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STEREOLOGY OF GRAIN BOUNDARY PRECIPITATES

VRATISLAV HORALEK
(Received January 28, 1988)

Summary. Precipitates modelled by rotary symmetrical lens-shaped discs are situated on matrix
grain boundaries and the homogeneous specimen is intersected by a plane section. The stereo-
logical model presented enables one to express all basic parameters of spatial structure and
moments of the corresponding probability distributions of quantitative characteristics of precipi-
tates in terms of planar structure parameters the values of which can be estimated from measure-
ments carried out in the plane section. The derived relationships are transformed into those valid
for spherical precipitates.
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1. INTRODUCTION

The determination of size distribution of precipitates f situated on the g,, matrix
grain boundaries is one of the problems intensively studied in connection with
precipitate nucleation, growth, dissolution, coarsening etc. — see e.g. Martin and
Doherty [7].

The first solution of the problem of size distribution for rotary symmetrical
lens-shaped precipitates f lying in a simple grain boundary was presented by Gokhale
“and Jena [4]. The authors expressed the probability density function (pdf) g(p)
of chord length created on the circular bases of precipitates by a random plane
section g, in terms of the pdf f(y) of diameters of these bases located in planar
grain boundaries. Further, they proposed a procedure for estimating the contact
angle 0.

In comparison with [4], the present paper improves the model assumptions,
corrects the results derived therc and essentially extends the field of the problems
already solved. It introduces the following results:

i) the mutual relationship between the pdf g(p) and the pdfs f(y), h(x) and o),
where h(x) is the pdf of diameters of two identical spheres the non-empty intersection
of which forms a rotary symmetrical lens-shaped precipitate § and (t) is the pdf of
the minor axis of the precipitate f3,
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ii) the expressions relating the moments of the pdfs f(y), h(x) and o) to the
moments of the pdf g(p),

iii) stereological estimates of the spatial structure parameters:

Ny y and N 4, 4, the mean number of precipitates § per unit volume and per unit
area of the grain boundary, respectively;

Vj and S,4, the mean values of the precipitate volume and of the precipitate surface
area, respectively, and Vy 4, the mean value of the volume fraction of the precipitates
per unit volume;

the contact angle 6 of the precipitate f.

These spatial structure parameters are expressed in terms of planar structure
parameters that can be estimated from results of measurements gained in the plane ¢
e.g. by means of an automatic image analyzer. For our purposes the following planar
structure parameters are considered:

the k-th moment y, of the pdf g(p) of chord lengths measurable on the traces
€ = Q4 N Qs in the plane g,

N 4(s),5> the mean number of precipitates § sectioned by the traces ¢ per unit area
of the plane g,

Ny p, the mean number of precipitates f§ intersected by unit length of the trace c,

P, ., the mean number of traces ¢ hit by a test line of unit length randomly situated
in g,

A4 5, the mean value of the area fraction of sections of all precipitates observable
in o,

Definitions and model assumptions are given in Section 2. The solution of the
above formulated problems is the subject of Section 3 for lens-shaped precipitates
and of Section 4 for spherical precipitates. Some selected results are discussed in
Section 5.

2. DEFINITIONS AND MODEL ASSUMPTIONS

At the beginning we explain some terms that will be used in the formulation of
model assumptions.

Homogeneous 3-d random tessellation. Let us assume that the three-dimensional
euclidean space E; is divided into spacefilling and non-overlapping three-dimensional
bounded open and connected subsets G; = E; forming so called grains. Their
boundaries 0G; are piecewise smooth closed surfaces separating G, from its exterior.
Let G, = {G,} be the set of all grains in E;, then 4 < G, is called a 3-d tessellation.
J be the class of all tessellations and o the o algebra in J generated by sets of
the form .
(9eT: 09K +0},

where 09 = N0G; is the union of the boundaries of G;€ % and K runs through all
compact subsets of E;. Then the random variable taking the values in [, 0]
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defines a 3-d random tessellation. If 2, the probability measure on [J, 0], is
invariant under translations in E; and invariant with respect to rotations about the
origin in E;, then the 3-d random tessellation is stationary and isotropic, respectively,
and such a tessellation is called a homogeneous 3-d random tessellation. For details
we refer e.g. to Stoyan’s et al. book [13] and Maeller’s booklet [10].

