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ON CAUCHY PROBLEM FOR THE EQUATIONS 
OF REACTOR KINETICS 

JAN KYNCL 

(Received May 18, 1987) 

Summary. In this paper, the initial value problem for the equations of reactor kinetics is 
solved and the temperature feedback is taken into account. The space where the problem is 
solved is chosen in such a way that it may correspond best of all to the mathematical properties 
of the cross-section models. The local solution is found by the method of iterations, its uniqueness 
is proved and it is shown also that existence of global solution is ensured in the most cases. 
Finally, the problem of mild solution is discussed. 

Keywords: Initial value problem, reactor kinetics, analytical solution, neutron flux, temperature 
feedback, local, global and mild solution. 

INTRODUCTION 

Let us consider a nuclear reactor and study the behaviour of the neutron field and 
the changes of the material composition of such an equipment in time. In a good 
approach, the differential flux cp and the material density Nt (i = 1, 2,. . . , n) are 
described by the equations 

(la) --? + yJ(2E) coV<p = AX(N, T, x, E,t)cp + A2(cp, N, T, x, E, co, t) + 
dt 

+ A3(N, T, x, E, t) + y/(2E) S0(x, E, co, t) 
and 

(2a) — = I Btj(cp, N, T, x, t) + St(x, t) (i = 1, 2,..., n) . 
dt j-=i 

Here N = (NX,N2, ...,JV„) means the vector of material density and the following 
notation is used: 

A, = - V(2E) £ Nt(x, t) (asi(E, T) + aai(E, T)); 

A2 = V(2£) I Nt(x, t) ft d£' Jft dcof cp(x, Ef, cof, t) [asi(E
f -> E, cof -> co, T) + 

i = l 

+ aili(E)vi(E',T)afi(E',T)-\; 
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A3 = V(2£)ZN i(x,f)A iz i(£); 

B y = Nj(x, t) {J? d£ j a do <p(x, E, a, t) [atJ(rOJ(E, T) + bijfffJ(E, T) + 

+ cijVj(E,T)<TfJ(E,T)-] + diJ}; 

x, E,(o,t . . . coordinates of location, kinetic energy, direction and time, respectively; 
Q . . . surface area of the unit sphere; 
T . . . absolute temperature; 
asi(E, T), aai, ofi . . . microscopic effective cross-sections for scattering, absorption 

and fission, respectively; 
asi(E' -* E,(o' -* (o,T) . . . microscopic differential cross-section for scattering; 
Vf(£', T), Xi(E) • • • the number of neutrons created in the process of fission and the 

fission spectrum; 
S0,St . . . external source terms; 
« . . . the number of different nuclei; 
ai?A£ . . . nonnegative constants; 
aV> btp cip du • • • constants; 

Equations (la) and (2a) together with the initial conditions 

(lb) (p(x, E, (o, 0) = cp0(x, E, (o) 

and 
(2b) Ni(x,0)=NOi(x), (i = l ,2, . . . ,n) 

express mathematically the problem of reactor kinetics. Temperature T can be 
Understood either as a given quantity or as a function of the neutron flux and of the 
iiiaterial density which is governed in general by some equations (the temperature 
feedback effect). The problem in the above formulation has not yet been solved in 
general and only some particular cases were analyzed. 

For instance, the case of multigroup transport approximation in plane geometry 
was studied in the paper [ l ] . The delayed neutrons were taken into account but 
changes of material properties were not considered in the equation for the neutron 
flux. Next, in the book [2], the temperature feedback effect was studied both for 
the one-speed transport approximation and for the energy-dependent equation. 
Furthermore, delayed neutrons and xenon poisoning were considered. On the other 
hand, it was assumed there that 

{E, T} e [0, Emax] x [Tmin, Tmax] 

where Fmax, Tmin and Tmax are finite positive numbers, and the material densities 
N((x,t) (i — 1,2, ...,n) were assumed to be bounded functions. Moreover, the 
dependence of the integral term in Eq. (la) on the time changes of the material 
densities was not considered there. Discussion of the problem for the case of one-
group diffusion approximation can be found in the book [3]. In this paper we will 
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deal with the initial value problem having the form (l) and (2). First, the basic physical 
properties of the medium will be stated in four generalizing suppositions (which are 
satisfied in all known real cases, of course). Then a space of functions will be chosen 
appropriately with respect to these properties. Next, considering the temperature 
feedback effect, we will investigate the question of existence and uniqueness of a solu
tion to this problem. Finally, we will show conditions under which the global 
solution exists and we will also look for the so called mild solution to this problem. 

