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DOMAIN OPTIMIZATION IN 3D-AXISYMMETRIC ELLIPTIC 
PROBLEMS BY DUAL FINITE ELEMENT METHOD 

IVAN HLAVACEK 

(Received March 8, 1989) 

Summary. An axisymmetric second order elliptic problem with mixed boundary conditions is 
considered. The shape of the domain has to be found so as to minimize a cost functional, which 
is given in terms of the cogradient of the solution. A new dual finite element method is used for 
approximate solutions. The existence of an optimal domain is proven and a convergence analysis 
presented. 
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INTRODUCTION 

The present paper is devoted to the analysis of an axisymmetric optimal design 
problem, where a part of the boundary of the meridional section plays the role of 
a design variable. As the state problem, a mixed boundary value problem for a second 
order elliptic operator is considered. The Dirichlet homogeneous boundary condition 
is prescribed on the variable part of the boundary. Since the cost functional is given 
in terms of the cogradient of the solution, we employ a dual finite element technique, 
the analysis of which has been presented recently in [3]. Thus the present paper 
extends the results of [ l ] and [4] to some three-dimensional axisymmetric problems. 

In Section 1 the optimal design problem is given and the dual variational formula
tion of the state problem recalled. We introduce finite element approximations in 
Section 2 and prove their convergence to some optimal solution. 

1. FORMULATION OF THE OPTIMIZATION PROBLEM 

Let us consider the following model problem: D(a) c R2 be the domain 

D(a) = {(r, z)\ 0 < r < a(z), 0 < z < 1} , 

where the function a(z) — the design variable — belongs to the set of admissible 
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functions 

Uad = {a G C (0) ,1([0, 1]) , (i.e., Lipschitz function) , 

am.n S a(z) = amax, |da/dz| = Cu J0 a
2(z) dz = C2} , 

with given positive constants amin, amax, C1? C2. Assume that Uad is non-empty and 
denote the graph of the function a by F(a). 

Here r and z denote the radial and axial coordinate, respectively. The following 
Optimal Design Problem will be studied: 

(1.1) a0 = arg min J(a, y(a)) , 

where 

(1.2) J(a, y) = JD(a) F(cograd y) r dr dz 

and y(a) is the solution of the following boundary value problem 

(1.3) -lUra,8/)-t-Ld/)=f in D(a), 
r or \ or J dz \ ozj 

y = 0 on F(a) , 

az J - = 0 on 3D(a) - F(a) --- F0 ; 
dz 

cograd y = ( a r ̂  , az ̂ ] , a„ a, e L°°(D) , / e L2
r (D) , 

\ O> dz) 

D = {(r, z)| 0 < r < (5, 0 < z < 1} , 3 > amax , 

F0 = { ( r , z ) | r = 0, z e [ 0 , l ] } . 

Assume that a positive constant a0 exists such that 

(1.4) ar = a0 , az = a0 a.e. in D . 

We denote by L™(15) the space of measurable functions u, for which 

||tt||ofriD = JD \u\m r dr dz < + oo , m = 1, 2 . 

The space of bounded measurable functions on D will be denoted by Lco(D). Let 
k = 0 and n be integers. We shall denote by Wfn

,2(D) the weighted Sobolev space 
with the weight rn and the norm 

Hk--.* « ( E JDI^tfr-drdz)1/2, 
l/*li* 

where D^u denotes any partial derivative of the order /?. The same notation will 
be used also for vector-functions. 
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We shall use the weak formulation of the problem (1.3); the weak solution of 
(1.3) is the function y = y(a) e V(a) such that 

<L 5) í WTT + a'TT\rórdz 

jD(a)l 3r dr dz dzj 

fvr ár áz 
D(«) 

holds for all v e V(a), where 

V(ot) = {v e Wr
l!2(D(a))| yv = 0 on F(a)} . 

Note that there exists a continuous mapping 

r.wr
l-2(D(*))-+Ll(r(a)) 

such that yu = u| r ( a ) for any u e C(^ / D(a)). (The proof can be found e.g. in [2] — 
Sect. 1). 