Types of interphase interfaces. The structure under investigation is a two-phase
structure. It consists of space-filling grains G; formed by the o phase, and of precipi-
tates, formed by the § phase and modelled by rotary symmetrical lens-shaped discs
situated on the junction of two grains. This interface is of type oo and for planar
grain boundary it will be denoted by g,,. On the other hand, on each precipitate f
having the surface area 0f and its circular base with the centre of gravity C; located
in g,,, two types of interphase interfaces can be observed
— the triple line circle a8 containing all points of the intersection df N ¢,, and
— two interfaces of type «f containing all points of two boundaries of spherical cap
shape with the exception of those points belonging to the triple line circle aaff
bounding the base common to two spherical caps, creating the precipitate f.

p

aa

Fig. 1. Rotary symmetrical lens-shaped disc sectioned in a normal plane to the boundary plane g,
the normal plane passes through the centres Cx; and Cx, of the spheres.

The present stereological model is constructed under the following assumptions:

(a) the grains G; are convex bodies, namely spacefilling and non-overlapping
three-dimensional polyhedra; planar grain boundaries form a spatial homogeneous
random tessellation;

(b) the precipitate f is fine and modelled by a rotary symmetrical lens-shaped disc
arising as a non-empty intersection of two spheres of the same diameter X (see Fig. 1),
having the pdf h(x);

(¢) in the planar grain boundaries o,, the centres of gravity C;, i = 1,2,... of
precipitates f form a two-dimensional Poisson field of constant density N 4.4
the area density per unit area of g,, surfaces, low enough in order to remain the aof
triple line circles, shared by both spherical caps, disjoint;
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(d) the circular bases aof situated in ¢,, have diameters which are independently
and identically distributed with the pdf f(y), 0 < y < oo. The random variable
(rv) Ytakes the value of the major axis of the lens-shaped precipitate f and is inde-
pendent of the position of the precipitate gravity centre C;. The minor axis T of the
precipitate 8 has the pdf u(t);

(e) all grain boundary energies are isotropic; the interfacial energy with both
matrix grains is constant so that the contact angle 0 is fixed for all precipitates f
(see Fig. 2);

Fig. 2. Lens-shaped disc consisting of two spherical caps both of the same radius X/2 and contact
angle 6.

o A

[Sl[e]

Cy

Fig. 3. Similarity of spherical caps with a constant contact angle 8; Cy is the centre of homothety.
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(f) the homogeneous specimen is intersected by an arbitrary plane section; from
the technical point of view we assume that we are able to prepare it in such a way
that the traces ¢ = g,, N 05, forming polygons in the plane g,, are sharply delineated.

The structure possessing the feature specified in points (a) to (f) will be denoted S.
Let us emphasize thatin this structure the precipitate centres of gravity C; do not
form the Poisson point field with a constant volume density Ny ; per unit volume
as it is usual in stereological models concerning precipitates embedded in a matrix
(see e.g. models published by Coleman [1], Horalek [5], Saltykov [11], Stoyan et al
[13], Underwood [14], Wicksell [15]).

Fig. 4a. Formation of the precipitate section .

As a result of the assumption (e) the precipitates f fulfil the condition of similarity
(see Fig. 3) and have a constant ratio of the minor to the major axis

(1) Tzkoztangzconst., 0<ky<1; O<0§E.
Y 2 2
Therefore, for known k, the size distribution of precipitates f§ can be described only
" by the pdf f(). For k, = 1, the lens-shaped discs convert into spheres.
In the plane g, we can observe two types of precipitate sections:
— the sections hit by the trace c; these will be called the precipitate sections of type A
and denoted by 8, (see Fig. 4a);
— the sections missed by the trace c; these will be called the precipitate sections of
type B and denoted by S (see Fig. 4b).
Both types of precipitate sections can be easily and uniquely distinguished from
one another:
— the section of type A has the shape of a lens in its profile that need not be sym-
metrical. This section lies always on the trace c;
— the section of type B is always a disc. The sections f are located only inside the
polygons formed by the grain boundaries intersected by the plane g;.
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As a result of the assumption (a), the planar grain boundaries Qs form a three-
dimensional random tessellation invariant under translations in E; and invariant
with respect to rotations about the origin in E; and the plane ¢, can be taken as an
TUR plane section since the specimen is homogeneous. Further, for all precipitates
of the same shape (but irrespective of this shape) embedded in a specimen, the
probability of their hitting by an IUR plane section is independent of the spatial
position and orientation of these precipitates in the specimen, i.e. the precipitates
need not be homogeneous or isotropic in the specimen and the location of centres
may even be correlated or correlated with their orientation — Coleman [1].

