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DOMAIN OPTIMIZATION IN 3D-AXISYMMETRIC ELLIPTIC
PROBLEMS BY DUAL FINITE ELEMENT METHOD

IVAN HLAVACEK

(Received March 8, 1989)

Summary. An axisymmetric second order elliptic problem with mixed boundary conditions is
considered. The shape of the domain has to be found so as to minimize a cost functional, which
is given in terms of the cogradient of the solution. A new dual finite element method is used for
approximate solutions. The existence of an optimal domain is proven and a convergence analysis
presented.
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INTRODUCTION

The present paper is devoted to the analysis of an axisymmetric optimal design
problem, where a part of the boundary of the meridional section plays the role of
a design variable. As the state problem, a mixed boundary value problem for a second
order elliptic operator is considered. The Dirichlet homogeneous boundary condition
is prescribed on the variable part of the boundary. Since the cost functional is given
in terms of the cogradient of the solution, we employ a dual finite element technique,
the analysis of which has been presented recently in [3] Thus the present paper
extends the results of [1] and [4] to some three-dimensional axisymmetric problems.

In Section 1 the optimal design problem is given and the dual variational formula-
tion of the state problem recalled. We introduce finite element approximations in
Section 2 and prove their convergence to some optimal solution.

I. FORMULATION OF THE OPTIMIZATION PROBLEM

Let us consider the following model problem: D(«) = R* be the domain
Da) ={(r,z)] 0 <r <afz), 0 <z <1},

where the function a(z) — the design variable — belongs to the set of admissible
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functions
Uy = {ae C®'([0,1]). (i.e., Lipschitz function) ,

min é d(Z) é amax’ ldoc/dz| é Cl, Ié az(z) dZ = CZ} >

with given positive constants tyin, %max> C1> C2. Assume that U,y is non-empty and
denote the graph of the function « by I'(x).

Here r and z denote the radial and axial coordinate, respectively. The following
Optimal Design Problem will be studied:

(1.1) «® = arg min J(a, y(x)).
aeUaza
where
(1.2) J(ot, ) = [p() F(cograd y) rdrdz
and y(a) is the solution of the following boundary value problem
10 ay 0 dy .
1.3 - ——|(ra,—})——|(a,=)=f in D(a),
(13) r6r< 6r) Oz< 62) / )

y=0 on I(x),

azg—j=0 on dD(a) = I'(x) = Ty
cograd y = (a,% , a. %)T , a,a,eLl”D), feL (D),
D={(rz)|0<r<5,0<z<1}, 6> tpy,
Iy={(r,z)]r=0,ze[0,1]}.

Assume that a positive constant a, exists such that

(1.4) a,=a,, a,=a, ae. inD.

We denote by L",‘(ﬁ) the space of measurable functions u, for which

[ulg,n = foluf"rdrdz < +o, m=12.

The space of bounded measurable functions on D will be denoted by L”(D). Let
k = 0 and n be integers. We shall denote by W,'*(D) the weighted Sobolev space
with the weight " and the norm

[#lkrmo = (Y o |D%uf? rdrdz)/?,
[Bl=k

where DPu denotes any partial derivative of the order 8. The same notation will
be used also for vector-functions.
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We shall use the weak formulation of the problem (1.3); the weak solution of
(1.3) is the function y = y(«) € V(a) such that

(1.5) J |:a, Oy oo + az@@]rdr dz = J. Sfordrdz
D) or or 0z 0z D(a)

holds for all v e V(«), where

V(a) = {ve WX (D(x))| yo = 0 on I'(x)} .
Note that there exists a continuous mapping

v: WA (D) = L((2))

such that yu = u|, for any u € C{¢/ D(x)). (The proof can be found e.g. in [2] —
Sect. 1).
It is easy to find that there exists a positive constant C; such that

(1.6) I |grad ul?> rdrdz 2 Csllul?, b

holds for all u € V(x) and « € U,4. Using (1.4) and (1.6) we derive that the problem
is V(a)-elliptic and therefore uniquely solvable for any o € U,4. Then cograd y(oz) €
< LG

Assume that the mapping F, occuring in (1.2), is continuous from [L}(D)]
Ly(D).