It is easy to find that there exists a positive constant C3 such that 

{1.6) j * D ( a ) |grad w|2 r dr dz ^ C3||u||2>r>D(a) 

holds for all u e V(a) and a e Uad. Using (1.4) and (1.6) we derive that the problem 
is V(a)-elliptic and therefore uniquely solvable for any a e Uad. Then cograd y(a) e 
*[L\(D(«))Y. 

Assume that the mapping F, occuring in (1.2), is continuous from [L2(D)]2 into 
L\(D). 

Example . Let us consider the function 

F(q) = [K(qr - Kr)
2 + bz(qz - KZ)2Y12 - k0 , 

where q = (qr, qz)\ K = (Kr, Kz)
r e [L2

r(b)Y,K, bz e L°(D), br = b0 and bz = b0 

with some positive b0 holds a.e. in D, k0 e L\(b). Then F(q) is continuous in L\(D). 
In fact, let 

lim |1 q" - q|0 i r > c = 0 . 
n-+ oo 

If we denote 

F(I) + h = | | q - K||B, 

then j| • |[B represents a norm in R2 almost everywhere in D. We may write 

Jo \F(q) - F(qn)\ r dr dz _ JD \\qn ~ q\\B r dr dz ^ 

-CB\\qn~ q l l o ^ - ^ O . 

Setting e.g. K = 0, k0 = 1, br = bz = b~2, b = const > 0, then 

F(q) = (\q(«)\ - b)\b 

and b has the meaning of an ,,admissible" magnitude of the cogradient vector. 
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Since the cost functional is given in terms of the cogradient of the solution, we shall 
employ the dual variational formulation of the state problem (1.3). Let us recall the 
latter formulation, the derivation of which can be found e.g. in the paper [3] -
Part I, Section 2. 

Let us introduce the notation 2tf(a) = [L2(D(a))]2 and the following bilinear form 
in Jf(oc) x tf(a) 

(<?> f > W ) = jD(a) («r~^rPr + "z ±4zPz) V & ^ » 

II .-.II (*m - V / 2 

l|q|k(a) = (q?qW)-
It is readily seen that the norms ||*|| .#•(«) and || • ||o,r,z>c«) a r e equivalent by virtue of 
(1.4), Moreover, let us define 

B(a;q, v) = ( qr ~ + qz ~ ) r dr dz , 
J D(a) \ or dz) 

L(v) = jD{a)fvrdrdz , 

Qf(oc) = {qe JT(oc) \ B(oc; q, v) - L(v) Vv e V(a)} . 

Then the functional 

(L7) ±h\\*w 
attains its minimum over the set 2/(a) at the point q(a) if and only if q(a) = 
= cograd y(a). 

We assume that 

(1.8) \0tf(t,z)dteLU(D). 

(Note that (1.8) is fulfilled e.g. if / = rfi f0(z)9 p > - 2 , / 0 e L2((0, 1))). Then the 
following vector-function 

(1.9) q* = ( - r - 1 f o f j ( r , z ) d ^ , 0 ) T 

belongs to the set Q/(a) for any a e U°d, where 

Ua°d = {ae C(0>- ,([0,1])| amin ^ a(z) <: amax} . 

Defining the subspace 

(1.10) Q(oc) = {qe Jf(a) | B(oc; q, v) = 0 Vve V(oc)} , 

we may write Qf(oc) = q* + Q(a). Substituting q = q* + p, pe Q(oc) into (1.7), 
we conclude that the functional 

l*>||i(a) + (<?*, P)^(a) 

attains its minimum over the subspace Q(oc) if and only if p(a) = cograd j(a) — q*. 
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The sufficient and necessary condition for the minimizer p(a) e Q(a) is 

(1.11) (p(a)9 t)^(a) = - ( , • , t)ma) Vt e Q(a) . 

The latter minimum problem has a unique solution p(a) for any a e Uad. 

Now the optimization problem (1.1) can be replaced by the following equivalent 

Optimal Design Problem: 

(1.12) a 0 = arg min J*(a, q(a)) 

aellad 

where 

J%^q) = \D(a)F(q)rdrdz9 

q(a) = q* + p(a)> 9* *s defined by the formula (1.9) and p(a) is the solution of 

(1.11). 