BASIC ASSUMPTIONS 

Supposition 1. For any element i = 1, 2 , . . . , n the following assertions hold: 

a) The effective cross-sections osh aai and ofi are real nonnegative functions of 
energy E e (0, oo) and of temperature T e (0, oo). These quantities together with the 
functions 

^si(E,T), jTCa{E,T) and A f f / , ( £ , T) 

are finite, continuous in the variable T for any E and sectionally continuous in the 
variable E for any T 

b) There exist continuous functions a{T), b{T): (0, oo) -> (0, oo) such that 

oti{E, T) .= asi{E, T) + oai{E, T) ^ ^ + b{T) . 

Supposition 2. For any element i = 1,2, . . . , n the differential effective cross-
section asi{Ef -> E, a>f ~> co, T): (0, oo) x (0, oo) x Q x Q x (0, oo) -> (0, oo] has 
the form 

asi{Ef -> E, a>f -> co, T) = a]asi{Ef E, of, a>, T) + 

+ a2 £ a2J{Ef, E, a>\ a>, T) 5{E - Ef + Ej) + 
1=i 

+ a] t aJ{Ef, E, of, a>, T) 8{Ef - E) d{coo>f - 9j{E)) . 
1=i 

Here J\ is a positive integer, Ej and a) {j = 1,2,.. . , Jh k = 1, 2, 3) are nonnegative 
constants, g/F): (0, oo)-> [—1, 1] are sectionally continuous functions and 
(5(E' — E) is the Dirac function. The functions a]h a2J and aj {j = 1, 2 , . . . , J£) 
are nonnegative. 

Let/(F) be a positive function of energy. For brevity, we denote 

F\{f, Ef, o>', E, a>, T) = V ( 2 F ) ^ asi{Ef ~> E, co' -> co, T) , 
/ ( £ ) 
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F](f, E', co', £, co, T) = V(2£) X*(E) *„(£', T) v,(£', T ) ^ , 
/ ( £ ) 

£ ? ( / £', co', E, co, T) = / (£ ' ) <rfll(£', T) , 

£?(/, £', co', E, co, T) = / (£ ' ) *-(£', T) , i = 1, 2 , . . . , n . 

Supposition 3. There exist functions/0 and /^ . (0, oo) -» (0, co) with the following 
properties: 

a) They are bounded, sectionally continuous and such that 

«(i + V £ ) / o ( £ ) ^ / i ( £ ) 

where a > 0 is a finite constant. 

b) For any given T e (0, oo), the functions 

f °°d£' j dco' F{(fk9 £ ' , co', E, co, T) and — f d.E' f dco' F{(f09 £ ' , co', E, co9 T) 
Jo Jn dTj0 Jft 

(i = 1, 2 , . . . , n; j = 1, . . . , 4; fc = 0,1) are bounded a.e. 

c) For any T0 e (0, oo) there exist finite positive constants 5X and Cx such that the 
inequalities 

f°°dE' f dco'|F{(/k, £ ' , co', E, co, T) - F{(fk, £ ' , co", E, co, T')\ = CX\T - T'\, 
J o J ft 

P d £ ' f d o ' | A £{(/<,, £ ' , « ' , £ , «), T) - 4~, FXfo, £ > ' , E, co, T')\ S CX\T - T'\ 
Jo J n \oT 8T | 

(£ = l,2,...,n;j = 1,2; fc = 0, l ) , 

|F{(A, £ ' , o>'; £, to, T) - F\{fk, £ ' , to', £, co, T')\ ^ 

^ C,\T - T'\ F{(fk, £', to', E, to, T0) 

and 

^~F{(fк9 £ ' , co', £, co, Т) - - A F{(Л, £ ' , co', E, co, Г ) 
ðТ ð Г 

^ C i l T - r |F{(A,E ' , co ' , £ 5 co ,T 0 ) 

(i = 1,2, . . . , n ; j = 3,4; fc = 0,1) hold for any T, T ' e ( T 0 - <5l5 T + O\). 

It can be shown that Suppositions 1, 2 and 3 are satisfied for all models of scattering 

and fission cross-sections usually employed (see e.g. [4]). 

Consider a number T > 0, a function / ( £ ) : (0, oo) -» (0, co), and denote by Mx 

and Mx the sets R3 x (0, oo) x Q x [0, T] and R3 x [0, T ] , respectively. 

Definition. We will say that a function <P(x9 E,co,t): Mx ~> Rx belongs to the 
linear space m(/, T) if: 
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vraimax 
Mr 

i) For almost all pairs {E, o}, the function <P is continuous in the variables x 
and t while the functions (djdxt) <& (I = 1, 2, 3) and (djdt) <P are finite in these 
variables a.e. 

ii) The number 

/ 
is finite. Similarly, the function W is said to belong to the linear space m(t) if: 

j) W is continuous on MT, the function (d\dxt) W (I = 1, 2, 3) and (d\dt) W being 

finite a.e. 

jj) The number 
vraimax \W\ 

Mx 

is finite. The norms in the spaces m(f, T) and m(t) are defined as | # | | / , t = 
= vraimax |$/f| and \\W\\r = vraimax \W\, respectively. 

