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BAYES UNBIASED ESTIMATION IN A MODEL WITH
THREE VARIANCE COMPONENTS
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Summary. In the paper necessary and sufficient conditions for the existence and an explicit
expression for the Bayes invariant quadratic unbiased estimate of the linear function of the
variance components are presented for the mixed linear model t = Xg -+ ¢, E(t) = X, Var(t) =
= 0,U, -+ 0,U, 4 03U, with three unknown variance components in the normal case.

An application to some examples from the analysis of variance is given.
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1. INTRODUCTION

In the paper the following linear model is considered
(1) t=Xp+e, Et)=Xp, Var(t)=0,U, + 0,U, + 0,U; = U(0),

where t is an N-dimensional, normally distributed random vector, X is a known

N x m matrix of rank R(X) = p, pe R™ is a vector of unknown parameters,

U,, U, are known, positive semidefinite matrices, U; = Iy, and 0 = (04, 0,, 0;)'

is a vector of unknown variance components e I, I = {0:(‘)1 >0, 0, 20,
65 20},

The problem is to estimate a linear function y = f10, + f,0, + f30; in the class
of quadratic forms §(t) = t'Bt, where B € &y, & is the class of all symmetric N x N
matrices. We restrict our considerations to quadratic estimates 9 = t'Bt, which are
invariant with respect to translations t — t + XB, i.e. §(t) = 9(t + Xp) for all
B € R™, unbiased, and minimize the Bayes risk function

r()’i) =1 j‘Es('j> - 7’)2 dP,,

where P, is a priori distribution for the vector parameter 6 having the second order
moments, i.e.

E(6,0,) = [0,0;dPy = c;; 20, i,j=1,2,3.
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We use the approach by Olsen, Seely and Birkes [3] to derive explicit expressions
for Bayes invariant quadratic unbiased estimates (BAIQUE). These estimates have
been introduced by Kleffe and Pincus [2] Explicit easily computable expressions
for BAIQUE in a model with two variance components have been given by Gnot
and Kleffe [ 1] and Stuchly [6].

2. A CANONICAL MODEL

Let Pbean(N — p) x N matrixsatisfying P’P =1 — XX* PP' =1,n =N — p.
Then the random vector y = Pt satisfies the simplified canonical model
(2) y=Pt, E(y)=20, Var(y)=0,V, +0,Y, + 0,V; = V(0),

where V, = PU,P’, V, = PU,P’, V, = PU,P’' = 1,. The vector y is a maximal
invariant statistic and 9 = t'Bt is BAIQUE for y in the model (1) iff B = P'AP and
9 = y'Ay is Bayes quadratic unbiased estimate (BAQUE) for y under the model (2).

3. SOLUTION

According to Theorem 7a in Kleffe and Pincus [2] y’Ay is BAQUE for 1.0, +
+ f20, + f30; under the model (2) iff

3

3 3
(3) Y oY e VAV =5V,

i=1j=1 i=1 :
where ¢;; = E(0,0;), i,j = 1,2,3 and A, 4,, 4; satisfy the unbasedness conditions
(4) t(AV)) =f,, i=1,2,3.

Let ¢, = E(60}) # 0. Since the Bayes risk function r(9) is linear in C = (¢;;) =
= E(00’) we can put ¢, = | without loss of generality. Under the notation ¢,, =
=u=0,c35=k=0, ¢, =u>+ 0% ¢33 =ku+0vl=0, cy33 = k? + > + m?
the matrix C takes the form

1 u -k 100 1uk
(5) C=|uu®+v® ku + vl =luv0 Ovl>
k ku + vl k* + 12 + m? k1l m/ \0O m
1 00 O
={u|l (L uk)+[00>0]
k 0 vl 1> + m?

and is positive semidefinite for every real numbers u, k, v, [, m. It follows that the
class of a priori distributions with 0, = 1 fixed and
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()= () )05 )
forms an essentially complete class for our problem (cf. [7], Chap. 8).
We shall use the notation
(6) W=V, +uV, +kl, V=0V, + 1.
Then the equation (3) has the form
(7) WAW + VAV + m?A = AV, + A,V, + Ayl
First let us prove some lemmas.