2. APPROXIMATIONS BY THE FINITE ELEMENT METHOD 

First we introduce piecewise linear approximations of the set Uad. Let N be a posi

tive integer and h = l/N. We denote the subintervals [(j — 1) h9jh] by e} and define 

Uh

ad = {aheU!id\ah\ejeP1(ej) VI}, 

where Pi(e,) is the set of linear polynomials defined on ey. Let D(ah) = Dh be the 

domain bounded by the graph Vh = F(ah) of the function ah e Uad. 

The dual state problem (1.11) can be solved approximately by means of the finite 

element method, proposed in the paper [3]. Let us recall some results of the latter 

paper and apply them to the model problem (1.11). 

We have to introduce the space 

X,{D{a))=Wr'-\D{a))nLl- >(D(«)) 

with the norm 

IMU,<D(-0) = (JD(a)(^ 2 r" 2 + | g r a d ( ? | 2 ) r d r d z ) 1 / 2 

and the subspace 

W(ot) = {cpeX^Dfa)) | yep = 0 on dD(a) ^ F(a) ^ F0} . 

The operator 

(дер ср дер 
сип -H 

т 

õz ' r дr 

is well-defined on W(a). 

For any a e Uad the space Q(a) can be identified with 

curl W(a) = {qe ^f (a) | 3cp e W(a) such that q = curl cp} . 
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Moreover curl: W(cc) -> Q(a) is a one-to-one mapping ([3] — Thm. 4.6) and 

(2.1) | |cud (p\\0,r,D(a) = ^ ^ \\<P |U(D(«)) • 

The function u e Xj(D(a)) if and only if u\r e X3(D(a)), where 

X3(D(a)) = Wr\>
2(D(a)) n L2

r(D(a)) , 

with the norm 

HU(D(«)) = ( W ) ^ 2 + | g r a d H2 r2)rdrdz)l/2 . 

For any a e Uad and any u GXj(D(a)) we have the inequalities 

V2-2) 3 p||-*-(*>(«)) -= \\ulr\\x3(D(z)) = 3 ||tt||xi(D(a)) • 

If we construct the approximations of q e Q(a), we may therefore write 

(2.3) q = curl cp = curl (r\j/) , \f/ e X3(D(a)) 

and approximate the function i/>. 
The polygonal domain Dh will be carved into triangles by the following way. We 

choose a0 e (0, amin) and introduce a uniform triangulation of the rectangle 0t = 
= [0, a0] x [0, l ] , independent of a,,, if h = l/N is fixed. In the remaining part 
Dh-

Z- 01 let the vertices of triangles divide the segments [a0, och(jh)~\j = 0, 1, ..., N, 
into M equal segments, where M = I + [(amax — a0)N] and the square brackets 
denote the integer part of the number inside. In this way, we obtain a regular family 
{&~h(och)}, h -> 0, ah e Uad, of triangulations, with 

(2.4) hmax = max (diam K) = /t/sin co0 , 

Ke«Th(ah) 

co0 = arctg ((amin - a0) (amax - ao)"1 (l + Cx + C\)~r) . 

Here K denotes any (closed) triangle of ^~h(och). 
Let us define finite element spaces l\ by the standard manner, i.e., 

Ik
h = {u e C(W Dh)\ u\K e Pk(K) VK e $~h(*h)} , k = 1, 2 . 

We introduce the local Lagrange interpolation 17^ of the degree k on any K e ^"/.(a^) 
so that 

17^: C(K) -> Pfe(K) and nk
Ku = u 

at all the nodes of the triangle K. For k = 1 the nodes are only vertices, for k = 2 
they are vertices and mid-points of sides. We define the global interpolation 

I\: C(W Dh) - Ik 

so that 

nk
hu\K = nk

K(u\K) VKe3rh(*h). 
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In the paper [3] (Corollary 5.7 and Lemma 5,9) the following estimate has been 
derived for any regular family of triangulations ^h(D) 

(2.5) ||u - n\ u||x3(D) = Ck(u) hk
max . k = 1, 2 , 

where the constant Ck(u) depends on u but not on hmax, D is a fixed polygonal 
domain. 