Mr MX 

In what follows, the symbols | |$ | | / ,T and \W\X will mean the values vraimax | # / / | 
Mr 

and vraimax \W\ but not necessarily $ e m(f, T) and W e m(%), respectively. 
Mx 

For any cp e m(f, T) and Nt e m(x) (i = 1,2, ...,n), let us denote 

cp°(x, E, a), t) = cp(x, E, o), 0) , 

N?(x,t)^Nt(x,0) and | | - V | | t ^ t | N | t . 

In the majority of practical cases, the following assumption can be expected to be 
satisfied (see e.g. [5]): 

Supposition 4. The temperature is a positive quantity, T = T(x, t, cp, N). There 
exist positive numbers T°, d0, 6, a} (j = 1 , . . . , 5) such that, if we denote 

M = &{x, t, cp,N;xe R3, t e [0, c50] , cp e m(f0, d0) , Nt e m(80) , 

i = l,2,...,n; \\<p - tp%0,d0 + HIV- LV°||5o <L 3} 

then the following assertions hold: 

a) T(x, 0, cp°, N°) = T° and T(x, t9<p9N)^a1 on M. 

b) The function T(x, t, cp, N) is continuous in the variables x and t for any pair 
{(p, IV}, {x, t, (p,N}e M and 

\T(x,t,cp',N')-T(x,t,cp",N")\^ 

= *l(l<P' " <P"\\fut + \W'° - <P"°\\fut + I-V' - ^ 1 . + 11^'° - ^ ° | | r ) 

for any quadruplets {x, t, q>', N'}, {x, t, <f>", N") e M. 
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c) 

— T(x, t, ę, N) 
õxt 

= взílklл . + J{ ҜIІЛ,. + 

+ \\Щ, + Jt\\N% + ---iV| + I — л r 0 

ŐXj || ř | |ðX| 

— q>\ + — <p 
8Xl 11/!,ř II ̂ J 

) + c 4 , 0 = 1,2, 3) 

л.» 

on the set M. 

d) For any quadruplets [x, t, cp, N}, {x, t, (pf, N'} e A4 we have 

ôx 
(T(x, t, <p, N) - T(x, t, q>', N')) á <*s(\\<P ~ <P'\ л,< + 

дxt 

(<P - 9') + 
fi,t 

+ -T, l*° - ^11/..' + \T-(9° ~ <P'°)\\ + I I " - !V'||, + \±(N- N) 
y/t \\OXl \\f t \\OXl 

+ 

+ ±\\N°-N>% + 
ôx 

(N° - Лt'°) ) , 0 = 1,2,3) 

SOLUTION TO THE CAUCHY PROBLEM 

In what follows, we will assume that the basic suppositions 1 — 4 are satisfied. 

Keeping the above notation we will suppose that the constant <5 > 0 in the definition 

of the set A4 is chosen in such a way that Supposition 3c) is also satisfied. 

Theorem 1. Let the following assumptions be satisfied: 

a) The functions cp0 and Noi (i = 1,2,..., n) are finite, nonnegative, and the 
functions 

±(&) and -^N0i 0 = 1,2,3) 
d*i V/i / 8xi 

are bounded. Furthermore, 

vraimax — ^ - . 
Я 3x(0,oo)xfì f0 6 

b) There exists a number tx > 0 such that y/(2E) S0(x, E, m, t) e m(f0, tx)9 

So = 0 and S^x, t) e m(*i) (i = 1, 2 , . . . , n) while the functions 

8 /V(2F )S 0 \ j dSt , . A „ ^ 
v i _ ^ and i (/ = 1,2,3) 

dxt V fi / dxt 

are bounded on the sets Mtl and M*\ respectively. 

c) In the expression for Bij9 the constants atj, btj, ctj and dtj are nonnegative 

(nonpositive) in case i 4= j (i = j) (i,j = 1, 2 , . . . , n). 
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Then there exists a number t2 > 0 such that the Cauchy problem (1) and (2) 
has a unique solution <p and Nt (i = 1, 2,..., n) which belongs to the space m(f0, t2) 
and m(t2), respectively. 

i/i.т = "" IГІI/o.tэ 
a 

Proof. Let us confine ourselves to the set M (see Supposition 4). It is seen that 

T e (0, oo) . 