Lemma 1. Let A, B be positive definite (p.d.) matrices of order n. Then the
Kronecker product A® B is a p.d. matrix of order n?.

Proof. Since the matrices A, B are p.d., there exists orthogonal matrices P and Q
such that P'AP = A, Q'BQ = D, where the matrices 4 and D are diagonal with
positive diagonal elements (cf. Theorem I, § Ic. 3 in [4]). Then (P ® Q) (P’ ® Q') =
=PPP®QQ =1,®1, =1, holds. Hence X(A®B)x=x(P® Q) (P ® Q).
(A®B)(PRQ)(P®Q)x=[(P®Q)x]'(PAP® QBQ)(P' ® Q)x =
=y (4 ®D)y > 0 for all x = 0.

Lemma 2. The equation (7) is consistent (for all A real) iff the matrix W is
regular.
Proof. Using the operation vec, we get (7) in the form
(8) [WOW+ VRV + m*(l@)]vecA =
= A vecV, + A,vecV, + Ayvecl.

_ Sufficiency follows obvisouly from Lemma 1. Now we shall prove the necessity.
Let W be singular and assumec that the equation (8) is consistent. Since W has the
form (6) we get k = E(0,0;) = 0. Using the conditions 0; > 0 (cy; * 0) and
0, 20, we have E(0;) =0 and D(0;) = E(03) = I> + m* = 0, which implies
I = m = 0. Now the equation (8) has the form
) [(WohH(I®W)+(VR(I®V)]vecA =

. = vecVy + A, vecV, + Ayvecl,
where W=V, + uV,, YV =10V,.
If u % 0 then A(V,) = M(W), 4(V,) = M(W), #(V) = M(W) (4(W) denotes

the vector space generated by the columns of W) and there exist matrices Q;, Q>,
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such that V; = WQ,,V, = WQ,,V = WQ,ie.vecV; = (W® I)vec Q, vec V, =
=(W®IvecQ,, VRI=(W®IN(Q®]I). Under the notation vecA, =
=(1® W)vec A, vecA, = (Q ®I)(I ® V)vec A the equation (9) takes the form
Azvecl = (W) (vec A, + vec A, — 1, vec Q| — A, vec Q3). This equation is
consistent for all A real iff there exists a matrix Z such that vec I = (W @ I) vec Z <
<l = WZ< /(l) = #(W), and this is a contradiction with singularity of W.
If u=0then v =0and W=V, V=0.So (9) has the form (W ® W)vec A =
= Ay vecY, + A, vecV, + A5 vec! and, similarly as above, we get a contradiction.

Theorem 1. Let V3 = I and let matrix W =V, + uV, + kV; be regular.

a) The BAQUE for the parametric function y = f,0, + f,0, + f305 in the
model (2) exists iff

(10)  feuu(SH'S),
where
S =(vecVy, vecV,, vec Vi), f=(f1./2/s)
H=(WOW)+(VOV)+m{(V,®@Vy), V=1V, +IV,.
b) The BAQUE from a) is uniquely given by
(11) 5 =yAy, vecA=H 'S(SHTIS)" f.
(Here the symbol Z* stands for the Moore-Penrose inverse of the matrix Z.)

Proof. a) We get the BAQUE as a solution of the equations (7) and (4). Since W’

is regular, (7) is consistent by Lemma 2. Using the notation as above, we transform.
these equation to the form

Hvec A =S4,
where A = (24, A, A3)', and
SvecA=f,
respectively. From the regularity of W the regularity of H follows, and therefore

vecA = H™1S'A
and

SH™'S'A=f.
The last equation is coﬁsistent iff (10) holds.
b) A solution of the last equation is (cf. Theorem 11d, § 16.5 in [4])
A= (SH™'S')" f+ [I — (SH™'S’)” SH™'S] x,
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where x is an arbitrary vector. So
vecA = H™'S(SH™'S)~ f + H™'S' [I — (SH™!S")” SH™!§'] x =
— HIS(SH™'S)" f,
since .#(SH™') = .#(SH™'S") (cf. Th. VIb, § 1b.5 in [4]). Using the condition (10),
we see that the expression H™'S'(SH™'S')” f is invariant for any choice of the

g-inverse (cf. Th. VIc, §1b.5 in [4]), and we can use the Moore-Penrose inverse.
Hence the BAQUE is uniquely given by (11).