=iy

Fig. 4b. Formation of the precipitate section fp (according to Gokhale and Jena, 1980).

Therefore, the traces ¢ = g,, N 05 can be regarded as random segments across
the corresponding surface ¢,, and the intercept length of the section f, can be viewed
as a line section sampling of the circles (Ci, Yi), i=1,2,..., contained in @, In
consequence of this fact, in the sequel we will exclude from processing the sections fig,
except for specified situations.

From the above introduced model assumptions it is clear that we ignore special
situations arising when the precipitate f is hit by the edge, the intersection of three ¢uq
boundaries, or when two precipitates f, each belonging only to one of two ajdacent
0,, boundaries, are located near the edge and interpenetrate. If we wished to take
these special situations into account the relationship derived in the following Sections
3 to 5 could be considered only as approximate ones.
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3. STEREOLOGICAL RELATIONSHIPS IN STRUCTURE S FOR k, < 1

The relationships between the pdfs g(p), h(x), v(f) and f(y) are the subject of
Theorem 1, those between the corresponding moments dy, ¥y, %, and 7, are formulated
in Theorem 2 and, finally, the stereological relationships between spatial and planar
structure parameters of S are covered by Theorems 4 and 5.

Theorem 1. In the structure S the pdfs g(p), h(x) and v(t) are related to the
pdf f(y) in the following way

@) am=§f”3;%;%ﬂwu,p>o,

(3) h(x) = (sin ) f(x sin 6),

) 0 = o’ ()

where 6, = E(Y) is the mean value of the rv Y.

Proof. Consider the structure S sectioned by the plane ¢,. Let Y, denote the dia-
meter of the triple line circle aaf hit by the trace ¢, Z the distance of ¢ to the cor-
responding C; and, finally, P the chord length created by the trace ¢ on the intersected
circle (see Fig. 4a). These three rvs Y,, Z and P are related by

5) P =Y - Y
where the rv
Q=2Zy;!

is uniformly distributed on the interval (0, 1) and is independent of the rv Y,. Then,
it can be shown — see Coleman [2] and Hordlek [5] — that the pdf of the rv P
has the form (2).

Due to the similarity of spherical caps with a contact angle 8 — see Fig. 3 — the
~ rvs Yand X are related by

(6) Y= Xsin0

and the rvs Tand Y by Eq (1) which can be rewritten in the form

T
Y Y@

Hence the pdfs (3) and (4).
Corollary 1. 1. If the pdf f(y) is unknown and the pdf g(p) known, then

0 o= 1o (s,

n y \/(Pz_yz)(g P
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Proof. Regarding the pdf g(p) as known, the equation (2) represents an integral
equation for an unknown function f (y) The form of this integral equation coincides
with the well-known Abel integral equation, so that the corresponding inversion
formula has the form (8) — see e.g. Jakeman and Anderssen [6].

Note. The relationship between g(p) and f(y), analogous to (2) in Theorem 1,
has been derived by Gokhale and Jena in their paper [4] as Eq (12). Unfortunately,
we have to state that this equation is not correct and that the integral of g(p) over
the definition region differs from 1.

Theorem 2. In the structure S the moments Jy, %y, T, and vy, are related in the
following way for k = 0,1,2, ...

©) o s =E(rY = p(k) =t
(10) %, = E(X*) = (sin 6)7* 6, ,
K _ o\
(11) 7 = KT = (tan 5) Oy
where
Ve = E(P k)
and

(12) D(k) = F(%) F[(k + 2)/2] ,
I[(k + 1)/2]
I'(n) being the gamma function.
Proof. The rvs P, Y, and Q are related by (5), the rvs Y, and Q are mutually
independent and the pdf f4() of the rv Y, is

(13) v Tay) = (Sllf(y)