Then, by virtue of Suppositions lb), 3c) and 4b) we have 

<3a) \A_(N, T, x, E, t)\ g | (N0i + 5) J(2E) cti(E, T0) (1 + C_\T - T0\) ^ 
i = l 

< jtj{2E) (a(T0) --L + b(T0)\ (N0i + <5) M,(8), 

(3b) | A2(cp, N, T, x, E, <o,t)\S fo(E) M2(S) 

and, similarly, 

(4a) \A3(N, T, x, E, t)\ < /0(E) M3(5), 

(4b) |Bi;(<p, N, T, x, E, t)\ < M4(<5) (i,j = 1,2,..., n) 

where M,(<5) (/ = 1,2, 3, 4) are finite constants. From the relations (3b) and (4) it 
follows that there exists a number <50 > 0 such that the inequalities 

<5a) 

and 

<5b) 

ľds(M2(ő) + M3(<5)) < i 
Jo 

í ds M4(<5) < ð_ 

6и 

are fulfilled for any t e [0, <50]. Next, by assumption a) of Theorem 1 and by the 
estimates (3a) and (5b) there exists a number <50 > 0 such that 

(6a) \ę0(x, E, (o) - ę0(x - j(2E) ot, E, co) 

. exp i j ds A^N, T,x - V(2E) <a(t - s), E, s) 

<6b) |JVOÍ(X)| 1 - exp { ("ds — / — Bn(<p, N, T, x, s) 
Uo !W,s) 

< ô fo(E) 

< f (. = 1,2,...,») 
6n 

hold for any fe[0, 50]. Finally, by assumption b) of the theorem, there exists 
a number <50 > 0 such that the inequalities 

<6c) í ds V(2£) 50(д; - V(2E) <o(t - s), E, <o, s) < /0(£) 
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and 

(6d) f d s | S ; ( x , s ) | < ^ (i = 1,2,...,») 
Jo 6 

hold for any t e [0, <50]. Now we see that the constant 80 which occurs in Supposition 
4 can be chosen in such a way that, for any quadruplet {x, f, <p, N} e M, the relations 
(3)-(6) are fulfilled at the same time. In what follows we will assume this property. 

Consider t e [0, t/J, where without loss of generality we put f x = <5o> an (l examine 
the following iterative process: 

<p(0)(x, £, co, t) = <p0(x, £, o>) , 

iV°(x, t) = At0(x) = (N01(x), ...,N0„(x)) , 

T(0>(x, t, <p, At) = T(x, t, <p0, At0) 

(7a) cp(k\x, E, «, t) = J0 dS P("-U)(x, E, a,, f, s) {V(2E) S0(y{s), E, a, s) + 

+ A(t ^ ( s ) , E, co, s) + Af-'X^s), E, s)} + 

+ <Po(y(ty, E, co) P ^ - ^ x , E, co, i, 0) , 

(7b) Nf\x, t) = j 0 dS Qf- x>(x, t,s){t Bi/<p(fc-1>, At<*~ 1>, T("-1>, x, s) + 

+ S i(x,s)}+iVoi(x)Qf-1>(x,t,0) 

(i = l ,2, . . . ,n) 
and 

Tw(x, t, <p, At) = T(x, t, <p(fc), Atw) (k = 1, 2,...) . 

Here we have put 

j>(s) = x - V(2E) (o(t - s), se [0, t) , 

Af\y(s), E, s) = A^AtW, T(">, j<S), £, s) (i = 1,3), 

A[k\y(s), E, co, s) = A2{<p«\ At« T(*>, y(S), E,co,s) (k = 1,2,...) . 

P(x, E, <o, f, s) = exp {<< dSl A,(At, T, y(Sl), E, s.)} , 

P(t>(x, £, o, t, s) = exp {j< dsx A[k\y(Sl), E, st)} , 

Qf(x, t, s) = exp {j's dSl(iVi(x, s,))"x B , ^ , At, T, x, Sl)} and 

Qf\x, t, s) = exp {K dSl(N?>(x, S l))~1 B ^ w , At(">, T(k>, x, Sl)} 

for brevity. Obviously, for any {x, t} e M*°, the quadruplet {x, t, <p(0>, Ar(0>} belongs 
to the set M. Using the estimates (5a), (6a) and (6c) we find by (7a) 

\cpw(x, E, co, t) - <p(0)(x, E, co, t)\ g - / 0 (£) 
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while by (7b), using (5b), (6b) and (6d) we have 

\N\xXx, t) - N(0)(x t)\ £ — (i = 1, 2,.. . , n) . 
In 

Therefore 
lk(1) - <P(0)\\foM + ll!V(1> - N(°%0 = 5 

so that again {x91, (p{1\ N(1)} e M for any pair {x, t} e Md°. Recurrently, using (7) 
together with the estimates (5) and (6) we obtain 

(8) \W(k) - <P(0) |U„ + ||!v<*> - ;v<°t 0 = b 

so that the quadruplet {x, t, <pw. N(k)} belongs to M for any [x, t} e MSo and any 
k = 0,l,.... 