Remark 1. If the matrix W is singular then k = 0 and also I = m = 0. Therefore
P(0; = 0) = 1 and, instead of the model (2), we can use the model with two variance
components considered in [6].

Remark 2. If the matrices V,, V,, V5 as elements of the linear space &, are linearly
independent then the matrix SH™'S’ is regular. In this case we can usc in (11) the
usual inverse instead of the Mocre-Penrose inverse. Alternatively, the case when the
matrices V,, V,, V5 are not linearly independent can be solved by reducing the number
of the variance components.

Now we rewrite Theorem 1 for the model (1) as follows.

Corollary 1. Let U; =1, Z = U, + uU, + kU;; M =PP =1 - XX PP =1
and rank (MZM) = N - r(X).

a) The BAIQUE for the parametric function y = f,0; + f,0, + f305 in the
model (1) exists iff

fe #(R(IM*GM*}* R'),
where
R = (vec Uy, vec U,, vec U}, f=(f.f2f3), Mi=MQ@M,
G=Z®Z+U®U+H1Z(U3®U3), U:UU2+IU3.
b) The BAIQUE from a) is uniquely given by
9 = t'Bt, vecB = (M*GM*)* R[R(M*GM*)* R']* f.

Proof. Since the BAQUE = y’Ay in the model (2) is simultaneously the BAIQUE

9 = t'Bt in the model (1) and B = P’AP, we can write vec B = (P’ @ P") vec A.

Substituting V; = PU,P’, i = 1,2, 3, in the expressions for vec A, we get the
BAIQUE expressed in terms of the original model (1)

$=tBt, vecB = (P’ ® P’) H“S'(SH“‘S')Jr f,
where

S = (vec(PU,P’), vec(PU,P’), vec(PU,P)),
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H = (PZP') ® (PZP') + (PUP') ® (PUP’) + m*(PU;P') ® (PU,P"),
Z=U +uU, +kU;, U=0vU, +1U;, U,=1I,.
Since for every matrix B € & we have
(12) P'(PBP")* P = (MBM)*
we obtain
vecB = (PP ® P)[(P®P)G(P'® P')] ' (P ® P)R{R(P' ® P') x
x[(P®P)G(P @ P)]"' (PRP)R}" f =
=[(M® M)GM ® M)]" R{R[(M® M)GIM® M)]* R}* f =
= (M*GM*)* R[R(M*GM*)* R']* f,

where G =Z® Z + U® U + m*(U; ® U;), R = (vec Uy, vec U,, vec U,)". For
W regular we have ((MZM) = r(P'PZP'P) = r(P"WP) = N — r(X).

In the special case that the matrices V,, ¥, are commutative we shall derive more
explicit expressions for the BAQUE.

Theorem 2. Let V,V, = V,V,, V, = I and let the matrix W = V, +uV, + KV be
regular.

a) The BAQUE for the parametric function y = f'0 in the model (2) exists iff
(13) fe #(Q),

where
fz(fl’f27f3),s 0 =(61a 02a 63),’

tr(M,V,), tr(M,V,), tr((M,V,)
Q = [tr(M,V,), tr(M,V,), tr(M,V,) ],
tr((M,), tr(M,), tr(M,)

(14) M, =V(W?+ V24 )"t i=1,2,3,
V=2V, +1V;.
b) The BAQUE is uniquely given by
(15) 7=y Ay = Ay My + Ay My + 23y’ Myy,
where A satisfies the unbiasedness condition

(16) Qi=f.