We shall construct subspaces Sh cz Q(och). Let us define the set 

Yh - {"hi uh = nvfc, w* e ^ , wh = 0 on dDh - rh - F0} 

and 

(2.6) S„ = curl 7 , . 

It is easy to verify Yh cz IV(a^) and then Sh cz <2(a/.) follows. Note that 

•feS.-^-fr-^, -2w h -^Y, V H ; 
\ cz or J 

consequently, the components qh and qh are piecewise polynomial. 
Instead of the state problem (1.11) we can solve the Approximate State Problem: 

find ph(och) e Sh such that 

(2.7) (ph(ah)9 t%(ah) = -(q\ t%(ah) Vt* e Sh. 

By virtue of (1.4) and the boundedness of Or, az, there exist positive constants C 
and C* such that 

(2.8) C||p||o.r,DCa) S ||p|U(«) ^ C*||p||0prfD(a) 

holds for all p e J-f (a) and any a e Uad. The approximate problem (2.7) has a unique 
solution for any h = l/N and any aft e Uad. 

Next we prove the following 

Proposition 1. Let {och)3 h -* Q be a sequence of ah e Uad, converging to a function a 
in C([0, 1]). Then 

(2.9) P > * ) - * P ° ( « ) in [L\(D)Y for h -> 0 , 

where poh(och) is the solution of (2.7), extended by zero to the domain D — D(och) 
and p°(oc) is the solution Of(l.H), extended by zero to D — D(oc). 

Proof. 1°. We can find easily that a e Uad. It follows from (2.7) that 

\\phUM £ M*M Vfc. 

Consequently, using (2.8) we obtain 

(2.10) c||p1o.r,Dh ^ IqlUc.) ^ IklUw • 
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Therefore a subsequence of {poh} exists (and we shall denote it by the same symbol) 
such that 

(2.11) p o h - p° (weakly) in [L2
r(D)]2 . 

2°. We can show that p0|x>(a) e g(a). In fact, let us consider a function w e V(a) 
and denote by w its extension to D — D(a) by means of zero. There exists a sequence 
{wx}, x -> 0, such that 

wx e C°°(«Z D) , wx = 0 in D - D(a), 

(2.12) supp wx n F(a) = 0 , \\wx - w\\UrtD -> 0 . 

(The proof of this assertion is analogous to that of Lemma 2 in [2]). There exists 
a h0(x) such that wx vanishes on F(och) for h < h0(x) so that 

w«\DheV(ah) Vh<h0(x). 

Since ph e Sh c g(a^), we have 

-»(«*; p", wx) = o vh < ft0(x). 

Using the weak convergence (2.11), we obtain 

0 = B(5; p o h , wx) -> B(d; p°, wx) for h -> 0 . 

Passing to the limit with x -> 0 and using (2.12), we arrive at 

0 = B(S; p°, w) = B(a; f>°, w) . 

Consequently, p° |D( a) e 2( a ) follows. 
3°. Next we show that 

(2.13) p° = 0 a.e. in f) -=- D(a). 

In fact, let p° 4= 0 on a set F c D — D(a), meas E > 0. Denote the characteristic 
function of the set E by XE- Using (2.11), we obtain for h -> 0 

(J*0", X*f»V.A - (P°' Zrf°)o,.i) = |f»°||o„E > 0 . 

On the other hand, we may write 

(P°\ XEP°)o,r,t> = (P\ P°)o,r,DhnE ^ \\ph\\o.r,Oh ||f»° \\o,r.OhnE - 0 , 

since (2.10) holds and meas (D,, n E) -> 0. Thus we come to a contradiction. 
4°. Let us show that p° is a solution of the problem (1.11). Let us consider 

a t e Q(oc). We know that a function cp e W(ot) exists such that t = curl (p. Let us 
extend q> "symmetrically with respect to F(a) in the radial direction" to get (p e W(S). 
By lemma 6.1 in [3] there exists a sequence {<?„}, n -> oo, such that 