Now, we will examine the convergence of the iteratives. Using (7) we find the 
following recurrent integral formulas: 

(9a) cp(k+1\x, E, co, t) - cp(k\x, E, co, t) = 

= J0 ds{[Pw(x, E, co, t, s) - P^-^x, E, co, t, s)] [A(k\y(s), E, co, s) + 

+ A(k\y(s), E, s) + V(2E) S0(y(s), E, co, sj] + 

+ P^'^x, E, co, t, s) [A(k\y(s), E, co, s) + 

+ A(k\y(s), E, s) - A(rX\y(s), E, co, s) - Af'1^), E, s)]} + 

+ <po(y(0), E, co) [P(k\x, E, co, t, 0) - ?<*-*>(*, E, co, t, 0)] , 

(9b) Nf +1\x, .) - Nf\x, t) = j< ds{[Q<*>(*, t, s) - QT*>(*, t, s)] . 

• [ £ W ' , N(k\ T(k\ x, s) + S((x, s)] + 
J*i 

+ Qf-l\x, t, s ) I [Btj(cp(k\ N(k\ T(k\ x, s) - B^-^N*-", I*"" , x, s)]} + 
j*i 

+ N0i(x) [Qf\x, t, 0) - Qf'^x, t, 0)] (i = 1,2,..., n; k = 1, 2,...) . 

Suppositions 3c), 4b) and relations (8) imply 

(10) |A(k\y(t), E, co, t) - A(k-l\y(t), E, co, t)\ = 

= C1/1(E){I<P("> - ^ - " l l / , . . + ||lV(t> - N(k-%} + 

+ c2/0|T«<> - T<*-"| = C3/1(E){||-P(t> - <P(*-1)||/ll, + ||!V(*> - N»-%} 

for any fc = 1,2,... and any / G [ 0 , ( 5 0 ] . Here CUC2 and C3 are positive finite 
constants. Similarly, we find 

(a) i.A^o.-j.o-^r^o.-j.oiss 
= C4/.(£) {||̂ > - ^-"l , , , , + ||!V« - N(k-%} , 
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|Af(KO,£,t)-<-1VW.£.OI = 
S C5a(l + V£){|k (k ) - 9<*-%ut + ||!V« - .V»--)|J , 

|B,Xfl»»>, At(k>, Tw, x, r) - B^-^NW, Tf*"1', *, 0| ^ 

= C6{||^> - <p(*-1)||/l(f + ||N« - At**-1'!,} 

(i, j = 1, 2,..., n) where C4, C5 and C6 are finite positive constants and fc -̂  1, 2, ._ 
Define functions 

F(*+D(t) = | | ^ + 1 ) - cpW\\fitt and G(fc+1)(f) = ||1V(fc+1) - 1V(fc)||f, 

te[0,do], fc = 0 , l , . . . . 

Using the stimates (10), (11) and the relation 

| e - * ~ e - ' | £\x-y\9 x,y = 0 

we get from (9) the recurrent inequalities 

(12) F(fc+1)(r) = A Jo ds(F(fc)(s) + G(fc)(s)) , 

G(k+1)(0 = A Jo ds(F(k)(s) + G(fc)(s)) 

where A < oo is a constant. Clearly, 

E(D(t) + G
(1)(t) ^ C 

where C < oo is a constant and, therefore, 

(13) F(fc+1)(r) + G(fc+1)(t) = CL2^! , fc = 0, 1, 2, . . . . 
fc! 

Taking into account this inequality we see that, for any E e (0, oo) the iteration 
process (7) is uniformly convergent in the variables x, o, t on the set R3 x Q x 
x [0, <50] a.e. By inequalities (8), the numbers ||<p(fc)||/o,5o and \\N?%0 (i = 1,2,..., n) 
are uniformly bounded with respect to k = 1, 2, . . . . Next, by virtue of the basic 
assumptions, for any k, the functions N(.fc) and <p(fc) (i = 1,..., n) are continuous in 
the variables x and t (for almost all pairs {E, co) in the case of the function <p). 
Therefore, the limit functions 

Nt(x, t) = lim N(-fc)(x, t) and cp(x, E, m, t) = lim <p(fe)(x, F, <*>, f) 

have these properties, too. Obviously, they satisfy the Eqs. 

(14a) cp(x, E, a, t) = ft ds exp {£ ds, .A.(A; T, j fo), £, ,.)} . 