(the plane o, selects proportionally to the diameters Y of the «af circles lying in
surfaces 0,,); then the k-th moment of g(p) satisfies
(14) n = E(P*) = {E(YQ)} {E[(1 — @*)?} =
1
IOk + D2 s g0y 2y 01,
2 I'[(k+3)2] 6

which could be expected in view of the pdf g(p), given in (2), that has the same form
as the Wicksell [15] formula for planar sections of spheres.
Setting k = —1 in (14) we have

(15) s =wf@-0),
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so that the k-th moment &, of the pdf f(y) can be written as (9).
Recalling (6) and (7) we easily derive (10) and (11).
Theorem 3. In the structure S the following stereological relationships hold

2
(16) : NA(aza),ﬂ = ;;NL(C),BV—I >
4
(173) Ny g = ; Ny sPrLav-1
8
(17b) = N 4),87-1 -
T

Proof. Taking into account the properties of the line section sampling across the
planar boundaries g,, containing the triple line circles aaff we have for the mean
number N 4, 4 in accordance with Horalek [5]

1
Naesp = 5 Newns s

1

after replacing 8, by (15) we get (16).
Let Sy, denote the mean value of the surface area of ¢,, per unit volume. Then

(18) NV,;; = SV,zNA(aa),ﬁ .
The properties of the S structure under investigation allow us to express Sy , in the
form derived e.g. by Saltykov [11], Smith and Guttman [12] and Underwood [14]
(19) SVa=2PLa'

After inserting (19) and (16) into (18) we obtain (17a).
Let E(B,) be the mean value of the tessellation length (the length of traces c) per
unit area of the plane g;. Then the mean value Ny s can be given by

\ Naws _ 2Nag
\ (20) NL(c) = A(s).8 _ A(s) B
E(B,) ® P.,

since
T
E(B A) = 5 P,

— see e.g. Underwood [14]. The application of (20) tAo_(17a)M proves (17b).
Theorem 4. In the structure S the mean value S,; of the precipitate surface area
and the mean value Vj of the precipitate volume are given by

S n

21 Syp=—— ,
@) ’ 1+cosOy_,
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2 7=k 2y Y2
(22) B = o(3 + k) .
64 -1

Proof. Since T'is the minor axis of the precipitate § and X is the diameter of both
spheres the non-empty intersection of which creates the rotary symmetrical lens-
shaped disc the surface area S, of the precipitate f can be expressed by

Sy =nTX .
The application of (6) and (7) gives
S, = nY?*(1 + cos 0)7' .
Hence the mean value satisfies

- T
23 Sup = E(Syp) = ———— E(Y?),
(23) Sy = ESy) = (1)
which can be readily transformed into (21) putting k = 2 in (9).
By virtue of (1) the volume V} of the precipitate f can be written in the form

T
Vy = —ko(3 + k) Y.
B 48 0( )

After applying the same procedure as when deriving S,; we prove (22) for Vy
Naturally, in this case we put k = 3 in (9).

Theorem 5. In the structure S the ratio ko(0 < ko < 1) of the minor to the major
axis of the precipitate B can be expressed in the form .

(24) ko = 2sinh ¢/,
where
(25) ¥ =1In{0:5(U + (U* + 4)}
and
(26a) v=18 —fﬂi—e

T NL(c),ﬂPL,ah

84
(26b) = 44,
N 45,872

In being the natural logarithm.
Proof. The mean values Vy g, V; and Ny ; are related by

Vy’ﬂ = VﬂN V.B*
The model assumptions a), ¢) and d) enable us to put

Vy,p = ZA,ﬂ Iy
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where 4, ; the mean value of the area fraction of sections of the precipitates f4
and f, can be determined from measurements carried out in the plane section ¢s.
Now, by means of (17a) and/or (17b) we find

_ n
Agp = i_GNL(r),ﬁPL,zkaO(?’ + k(z))

1.
= g[\’A(s)"]')’zko(3 + k(z)) .

These are equations of the third order for the unknown k, and they can be written
in the form

(27) ki +3ky—U=0,

since all parameters involved in the dimensionless constant U, given by (26), are
parameters of the planar structure in g,. The discriminant 2 = —[1 + (U?/4)] is
negative, therefore the last equation has two complex conjugate roots and one real
root 1ko (0 < ko < 1) of the form (24).

Corollary 5.1. In the structure S

(28) 0 =2arctan (e’ — e7Y),

Y having the form (25).