2 into

Example. Let us consider the function

F(q) = [ba, = K.)* + ba: = K2']"* = ko,

where q = (q,, 4.)", K = (K,, K,)" e [LY(D)]? b,, b.€ L*(D), b, = b, and b, = b,
with some positive b, holds a.e. in D, ko € Li(D). Then F(q) is continuous in Ly(D).
In fact, let

lim |q" — q]¢,5=0.

n—aow

~If we denote
F(q) + ko = |lq — K|
then ||| 5 represents a norm in R? almost everywhere in D. We may write
5o |F(@) = F(@)] rdrdz < Jo | — al rdrd <
< Cyl9" = 90,0 = 0.
Setting e.g. K=0,k, = 1, b, = b, = b~ %, b = const > 0, then
F(g) = (ja(=)] - B)b

and b has the meaning of an ,,admissible’” magnitude of the cogradient vector.

B>
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Since the cost functional is given in terms of the cogradient of the solution, we shall
employ the dual variational formulation of the state problem (1.3). Let us recall the
latter formulation, the derivation of which can be found e.g. in the paper [3] —
Part I, Section 2.

Let us introduce the notation J#(a) = [L}(D(«))]* and the following bilinear form
in #(x) x #(x)

(q, P)x’(a) = jD(a)(ar—Iqrpr + "z—l%l’:) rdrdz,
1/2

lallew = (9. 936 -

It is readily seen that the norms ||| 4, and ||o., pw) are equivalent by virtue of
(1.4). Moreover, let us define

5
B(x; q,v) = J\ (q,gg + q,a—v> rdrdz,
D) or 0z
L(v) = [pufordrdz,
Q,(x) = {qe #(a) | B(o: q, v) = L(v) Vv e V(a)} .

Then the functional

(17) Halzew
attains its minimum over the set Q(«) at the point q() if and only if q(x) =
= cograd y(a).
We assume that
(1.8) Jotf(t,z)dte - (D).

(Note that (1.8) is fulfilled e.g. if f = r* fo(z), B > —2, fo € I*((0, 1))). Then the
following vector-function

(1.9) q* = (—r ' [51£(1, z) dr, 0)T
belongs to the set Q () for any o € Uy, where

U, = (e COM([0, 1])]

IIA

#(2) £ Upax -
Defining the subspace
(1.10) Q(x) = {qe #(a) | B(o;; g, v) = 0 Vve V(a)},

we may write Q(a) = q* + Q(x). Substituting ¢ = q* + p, p e Q«) into (1.7),
we conclude that the functional

IP%w + (4% P

attains its minimum over the subspace Q(«) if and only if p(x) = cograd y(x) — q*.
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The sufficient and necessary condition for the minimizer p(«) € Q() is

(1.11) (P(2) Yory = (0% ey VEE€ ().
The latter minimum problem has a unique solution p(a) for any « € U,,.
Now the optimization problem (1.1) can be replaced by the following equivalent
Optimal Design Problem:
(1.12) «® = arg min J*(«, q(«))

aeUaa

where
J*(ot, q) = [pw F(q) rdrdz,

q(x) = q* + p(«), q* is defined by the formula (1.9) and p(«) is the solution of
(1.11).

2. APPROXIMATIONS BY THE FINITE ELEMENT METHOD

First we introduce piecewise linear approximations of the set U,4. Let N be a posi-
tive integer and h = 1/N. We denote the subintervals [(j — 1) h, jh] by e; and define

e, € Pi(e;) Vi,

where Py(e;) is the set of linear polynomials defined on e;. Let D(a;) = D, be the
domain bounded by the graph I', = I'(«,) of the function «, € Ul,.

The dual state problem (1.11) can be solved approximately by means of the finite
element method, proposed in the paper [3]. Let us recall some results of the latter
paper and apply them to the model problem (1.11).

We have to introduce the space

X,(D(«)) = W,"*(D(@)) ~ L7-1(D(«))

h
Uy = {“heUad %,

with the norm
lo]x.w@ = (pw(®®r™* + |grad ¢|?) r dr dz)'/?
\and the subspace
W(a) = {¢ € X,(D(«)) | y¢ = 0 on dD(x) = I'(a) = Io} .