. [.42(>, At, T, Xs), £, », s) + <A3(At, T, j<s), £, s) + 

+ V(2E) S0(y(s), E, a>, s)] + <z>0CK°), & m) exp {J0 ds, ^(At, T, y(Si), E, s.)} 

where j(s) = A: - V(2£) e>(* - s), T = T(y(s), s, <p, At), and 
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(14b) % t) = ß ds{ X By(<p, At, T, x, s) + S,(*, f)} Qi(x, t, s) + 

+ NOi(x)Qi(x,t90) (i = l ,2, . . . ,n) 

where T = T(JC, S, 9, IV). 

Now, let us examine the functions d(p{k)jdxl and dNf)\dxl (i = 1,..., n; I = 1, 2, 3; 
k = 0,1,...). The necessary recurrent relations can be obtained by differentiating 
Eqs. (7) with respect to the spatial variables. Clearly, the right hand sides of these 
formulas will be linear with respect to the functions d(pik~1)\dxh 5N(

j
k"1)/3xz and to 

the first spatial derivatives of the effective cross-sections, external sources and of 
initial values. Set 

P\t) WЛ = max 
Ш ,<*> 

дxг 

and g(k)(ŕ) = max 
fi.t 

ðдr(fc) 

дxi 
, í є [ 0 , í o ] 

and recall that the effective cross-sections depend on the spatial variables only via 
the temperature dependence. Considering the estimate (8), Suppositions 3b), 4c) and 
assumptions a) and b) of the theorem we find 

(15) f«\t) ^A\'0 ds(J«-»(s) + g«~ »(s)) + B , 

g«\t) g A jo d - t r * - 1 ^ ) + §«-»&) + B (fc = 1,2,...) 

where A. and B are finite positive constants. Therefore 

(16) f«\t) + g»\t) ?k 2Be2At, te [0,« o ] 

for all k = 0 , 1 , . . . , Finally, let us set 

F t + 1>(í) = max Ôę' (ic+l) 

ŐXj 
and Ő(,c+1>(í) = max 

/„. ' 
(fc = 0, l , . . . ) . 

ðЛř»+1) őЛtw | | 

ðx. ðx I l lř 

Appropriate recurrent formulas for these functions will be obtained by differentiating 
(9) with respect to the spatial variables. If the estimates (8), (13) and (16) are applied 
together with Suppositions 3 and 4, we get 

І?(Ł+1>(í) ^ A ľds(E«(s) + ðw(s)), + fc! 

G»*Щ й A \'ds(F»\s) + ö«\s)) + Ьţţ- (fc = 1, 2,...) 
Jo fc! 

where A e (0, 00) is a constant. Therefore, 

(17) l*+Щ + (p+ЩйJѓţţL te[0,S01 
(k - 1)! 
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So, we have come to the following conclusion: Sequences 

m - and I f T ( , . - ! . 2. S i ( - 1 . ) 
I d*i Jfc-o I 3x, Jfc=0 

are uniformly convergent in the corresponding variables a.e. and their limit values 
are the functions dcp\dxl and dNijdxh respectively. Further, cp e m(/0, d0) and 
Niem(50)(i = l ,2 , . . . ,n) . 

Now, applying the operator 9/St to Eqs. (14), we obtain Eqs. (1) and (2). Conversely, 
let cp and Nt (i = 1, 2, . . . , n) be solutions to problem (1) and (2), cp e m(f0, S0), 
Ni e m(S0). Let us substitute t -> s, x -> x — sJ(2E) w(t — s) in Eq. (la) and multiply 
this equation by the factor exp {J* ds1 A(N, T,x — <s/(2E) co(t — s±), E, sx)}. 

Finally, integrate the whole expression with respect to the variable s over the 
interval [0, t\, t e [0, SQ]. In this manner we obtain Eq. (14a). In Eq. (2a) the variable 
x has the meaning of a parameter. Integrating (2a) over the interval [0, t], t e [0, <50] 
with respect to the time variable, we obtain Eq. (14b). By virtue of the basic as
sumptions, all operations just mentioned are justified. 

It remains to prove uniqueness of the solution. Suppose there exists another 
solution (p± e m(f0, t2) and N] E m(t2) to problem (l) and (2). Denote 

<?2 = <P ~ <Pl , 

Nf^Nt-N] (i = l ,2 , . . . , n ) , 

*t0 = IWL. t and G(t) = \\N% , te[0, t2] . 