Proof. By the well-known relationship 2 sinh = ¢¥ — e™¥ Eq (28) follows from
(1) and (24).

Note. When deriving the expression for the estimate of the contact angle 0,
Gokhale and Jena [4] start from an equation similar to (23). For determining the
mean value S,; as a function of 0 they propose to use the so called unfolding method
developed by Saltykov [11], numerically more complicated than the procedure
devised in the present paper.

4. STEREOLOGICAL RELATIONSHIPS IN STRUCTURE § FOR kj, =1

Let us consider the special case when k, = 1, i.e. the precipitates f are spheres
with diameter X and the pdf h(x) and, moreover, X = Y = T and 6 = n/2. Under
these conditions the basic relationships derived in Section 3 take the following forms:
— the pdfs and the relevant moments satisfy

h(x) = f(x) = o(x)
and
xk=5k=‘t,, for k=0,1,2,...;

— the pdf g(p) of chord length creates on aaf circles by the trace c satisfies
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. © 1
(29) g(p) = ,P_j N Mx)dx, p>o0

with the k-th moment

_F(%)F[(k+2)/2] K +1 o
(30) = _E,FT(I;T%T \;- for k= —1,01 yeen

— the expressions for S,;, V; and Vy 4 read

gaﬂ = 2n JJ—,
Y-1
2
V, = LA
16y,

n .
VV,/! = ZNL(c),[iPl,,ayZ >

— the validity of (27) and (25) for the spherical precipitates, i.e. for 6 = n/2, can be
easily verified.

The precipitate sections of type A and of type B observable in the plane g, are
in both case discs. When quantifying such a scene using an automatic image analyzer
we can measure:

— cither all disc diameters D without any separating sections of type A from those

of type B,

— or the chord lengths created by the traces ¢ on sections of type A.

In practice, we usually prefer the method based on diameter measurements for
its simplicity and higher precision of results. We will show that for spherical precipi-
tates the replacement of the second method by the first is quite warrantable from the
theoretical point of view and does not change the validity of the relationships derived
above.

In proving Theorem 2 we have stated that the plane section g, selects proportionally
to the diameters Y of the aaf circles located in the grain boundaries g,, and having
the pdf f(y). However, due to the arguments introduced at the end of Section 2
concerning the organization of precipitates in the space of the specimen, in the case
of spherical precipitates f the plane g, selects proportionally to the diameters X
of these precipitates, too, and further we know that Y = X, f(x) = h(x) and §, = x,.
Therefore, recalling (2) and (14), we have for the pdf w(d) of the rv D, taking the
value of the observed disc diameter,

(31) w(d) = g(d)
and
) P = E(Dk) = Yk »

314



(32) w(d) = i_[ —l hx)dx, d>0.

%y Ja J(x? = d?)
This implies that for estimating the moments x, of the rv X, Eq (9) can be used after
replacing & by x, and y, by . Further, for N4, ; and Ny ; we have according
to (16) and (17), respectively,

2
N@ay s = ;NL(c),ﬂﬂ—l s

4
(33a) Ny, = = NL(c),ﬂPL,u/‘—l
8
(33b) = 5 Nawph-1-
T

5. DISCUSSION OF SOME RESULTS

In comparison with (17a) and (26a) the right hand expressions in (17b) and (26b),
respectively, are independent of parameters characterizing the tesselation. It might
seem that the model assumption (a) is superfluous. But it is not so. For example,
when assuming a specified type of a 3-d tessellation with planar grain boundaries,
the so called Poisson-Voronoi tessellation — see e.g. Stoyan et al. [13], Mogler
[10] — the relevant expressions for Ny, and U fully coincide with the analyzed
equations, i.e. they do not involve parameters of the PV tessellation. However, when
applying the Johnson-Mehl tessellation — see e.g. Gilbert [3], Meijering [8],
Miles [9] — having, in general, nonplanar boundaries, the present model could be
considered only as an approximation under the condition that the precipitates are
very fine so that the areas dG; n  can be taken as plane surfaces halving the pre-
cipitates f and containing the triple line circles aaf, i.e. the intersections 6G; N B N g
create line segments in the plane section g,.