The operator

T
curlq;:(gﬁf, —%—Z—Z))

is well-defined on W(«).
For any o € UY the space Q(«) can be identified with

curl W(a) = {qe #(x) | 3o € W(x) such that q = curl ¢} .
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Moreover curl: W(a) > Q(a) is a one-to-one mapping ([3] — Thm. 4.6) and
(2.1) leurl @lo,r,p0 = 22| xu000n -
The function u € X,(D(x)) if and only if u/r € X3(D(a)), where
X3(D(x) = Wa*(D(w) n L(D(w)) ,
with the norm

o]l x500e = (Joe(®® + |grad U]Z r*)rdrdz)'/?.

For any « € Ugy and any u € X (D(«)) we have the inequalities

(22) 372 ] x,pan = ulrllxsme) = 3] x o) -

If we construct the approximations of q € Q(«), we may therefore write

(2.3) q =curlp = curl (ry), ¥ e Xs(D(x))

and approximate the function y.

The polygonal domain D, will be carved into triangles by the following way. We
choose o, € (0, 0,) and introduce a uniform triangulation of the rectangle £ =
= [0, a] x [0, 1], independent of a, if h = 1/N is fixed. In the remaining part
D, = 2 let the vertices of triangles divide the segments [0, o,(jh)]j = 0,1, ..., N,
into M equal segments, where M = 1 + [(,.c — %) N] and the square brackets
denote the integer part of the number inside. In this way, we obtain a regular family
{7 (o)}, h = 0, o, € Uy, of triangulations, with

(2.4 Bmax = max (diam K) < h/sin o, ,
Ken(om)

(20 = arCtg ((dmin - aO) (amax - (XO)“1 (1 + Cl + C%)_l) .

Here K denotes any (closed) triangle of 77 ,(a).
Let us define finite element spaces Xt by the standard manner, i.e.,

2y = {ue C(¢¢ D,)| ulx e P(K) VK e T ()}, k=1,2.
We introduce the local Lagrange interpolation IT of the degree k on any K € 7 ()
so that

ITy: C(K) » P(K) and ITxu=u
at all the nodes of the triangle K. For k = 1 the nodes are only vertices, for k = 2
they are vertices and mid-points of sides. We define the global interpolation

Ii: C(¢¢ D,) > Xk
so that

I ulg = IT (uly) VK e T4(o) .
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In the paper [3] (Corollary 5.7 and Lemma 5.9) the following estimate has been
derived for any regular family of triangulations 7 (D)

(2.5) lu — 1T} u| x,0) £ Culu) her s k=1,2,

where the constant Ci(#) depends on u but not on fn., D is a fixed polygonal
domain.
We shall construct subspaces S, = Q(«,). Let us define the set

Y, = {w,|w, = rw,, w,e Zj, w, = 0 on D, = I, = Iy}
and
(2.6) S, = curl Y, .
It is easy to verify Y, = W(w,) and then S, = Q(w,) follows. Note that

. A NT
qheS,,:>q":<r%‘i’!, —th—r%) S W,,EZ,;,;
z r

consequently, the components ¢” and g" are piecewise polynomial.
Instead of the state problem (1.11) we can solve the Approximate State Problem:
find p"(o,) € S, such that

(2.7) ("), )spam = —(15 )opun VE' €S,

By virtue of (1.4) and the boundedness of a,, a,, there exist positive constants C
and C* such that

(2.8) Clplorow = [Plaw = C*{[Pllo.rpe

holds for all p € #(x) and any o € Ugy. The approximate problem (2.7) has a unique
solution for any h = 1/N and any o, € Uly.
Next we prove the following

Proposition 1. Let {a,}, h — 0 be a sequence of «, € Uy, converging to a function
sin C([0, 1]). Then
(2.9) (o) = p°() in [LAD)]> for h—0,

where p°(a,) is the solution of (2.7), extended by zero to the domain D = D(a)
and p°(«) is the solution of (1.11), extended by zero to D = D(a).