Proof. We suppose that W is regular. By Lemma 2 the equation (7) is consistent.
First we shall find its solution.
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For v & 0 we get from (6)

v,ow- dy_kezul, oy Ly Ty

v v v v

By Theorem II, §lc. 3 in [4], there exists an orthogonal matrix C and diagonal
matrices 4 and D with non negative diagonal elements such that

CWC =4, ie. W=CAC,
CVC =D, ie. V =CDC'.
Therefore the equation (7) has the form

CAC'ACAC' + CDC'ACDC' + m?A =

:Al(W—EV—I(U_ull)+,12(]—V—£I>+,13l.

v v v v

Multiplying this equation by C’ from the left and by C from the right, we get
AC'ACA + DC'ACD + m*C'AC =

=,{,<A—ED—kL:ﬂl)+/lz<lD—£l>+,lal.
v

v v v

Puting Z = C'AC we obtain

AZA+DZD+mzZ=/11(A—ED—kv—ull>+)bz<£p_£l)+ig’-
v v v v

Since the matrices on the right hand side are diagonal, the matrix Z must be so, too.

Therefore
A:[,11<w_‘_‘v_ ko = ”ll>+,12<lv_ £,>+
v v v v

4—,131](W2 + Vi + mi)~t =

= (Alvl + A’ZVZ + }/3’) (W2 + V2 + n'lzl)—l
and the BAQUE has the form (14)—(15).

If v = 0 we must apply Theorem II, § Ic. 3 in [4] to the matrices W and V;. The
equation (7) has the form

AC'ACA + (I* + m*) C'AC = J,(Ad — uD — kl) + 2,D + A,l.
Hence we get, in the same way,
A=AV + AV, + A3V5) [W2 + (P + m?) 1],
i.e. (14)—(15) are again valid.
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Here A, A,, A5 satisfy the unbiasedness condition (16), which has a solution iff
(13) holds.
To prove uniqueness, let us put m = (y'M,y, y’M,y, y'M;y), M, = VK™',
i=1,2,3 and K= W? 4+ V2 4+ m?l. The BAQUE is 9 =m'i=m[Q f —
— (I - Q7Q) x], where x is an arbitrary vector. We have
m = (tr(K—l/Zyyrle'-l/Z) , tr(K—l/Zyyrsz—l/Z) , tr(K—llzyyrv3K—1/2)> —
= [véc(yy'K‘l/Z)]’(vec(VlK‘”z), veo(V,K™17%), vee(K™1/%)),
[vec(V,K~1/2)]

Q = | [vec(V,K™2)]" | (vec(V, K™ /2) , vec(V,K™'/2), vec(K™'/?))
[vec(K~1/2)]

and therefore .#(vec(V,K™'/2), vec(V,K™ /), vec(K™'/?))' = .#(Q). Now, similarly
as in the proof of Theorem 1, it follows that m'(I — Q Q) x = 0. Since fe /l(Q),
the expression mQ~f is invariant for any choice of the g-inverse and we can use
the Moore-Penrose inverse. Hence the BAQUE is uniquely given by (15)—(16).

Remark 3. The case v = [ = m = 0 characterizes the situation that a priori
distribution is conczntrated at a point @ = (1, u, k). The equation (7) has the form

WAW =V, + L,V, + AV, W=V +uV, + kl.
The solution is
A= W“‘()qV1 + L,V + V)W =AM + 4,M, + 1My

Here M; = W™'V,W™' i =12 3 and A, 4,, A3 satisfy the conditions (16). In
this case the BAQUE is the locally bzst estimate at the point (04. 0,, 05) = (1, u, k),
and coincides with the MINQUE (cf. [5]).

