

1. Dirichlet conditions on a part of the boundary

Let us define
V,(D(a)) = {iie #(D(x))| yu = yw = 0 on I'y(a)},
where I'y(a) = dD(x) = 0 = I'(x) and I'(«) is the graph of the function o (for
ze[0,1]),
meas I'y(«) 2 a >0 Vae,,
with a € R independent of «;
Va(D(B) = (e H(D(B)|yu = 1w = 0 on T(B)},

where I'y(B) = dD(B) ~ 0, meas I'y(B) > 0.

It is not difficult to verify (H1). The assumption (H2) follows from an analogue
of Lemma 2 and the well-known Korn’s (first) inequality for displacement functions
vanishing on a part of the boundary of a three-dimensional body (see e.g. [4] —
Section 7.4).

2. Traction boundary value problem
/
Let us define the set of rigid body displacements

P={l=uw|u=0w=ceR}
(see [4] — Section 10.3) and the following functional

p(d) = 5" yw(r, 0) r dr.
If we introduce

Vo(D(®) = V3(D(x)) = {# e #(D(«)) | p(8) = 0},

then it is readily seen that (H1) is true.
Since

2 0 Vy(D(B)) = {0}

holds for all B € %24, the Korn’s first inequality (8) is true for i e V)(D(p)). In fact,
in Cartesian coordinates the inequality (7) holds in the following subspace of

w(Q(B)):
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VaAQ(B) = {ueZ™ Wo(D(B))| p°(u) = 0},

where
P°(u) = [s, yus(xy, x5, 0) dx, dx,
and S, < dQ(p) is the disc generated by rotating segment
{(r,2)| 0 < r < opef2, z = 0} .

(For the proof — see e.g. [4] — Section 7.4 or [5] — IL) Using the mapping Z, we
are led to the Korn’s first inequality in V(D(B)).

For both the examples mentioned above, Theorem 1 yields Korn’s first inequality
(9), uniform with respect to a € %,q. -

If the displacements vanish on the variable part I'(a) of the boundary, the fol-
lowing subspace has to be considered

V(D(x)) = {@ie #(D(x) | yé = 0 on I'(x)}.

We cannot apply Theorem 1, however, since the condition (H2) is violated. Instead,
we are able to verify the uniform Korn’s inequality by a simple idea, as follows.
Let us define

Ugy = {ae COY[O, 1]) | ttpin < (2) £ Xppas) -

Then a positive constant ¢ exists, independent of ae %Y, such that the Korn's
inequality (9) holds for all & € V(D(«)) and « € %g,.

In fact, let us extend ée V(D(x)) by zero to the domain D = (0,6) x (0, 1)s
where 6 is any number greater than «o,,,,. Denoting the extension by Ed, we conclude
that E# belongs to the space V(D) = {die #(D)|vd = 0 on I';}, where I, is the
graph of the constant function « = §. It is easy to verify the Korn’s inequality

”"3(E’7)“12) = Ca]lE'illff(D> VEii e V(D)

via the relations (3) and (6). Since Eé = 0 outside D(«), we obtain (9) with ¢ = ¢,
for any & e V(D(a)), x e %Y.

N\
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Souhrn

KORNOVA NEROVNOST STEJNOMERNA VZHLEDEM KE TRIDE
OSOVE SYMETRICKYCH TELES

IvAN HLAVACEK
Kornova nerovnost obsahuje kladnou konstantu, kter4 obecné zavisi na oblasti — t&lese.

Dokazuje se, Ze tyto konstanty maji kladné infimum, uvaZujeme-li celou tfidu omezenych osové&
symetrickych téles a osové symetricka pole posunuti.

Pesiome

HEPABEHCTBO KOPHA, PABHOMEPHOE ITO OTHOIIEHUIO K HEKOTOPOMY
KIIACCY OCECMMMETPUYECKUX TEJL

IvAN HLAVACEK

Hepasencrso KopHa COIepXUT NOJOKUTEIBHYIO IOCTOSHYIO, KOTOpast B OOIIEM Ciiy4ae 3aBUCHT
OT 0b1acTd — Tena. J{oXa3hIBaeTCsl, 4TO ITH OCTOSAHBIE 06J1aJaI0T HOJIOKHTENHHO HIKHER IPaHIo,
€CJTH PaCCMaTPHBATh HEKOTOPKIH KJIaCC OrPAHHYEHHBIX OCECHMMETPHYECKUX TEJT U OCECAMMETPHYEC-
KHe HOJIsI NepeMENICHHI.
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