Proof. 1°. We can find easily that a € U,4. It follows from (2.7) that

1p" e = |9 0em V-
Consequently, using (2.8) we obtain

(2.10) Clp"lo.r,on = [9*|@n = (9] -
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Therefore a subsequence of {p°} exists (and we shall denote it by the same symbol)
such that

(2.11) p%" — p° (weakly) in [L}(D)]*.

2° We can show that p° b € Q(a) In fact, let us consider a function w e V(a)
and denote by W its extension to D = D() by means of zero. There exists a sequence
{w,}, % = 0, such that

w,eC*(¥¢D), w,=0 in D= D(x),
(2.12) suppw, 0 (@) =0, |w, — W[, 5—0.

(The proof of this assertion is analogous to that of Lemma 2 in [2]). There exists
a ho(x) such that w,, vanishes on I'(ot,) for b < h(x) so that

Wb, € V(o) Vh < ho(x).
Since p"€ S, = Q(w,), we have
Bloy; p*, w,) =0 Vh < ho(x) .
Using the weak convergence (2.11), we obtain
0 = B(5; p°", w,) > B(S; p°, w,) for h—0.
Passing to the limit with ¥ — 0 and using (2.12), we arrive at
0 = B(5; p°, W) = B(a; p° w).

Consequently, p°|p,, € O(«) follows.
3° Next we show that

(2.13) p° =0 ae. in D= D(a).
In fact, let ° + 0 on a set E = D = D(«), meas E > 0. Denote the characteristic
function of the set E by yg. Using (2.11), we obtain for h — 0

(P, 2P o.r.0 = (% 26Po.r0 = P71, > 0.

On the other hand, we may write

(POha XEPO)O,r,D = (Ph’ PO)O,r,D;.nE é “Phno,r,D;. “POHO,r.thE - 0 ’

since (2.10) holds and meas (D, n E) — 0. Thus we come to a contradiction.

4°. Let us show that $° is a solution of the problem (1.11). Let us consider
a te Q(a). We know that a function ¢ € W(«) exists such that t = curl ¢. Let us
extend ¢ “symmetrically with respect to I'(«) in the radial direction” to get @ € W(9).
By lemma 6.1 in [3] there exists a sequence {¢,}, n — o0, such that

¢, € C*(%¢ D), supp ¢, (3D = I'(8)) =0
(2.14) 18 = ullxiy > 0.

232



We set
Yo = @ufr, t=curl(ry,), t" = curl(rily,),

where IT} is the Lagrange linear or quadratic interpolation. Obviously, the triangu-
lations 7 ,(«,) can be extended to cover the domain D in such a way, that the family
of extended triangulations remains regular. We have

W, C*(%¢ D), suppy, = supp ¢,, t"|p, €S, = Qo),

since IT; y, vanishes on 0D = I'(8). Consequently, t” can be inserted into (2.7).
We may write

[P, ")) = (P°, )ri)| = (P, € — ¥)ee| +
+ [P )y — (0%, )| = 11 + 12
I £ [P [¢" = 0y > 0 for b0,
using (2.10) and the following estimate
(2.15) 1€ = €]e) = €| curl (\(T 4 = ¥a))o.r0 <
S CH6' 2Ty — Wl xymy S CulWn) B,

which follows from (2.8), (2.1), (2.2), (2.5). (Note that an analogue of (2.4) can be
derived for the family of extended triangulations and employed here).
Making use of (2.11), we obtain that I, tends to zero. Altogether, we have

(2.16) (P ")y = (P t")es) = (P, )iy = (PO )y -

Next, we may write

(2.17) (9%, )y = (9% )| =
= (9% )i = (4% )rian| + (4% oy — (9% )| S
= [9*| ) (" = €] + C*[€]0.r800.) = 0

_using (2.15) and the following convergence

meas A(a,, ) > 0,
where
Aoy, o) = (D), = D(2)) U (D(«) = Dy,) .