Further, we reformulate Theorem 2 for the model (1). If we use (12), we get:

Corollary 2. Let MU MUM = MU MUM, U, =1, Z=U, +uU, + kU,
and rank ((MZM) = N — r(X).
a) The BAIQUE for the parametric function y = f'0 in the model (1) exists iff
| fe.u(Q).
where f = (fy,f5.f3), 0 = (04, 0,, 65),

tr(N,U,), tr(N,U,), tr(N,U,)
Q* = | tr(N,U,), tr(N,U,), tr(N,U,) ],
t((Ny), tr(N,),  tr(N;)

N, = MV,M[(MZM)? + (MUM)> + m*M]* M, i=1,2,3,
U =oU, +1I
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b) The BAIQUE from a) is uniquely given by
5=tBt=AtUN;t+ L,t'/N,t + J;t'N,t,

where A satisfies the condition

Q*i=f.

4. EXAMPLE

The following experiment was made to judge the precision of p measuring instru-
ments of the same type: g observers measured by each of p instruments the unknown
value of the given variable. The value measured by the i-th instrument and the j-th
observer is the realisation of the random variable t;; = ¢ + a; + b; + e;;, where ¢
is the expected value of the measured variable, a; and b; characterize the i-th instru-
ment and the j-th observator, respectively, e;; is the error of the observations. Using
the transformation from Section 2, we get the model

vi=a; +pi+e;, i=1,..,p, j=1..,qg.

Here E(y;;) = 0 and «;, € i=1,..,p, j=1,...,q are assumed to be in-
dependent random variables from normal populations with zero means and unknown
variances 0, 0,, 05, respectively. We shall look for the BAQUE for the parameter
function y = f,0, + f,0, + f,0;. Supposc that the vector of observations is
written in the lexicographic order

Y = (,V1 | EICRRE) .).lq* Vatgs oo y2q* Yi3ts oo ypq)l s

as well as the error vector
€= (Eygs ey Ergs Eats-ves Eags E31s-ens Epg) -
Then we have the model
y = (’p®1q) + (11'@’4) +&,

where 1, = (I,....1)" is the r-vector of ones, o = (0y....,0,), B = (By,.... B,)
with E(y) =0
Var(y) = 01(’1) ®-Il1) + 02(]1) ® ’q) + 03(’17 ® 'q) >

where J, = 1, ® 1, is an r x r-matrix of ones.
We have the model (2) with

Vi=1,®),, V.=, Vs=1,01,.

According to Theorem 2, the BAQUE for y = f,0, + 1,0, + f305 is § = y'Ay,
where A = A, M, + 1,M, + 1My, M, =V K ' i=1,23and W=V, +uV, +
+ kVy, K= W? 4+ V2 4 2,V =V, + I, In our case

W=k, ®l)+(1,®])+ul,®l).
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The BAQUE for the function y exists iff the matrix W is regular. Then we get
Vo=, ®1)+),®1,),
W =1k, +])+ul,®l),
Vi =P, ®1)+ (2lv+ p?)(J,@1,),
W2 =1, @[k, + 2k + q)),] + 1, ® [(2ku + pu?)1, + 2u),],
K =1,o[(P+k+m?)l,+Q2k+aq)]]+),®
® {[u(2k + pu) + v(21 + pv)] 1, + 2u),} .
Denoting
ho = k* + I + m?,
hy = (k + q)* + I + m* = g(2k + q) + h,,
hy = (k + pu)* + (I + pv)*> + m* = pu(2k + pu) + pv(2l + pv) + hq,
hy = (k + pu + q)* + (I + pv)> + m* = 2k + pu + q)(pu + q) +
+ pu(2l + pv) + hg = hy + hy — hy + 2pqu ,
after routine computation we arrive at

hy —h hy, —h
K = 'p ® <h0’q + ’L‘;’* qu) + jq ® <_%7;v9 'q + 2“1q> ’

- 1 hy — h hy — h h, — h
K1 :’I,@* lq—_l_,_gjq __]p@ 2 0 ’q_ 1 01q>+
hyo qh, phoh, qh,

he — hy)(hy — ho) — 2h 1 hy = h
+ (11 0)( 2 O) Opqujq] =" (’p ® ’q) - l}—'ﬂ_o ('P ®]q) -

pqhyhyhy 0 qhohy
hy, — hy 1 /1 1 1 1
. B S I)x —|—— — — — + — ®]J,).
phoh, Up q) pq <ho hy h, hs) (Jp jq)
Therefore
_ 1 h h
M =V, K'=—(1,8))->—(,®],),
hy phihy
_ 1 hy — h
Mz = VzK = _(1p® ’q) - —S'__Z(Jp ®.’q) P
h, qh,h,
M; = K™!