Using (14) we obtain equations of the form (9) for the functions q>2 and N?. Then, 
applying Suppositions 3 and 4, we find 

(18) F(t) + G[t) ̂  A ft dtl(F(tl) + G(fl)) , t € [0, t2] 

where A < oo is a constant (the derivation of this inequality is analogous to the 
derivation of (12) from Eqs. (9)). Obviously, we have 

F(t) + G(t) ^ C , te[0, t2] 

where C e (0, oo) is a constant (the first estimate). Using (18) recurrently, we get 

F(t) + G(t) S C M ^ W W (k - 1)1 

for the fe-th estimate. Therefore, 

F(t) + G(t) = 0 

on the set [0, t2~\ and the theorem is proved. 
Theorem 1 ensures existence and uniqueness of the solution to the Cauchy problem 

(l) and (2) only for a certain finite time interval. Here we will show that, under very 
general assumptions, the solution can be extended to the whole interval [0, oo). 
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Supposition 5. a) There exists a constant B e (0, oo) such that 

0 SNt(x,t) SB (i = 1,2, ...,n) 

everywhere on the set M00. 

b) There exist constant Bx and B2 e (0, oo) such that Te \Bi,B2~\ for any pair 
{x, t) e M°° and Supposition 3c) holds for any T, T e [Bu B2\ 

c) •S/(2E) 5 0 e m(f0, oo) and Sf e m(oo) while the functions 

f ^ f a„d M. (,-1.2...,.; I - 1.2,3) 
fo(F) Ox* dxt 

are bounded on the sets M^ and M00, respectively. Furthermore, Supposition 4 
holds for arbitrary option of the time scale origin and arbitrary 5 > 0. 

As for Supposition 5a), it is fulfilled automatically in the case of fission elements 
[3] . In all practical cases, kinetic equations (2) have the property that, independently 
of the particular form of the neutron flux cp, they do not permit infinite increase of 
material density in finite time. The validity of assumption 5a) can be ensured also 
by a suitable choice of sources St (i = 1,2,.. . , n) which in practice corresponds 
to the exchange of burnup fuel or the removal of superfluous material. By manipu
lating the control rods and the coolant system properly we can ensure the validity 
of assumption 5b). 

Now, consider the Cauchy problem (l) and (2) and assume that Suppositions 
1 —5 are satisfied. Take z e (0, t2) (see Theorem 1) and put 

cp0(x, E, w) = cp(x, E, a), T) , 

N0i(x) = Ni(x,x) (i = l,2,...,n) 

where cp and Nt are solutions to the problem in the spaces m(/0 , t2) and m(f2), 
respectively. Clearly, 

|0o| < ldfo(E) • 

But, according to Supposition 5, the value of the constant 5 in Supposition 4 can 
be replaced by the value S = 75. Then the functions cp0 and N0i (i = 1, 2 , . . . , n) 
as new initial values will satisfy the requirements of Theorem 1 in which the value 
of the constant <5 is replaced by the value IS. Therefore, there exists an interval 
[T, t3] where a solution to the Cauchy problem can be found. In principle, repeating 
this procedure for the interval [T, t3~], etc., we can extend the solution to some 
maximum interval [0, tm). Suppose tm < oo. By virtue of Supposition 5 we get 
from (14a) the inequality 

IMI/o.. ^ lHJo ds(l + |M| / 0 . ,) + 1} , t e [0, O , 
hence 

W / 0 , ( m g ( D + l ) e D ' - - l 

where D < oo is a constant. Next, the constant A in the estimate (16) depends on 
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the values ||<p||/0,tm
 a n d ||^»||tm (* = 1» 2,. . . , n), and if these values are finite it is 

finite, too. So, we have 

j|GNJ| õę 

ÕXi 
< oo and 

fl,tm ÕXi 
< oo (í = l , . . . , n ; / = 1,2,3) 

Therefore, the functions (p(x, E, co, tm) and Nt(x, tm) again satisfy the requirements 
of Theorem 1 which are set on the initial values. Then the solution to the Cauchy 
problem can be extended to an interval [0, t*), ** > tm. This is a contradiction and, 
therefore, tm = oo. 

It can be easily shown that, under Suppositions 1 — 5, Theorem 1 remains true if 
the condition 

f(Po\ S vraimax — < -
«3X(0,oo)xft \ / 0 / 6 

of the theorem is replaced by the condition 

vraimax ( — 1 < oo 
n3x(o,oo)x.a \ / 0 

Remarks. 1. In practice, we must be very cautious when applying the theory 
mentioned above to the description of a working nuclear reactor. The spatial structure 
of such an equipment is strongly heterogeneous and, clearly, the assumptions of 
Theorem 1 are not satisfied. Then there is no other possibility than to model this 
heterogeneous structure by a homogeneous one. However, sometimes it is necessary 
to stick to the heterogeneous model. Then we see that the jump changes of material 
properties, the movement of control rods and the insertion or removal of an external 
neutron source imply that source terms which have the form of the Dirac <5-function 
will appear in the integro-differential description (l) and (2). In such a case, it is 
better to start from the integral form (14). We know that if Theorem 1 holds then the 
both formulations of the Cauchy problem are equivalent but it is not so in general. 