<p„ e C00^ 5 ) , supp <pn n (aD -*- r(8)) = 0 , 

(2.14) ||^ - (PnWxaO) ~> 0 • 
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We set 
tpn-Vnlr, f = curl (n /g , t*» - curl (r.17*^), 

where 17A is the Lagrange linear or quadratic interpolation. Obviously, the triangu-
lations &"h(ah) can be extended to cover the domain J5 in such a way, that the family 
of extended triangulations remains regular. We have 

i/fn e 0*{<tt D), supp •>„ = supp cpn, thn\Dh eShcz Q(ah), 

since i7A \j/n vanishes on dD — f(S). Consequently, thn can be inserted into (2.7). 
We may write 

\(p°\ t*") ,w - (P°, t%w\ ^ \(P°\ t"- - t%w\ + 

+1(*>°\ t " ) , w - (f»°, f ) , w | = h + h, 

h ^ \\P°"\U(s, it*" - t " | | ,w -> 0 for h - 0 , 

using (2.10) and the following estimate 

(2.15) ||t* - f || w ) g C*|| curl (r(17* ̂ n - ^))||o,,,/) ^ 

g C* 61/2||I7;; ^ - ^J J s ( l > ) g Q ( ^ ) hk, 

which follows from (2.8), (2.1), (2.2), (2.5). (Note that an analogue of (2.4) can be 
derived for the family of extended triangulations and employed here). 

Making use of (2.11), we obtain that I2 tends to zero. Altogether, we have 

(2.16) (p\ t*%(ah) = (p°\ &)jew » (p°, t%w = (p°, t - ) „ w . 

Next, we may write 

(2.17) \(q*,^UXh)-(q*,t%w\^ 

= |(q*, t"«UXh) - (,*, f ) , ( J + |(q*, *•)„<„,, - (,*, f ) , ( a ) | g 

= N*|,(a)(||t*" - t" | | ,w + C*||t»||0,r,4(ah>a)) -> 0 , 

using (2.15) and the following convergence 

meas A(aA, a) -> 0 , 
where 

A(aA, a) = (Dh - D(a)) u (D(a) - DA). 

Passing to the limit with h -> 0 in (2.7) for th = thn, on the basis of (2.16) and (2.17) 
we obtain 

(2.18) (p°, t%w = - ( , * , r ) , w . 

Making use of (2.1) and (2.14), we may write for n -* oo 

||t" - tflo,>fl = [jcurl (cpn - ^) |0 > r , f i = 2li2\\<pn - <p\\Xim -> 0 . 
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Consequently, passing to the limit with n -> oo in (2.18), we obtain 

(P°, *)*(*)= ~ (^*W). 
Since the solution of the problem (1.11) is unique, p°|xj(a) = K°0 holds a n d l n e whole 
sequence {poh} converges weakly to p°(a) in [L2(D)]2. 

5°. It remains to prove the strong convergence. By virtue of (2.7) we have 

||P \\jT{ah) - ~l<? > P M«h) • 

The weak convergence (2.H) and (1.11) yield 

(2.19) |p°*||i(„ = -(**, *»°*W, - -(**, P°(«)W) = "(q*. lK«)W) = 

-W«)|ic.,-|t»0(-)l^-
Combining the weak convergence and the convergence of norms (2.19), we arrive 
at the convergence in 3^(8), which is equivalent with the convergence in [L2(i))]2. 

Q.E.D. 

Instead of the Optimal Design Problem (1.12) we introduce the Approximate 
Optimal Design Problem 

(2.20) a" = arg min /*(/?„, *-»(&)), 

where q\ph) = q* + p\ph). 

Proposition 2. Let {och}, h -> 0, be a sequence ofoch e U^d, converging to a function a 
in C([0, 1]). Tften 

iim J*(a„ qh(ah)) - J*(a, q(a)) . 
h-*0 

Proof. Let us denote qoh = q* + p0A(a^), q° = q* + p°(oc). Obviously, we have 

(2.21) J*(a„ q*(a„)) = J* F(qoft) r dr dz - \^Dh F(q*) r dr dz . 

Proposition 1 implies that qoh -> q° in [L2(D)]2. From the continuity of F we 
conclude 

(2.22) jfl Ftq0*) r dr dz -> fo F(q°) r dr dz . 