The BAQUE is

~>

= ATy'My + 23y'Myy + 23y’ Mgy =

2 p hy — h
I e b

h1 i=1 ph1h3
2 4 hy — h;) p*q?®
L A e S ALy
hz ji=1 qh I‘l3
— ho) 4*
+ 2% S UL i )
} [ hy .Zx 121 qhoh, Z&
h, — hy) p* & 1/1 1 1 1
_ (he = ho) p° >V —( ————— + ~> pzqzy?] =
phoh,  j=1 pg\ho h, hy,  hy
h h L
SPEES WD 3T oy sy TRSLUTY |
0i=1j=1 1 hohy i=1
2 _ 4q 1
+ [x;”— _ jxla ——h")P] v+ {/"-? (—l- ~ Loy
h, hoh, i=1 he hy hy

1 hy — h 2 x (hs — hy) p?
>pq *(3 1) P4 _/;(3 z)PQ]y.z‘,
3 hihy hyhs

where /IT, /lj, ),’:': are solutions of the linear system

2
-1
Pq )”‘+1pq)'2+[(p )q  q

13 4 hy hs

_+_
|_._1 1__1
3,
Il
=

— 1
LYY A Y D C Rt VR X P
hy hsy h, hs
-1 -1
(_Il.__)_q_‘_q_ )~1+ Il(ﬂ_)_*_L ).2+
hy hy h, hs
-1 -1 -1 -1 1
ffle=Dla=b, p=t gt 1), o
he hy hy, by
and
1 & 1
.)7.j=~z yija )'Yi.:_z yij’ =_“Z z yu'
pi=1 qi=1 pqi=t1j=1

In the case v=1=m=0=hy=k* h; =(k+ q)% hy,=(k+ pu)?, hy=

= (k + pu + q)*, we get the locally best estimate at the point 6 = (1, u, k)'.

If k =0 then I = m = 0 and the matrices W, K can be singular. The BAQUE
is not uniqualy given or must not exist.
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Souhrn

BAYESOVSKE NEVYCHYLENE ODHADY V MODELU
S TREMI VARIACNIMI KOEFICIENTY

JAROSLAV STUCHLY

V &lanku jsou uvedeny nutné a postadujici podminky pro existenci a odvozeny explicitni
vzorce pro Bayesuv invariantni kvadraticky nevychyleny odhad linearni funkce varianénich
koeficientt v linedrnim smiSeném modelu t = Xp -+ ¢, E(t) = X, Var(t) = 6,U, 4 0,U, +
-+ 0;3U; s tfemi neznamymi varian¢nimi koeficienty v normalnim pfipadg. V zavéru jsou vysledky
aplikovany v analyze rozptylu.

Pesome

HECMELUEHA ST OLIEHKA BAMECA B MOJEJIU C TPEMbS
JAMNCITEPCUOHHBIMI KOMITOHEHTAMN

JAROSLAV STUCHLY

B craTbe NPUBOIMTCS HEOOXOIUMOE U IOCTATOYHOE YCJIOBHE ISl HHBAPHAHTHOM KBaJAPaTHYHOU
yecMeLIeHOM oucHky Baiteca uHeHOM QYHKLMY OT DapaMeTPOB KOBAPMALIMOHHON MaTPHUIBI B Clly-
cae JIMHEHHOH HOpMalbHOW Monenun t = X + ¢, E(t) == Xf, Var(t) = 0,U; + 0,U, + 0,U;

TP2SMbs AUCIIEPCUOHHBIMM KOMIIOHEHTAMM .

B 3axmo4yeHuH CTaThd NPUBEJCH IPHUMEDP NPUMEHEHUS! M3JI0XKECHHOM TEOPHM K AKCIIEPCHOHHOMY

aHam3y.
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