Let T be a real positive number. Denote by m'(/0 , T) the linear space of measurable 
functions $(x, E, o, t): Mr --> Rx which have a finite norm ||#||m'(/0,T) = ||^||/o,t 
and by m'(i) the linear space of measurable functions N(jc, t); Mx -> Rx which have 
a finite norm ||N||m,(T) = |]N||T. It is seen that the spacees m'(/0 , T) and m'(x) have 
sufficiently general properties which comply with the practical requirements men
tioned above. 

Theorem 2. Let the following conditions be fulfilled: 

a) The functions cp0 and N0i (i = 1, . . . , n) are nonnegative, bounded and 

f(Po\ ^ <5 vraimax ( — l < 
R3x(0,oo)xn \ / o / 6 

S being the constant which occurs in Supposition 4. 
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b) There exists a number t± > 0 such that y/(2E) So e m'(/o> *i)> so = 0 and 
Siem'(t1)(i = l , . . . ,n). 

c) In *he expression for Bij9 the constants au, btj, ctj and dtj are nonnegative 
(nonpositive) in case i 4=1 (i = j) (Uj = 1,...,»). Then there exists a number 
t2 e (0, t j such fhat Egs. (14) have unique solutions cp and Nt (i = 1,..., n) which 
belong to the spaces m'(/ 0, t2) and m'(t2), respectively. 

This theorem can be proved by repeating the first part of the proof of Theorem 1. 
The solutions cp and Nt (i = 1,..., n) of Eqs. (14) are called mild solutions to the 
Cauchy problem for the kinetic equations. 

2. Let us replace Eqs. (14b) by the equations 

(19) Nt(x, t) = J 0 ds{ £ Btj((p, IV, T, yu s) + S{yu s)} Qt(yl91, s) + 

+ NOi(y)Qi(y,t,0) (i = l,...,n) 
where 

j i = {xt, x2, x3 - \\ dt2 v(xl9 x2, t2)} and y = {xl9 x2, x3 - J 0 dl2 v(xl5 x 2, t2)} 

and v: R2 x [0, oo) ~> R t is a bounded function. Of course, Eqs. (14a) and (19) 
describe the situation better if the movement of the control rods or of the fuel ones 
is taken into account. We can construct an iteration process which is based on these 
equations (see (7)). Obviously, the estimating relations (8) will hold again so that 
boundedness of iteratives will be ensured in some time interval [0, t3], t3 > 0. 
Similarly, the estimate (13) for the differences of iteratives can be obtained. Therefore, 
Theorem 2 holds also for the problem (14a) and (19). 
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S o u h r n 

O CAUCHYOV ÚLOZE PRO ROVNICE KINETIKY REAKTORU 

JAN KYNCL 

V článku je resena úloha s počáteční podmínkou pro rovnice kinetiky reaktoru, přičemž se 
uvažuje efekt tepelné zpзtné vazby. Obor rešení je vybrán tak, aby pokud možno nejlépe odpo-
vídal vlastnostem modelů účinných průřezů. Metodou iterací je nalezeno lokální řesení, dokázána 
jeho jednoznačnost a ukázáno, že ve v tšině případů je zaručena také existence globálního řešení 
úlohy. Nakonec se diskutuje problém zobecn ného řesení. 

P e з ю м e 

O ЗAДAЧE OIПИ ДЛЯ УPABHEHИЙ ИHETИ И PEA TOPA 

JAN KYNCL 

Paбoтa кacaeтcя aнaлитичecкoгo peшeния зaдaчи oши для ypaвнeний кинeтики peaктopa 
c yчeтoм тeплoвoй oбpaтнoй cвязи. Пpocтpaнcтвo фyнқций для peшeния пpoблeмы выбpaнo 
тaқим cпocoбoм, чтoбы пo вoзмoжнocти oтвeчaлo cвoйcтвaм иcпoльзyeмыx мoдeлeй эффeктив-
ныx ceчeний. Meтoдoм итepaций нaйдeнo peшeниe зaдaчи нa oгpaничeшюм пpoмeжyткe 
вpeмeни, дoкaзaнa eгo oдңoзнaчнocть и пoқaзaнo, чтo в бoлыпинcтвe cлyчaeв cyщecтвyeт 
peшeниe в цeлoм. Изyчaeтcя тaкжe oбoбщeннoe peшeниe зaдaчи. 
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