Making use of (1.8), (1.9), we obtain 

(2.23) j f l , f l h F(q*) rdrdz-* ffl,fl(a) F(q*) rdrdz. 

It follows from (2.21), (2.22) and (2.23) that 

J*(ah, q\ah)) - j f l F(q°) rdrdz- j f l , f l ( a ) F(q*) r dr dz = 

= fix.) »• % ( « ) ) dr dz = j*(a , - (a ) ) . Q.E.D. 
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Proposition 3. The Approximate Design Problem (2.20) has at least one solution 
for any h = l/N. 

Proof. It is readily seen that denoting by a e ^ + 1 the vector of Ph{jh), j = 
== 0 , 1 , . . . , N, we have Ph e Uad if and only if a e s/, where si is a compact subset 
o fR N + 1 . 

One can show that the nodal values of ph{f$h)eSh depend continuously on a, 
using e.g. the results of Pironneau [5]. Then for the extensions we have 

P°*(A) - *>>/.) in Jf(<5) if A - o t , in C([0,1]) . 

Arguing as in the proof of Proposition 2, we obtain that 

!*(A,f + l»W)=j(«) 

depends continuously on a. Consequently, the minimum is attained in the set si. 

Theorem 1. Let {a,,}, h -> 0, be a sequence of solutions of the Approximate 
Optimal Design Problem (2.20). Then a subsequence {ah} exists, such that 

(2.24) ah -> a0 in C([0, 1]) , 

where a0 is a solution of the Optimal Design Problem (VI). 
T/xe approximate solutions ^(afi) converge in accordance with Proposition 1 

tO the solution 9(a°). Any uniformly convergent subsequence of {ah} has the 
properties mentioned above. 

Proof. Consider an arbitrary /? e Uad. There exists a sequence {/?,,}, h -> 0, 
/?,, G Uad such that j8,, -» p in C([0, l]) (for the proof — see the Appnedix in [2]). 

Since Uad is compact in C([0, 1]), there exists a subsequence {a^} c {<xh}, such that 
(2.24) holds and a0 e Uad. By definition, we have 

J*(a„ q{ah)) g J*(pR, q{pH)) \fh . 

Passing to the limit with h -> 0 and using Proposition 2 on both sides, we arive at 
the inequality 

J*(a°,q(^))^J*(P,q(P)). 

Consequently, a0 is a solution of the problem (V12), which is equivalent with (VI). 
The rest of the Theorem follows from Proposition V 

Corollary. There exists at least one solution of the Optimal Design Problem (1.1). 

P roof follows from Proposition 3 and Theorem V 
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Souh rn 

OPTIMALIZACE OBLASTI 
V OSOVĚ SYMETRICKÝCH ELIPTICKÝCH ÚLOHÁCH 

DUÁLNÍ METODOU KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK 

V práci se uvažuje osové symetrická eliptická úloha druhého řádu s kombinovanými okrajo
vými podmínkami. Je třeba najít tvar oblasti, pro který nabývá minima účelový funkcionál, 
vyjádřený prostřednictvím gradientu řešení. K přibližnému řešení stavové úlohy se používá nové 
duální metody konečných prvků. Dokazuje se existence optimální oblasti a konvergence přibliž
ných řešení. 

Р е з ю м е 

ОПТИМИЗАЦИЯ ОБЛАСТИ В ОСЕСИММЕТРИЧЕСКИХ ЭЛЛИПТИЧЕСКИХ 
ЗАДАЧАХ ДВОЙСТВЕННЫМ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ 

IVАN Н^АVАСЕК 

Рассматривается осесимметрическая эллиптическая задача второго порядка. Требуется 
найти форму области, для которой целевой функционал, заданный посредством градиента 
решения, достигает своево минимума. Применяется новый двойственный метод конечных 
элементов и доказывается существование и сходимость приближенных решений. 

Ашког'з аа'а'гем-: 1п§. Ъмт Шаьтсек, Ог8с, Ма1етаглску й$1ах С8АУ, Ёкпа 25, 115 67 
РгаЬа 1, С2еспо51оуак1а. 
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