In Section 2 we have emphasized the distinction between the structure S investigated
in the present paper and the structure Sp, in which the centres of gravity C; of pre-
* cipitates ff form the Poisson point process with a constant volume density Ny 5 per
unit volume. Now we will demonstrate some specific features of the S structure in
comparison with the Sp structure.

The mean number Ny, ,; of precipitates f per unit volume is given
— in the structure S by (33b), i.e.

8
Ny, = FN"“)"’”“ = 0-81057N 45 plt-1 »

— in the structure Sp by (see e.g. Coleman [1], Horalek [5], Saltykov [11], Stoyan
et al. [13], Underwood [14], Wicksell [15])

2
Ny = ;NA,MI-; = 063662 N4 gpi_1 ,
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N, p being the area density of precipitate sections per unit area of o,. Hence
T
Nuw.p = ZNA,n’

which shows that the mean number per unit area of precipitate sections fz missed
by the traces c is equal to
T
1 —=)N,;.

These results stem from the fact that the sampling procedure is carried out in planes
occupied by aaf circles, and only these bases are subjected to the analysis.

The pdf g(p) of chord length created on circular planar sections of precipitates f
by the traces ¢ and the relevant k-th moment y, are given
— in the structure S by (29) and (30), respectively, but
— in the structure Sp by the following relationships derived by Coleman [2] and

Horalek [5]
p (" 1
=2 ——dd
o(v) Iy J’,, J(d* - p?)

) ﬂf;x ”52522‘; JI(d® _dpf)(zz — )] dx dd
=2_,,[1 ‘r () dX] =i—i[1 — H(p)].

Xy P

H(x) being the distribution function of the rv X, and

2 Haa

= for k>""2.
k+2 %,

Yk

Note that the equality (30) holds only for the structure § with ko, = 1
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Souhrn
STERECLOGIE PRECIPITATU UMISTENYCH NA ROZHRANI ZRN
VRATISLAV HORALEK

Precipitaty modelované rotacnimi symetrickymi disky jsou umistény pouze na rozhrani zrn
matrice a homogenni vzorek je protnut rovinou fezu. PfedloZeny stereologicky model umozZiiuje
vyjadrit vSechny zakladni parametry prostorové struktury pomoci parametra rovinné struktury,
které 1ze odhadnout z vysledka méteni v roving€ fezu. Odvozené vztahy jsou transformovany
na pripad kulovych precipitata. Vysledky jsou porovnany se vztahy platnymi ve struktufe,
v niZ zakotvené precipitaty jsou v matrici rozmistény nahodné&.

Pesome

CTEPEOJIOI AL TPEUMITUTATOB, HAXOIAIMUXCS HA T'PAHULE
PA3JIEJIA 3EPEH

VRATISLAV HORALEK

ITpeunnuTaThl, MOJEIMPYEMBIE OCECUMMET PHYHBIMH A¥CKAMHU, PA3ME IIAIOTCS JIMIIb Ha TPaHUL@X
paszena 3epeH MaTPHIlbl; OAHOPOAHBIM 06pa3ell nepecexaeTCs POU3BONILHOM IIOCKOCTEIO CEYEHMSI.
ITpennaraemasi CTepeojOrHYeCKas MOJIEb JO3BOJISIET BBIPAa3HTb ECE OCHOBHBIE IIapaMeTphl NPO-
CTPAaHCTBEHHOM CTPYKTYPHI C NOMOIIBIO IIapaMETPOB IUIOCKOCTHOM CIPYKTYPBHI, KOTOPbIE MOIYT
OBbITH MMOJIyYEHBI TIO PE3YJIbTATaM U3MEPEHMHM B IUIOCKOCTH CeyeH¥si. IToJy4eHHblE COOTHOMIEHHUS
TpaHchOPMUPOBAHBI HA Cllydail chepHUECKUX IIPELKTINIATOB. Pe3ynbTa1bl CPABHKBAIOTCS C COOTHO-
IIEHVAMK NEeHCTBYIONIMMH B CTPYKTYPaXx, I7i€ BHeIPEHHbIE IPEIUIATATH PACNPENEJIEHbl B MaTpHIIE
NPOU3EBOJIBHLIM 06pa3oM.

Author’s address: Ing. Vratislav Hordlek, DrSc., Statni vyzkumny ustav pro stavbu stroji;
190 11 Praha 9 - Béchovice 11, CSSR.
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