Passing to the limit with & — 01in (2.7) for t" = ™, on the basis of (2.16) and (2.17)
we obtain

(2.18) (P )rr = = (9% V)or -
Making use of (2.1) and (2.14), we may write for n — oo

le* = oo = lleurl (@n = ®)]o.r.0 = 200 = Gllxs0) > 0.
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Consequently, passing to the limit with n — oo in (2.18), we obtain

(PO, t);f(z) = -(q*’ t)lt’(z) .

Since the solution of the problem (1.11) is unique; p°|p.,) = () holds and the whole
sequence {p°"} converges weakly to p°(a) in [LX(D)]*.
5°. It remains to prove the strong convergence. By virtue of (2.7) we have

lel“ff(!h) = _(q*' Ph)f(an) :

The weak convergence (2.11) and (1.11) yield

(2.19) 1P 50 = = (% P™)oeie) = (9% P (W)ris) = — (9% P(X)rir) =
Pl — [Pl

Combining the weak convergence and the convergence of norms (2.19), we arrive
at the convergence in #(8), which is equivalent with the convergence in [LX(D)]*.
Q.E.D.

Instead of the Optimal Design Problem (1.12) we introduce the Approximate
Optimal Design Problem

(220) ah = arg min J*(ﬁhs qh(ﬁh)) ’

BneUad"
where q'(8,) = q* + p"(B).
Proposition 2. Let {a,}, h — 0, be a sequence of o, € U*,, converging to a function o
in C([0, 1]). Then
lim J*(ety, q*(or)) = J*(2t, q(2)) -

h—0
Proof. Let us denote ¢°" = gq* + p°*(x,), q° = q* + p°(«). Obviously, we have
(2.21) (o, §%(es)) = [p F(§*") rdrdz — [p.p, F(q*) rdrdz.

Proposition | implies that q°" — q° in [L(D)]>. From the continuity of F we
conclude

(2.22) Ip F(@”")rdrdz - [5 F(q°) rdrdz.
Making use of (1.8), (1.9), we obtain
(223)  foep, (@) rdrdz > [ p F(g9) rdrdz.
Tt follows from (2.21), (2.22) and (2.23) that
J*(o, q%(0)) = [ F(°) rdrdz — [p.pe F(q*) rdrdz =
= J@ 7 F(q(«)) drdz = J*(x, q(x)) . QE.D.
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Proposition 3. The Approximate Design Problem (2,2()) has at least one solution
for any h = 1/N.

Proof. It is readily seen that denoting by a e R¥*+! the vector of B,(jh), j =
=0,1,...,N, we have B, € U, if and only if a € &, where & is a compact subset
Of RN+ 1. :

One can show that the nodal values of p"(f,) € S, depend continuously on a,
using e.g. the results of Pironneau [5] Then for the extensions we have

Po(B) = P™(o,) in A#(3) if B -, in C([0,1]).
Arguing as in the proof of Proposition 2, we obtain that
B a* + P'(By) = j(a)
depends continuously on a. Consequently, the minimum is attained in the set &/.
Theorem 1. Let {%,}, h - 0, be a sequence of solutions of the Approximate
Optimal Design Problem (2.20). Then a subsequence {03 } exists, such that
(2.24) ap = «° in C([0.1]),

where o° is a solution of the Optimal Design Problem (L.1).

The approximate solutions qﬁ(aﬁ) converge in accordance with Proposition 1
to the solution q(a°). Any uniformly convergent subsequence of {w,} has the
properties mentioned above.

Proof. Consider an arbitrary feU,. There exists a sequence {f,}, h — 0,
By € Uly such that B, - B in C([0, 1]) (for the proof — sce the Appnedix in [2]).

Since U, 4 is compact in C([0, 1]), there exists a subsequence {o;} = {o,}, such that
(2.24) holds and «° € U,4. By definition, we have

N T*(o5 (o)) < J*(By, 9(Br)) V.

Passing to the limit with /1 — 0 and using Proposition 2 on both sides, we arive at
the inequality

J¥(s0, q(2°)) < J*(8, q(B))

Consequently, o° is a solution of the problem (1.12), which is equivalent with (1.1).
The rest of the Theorem follows from Proposition 1.

Corollary. There exists at least one solution of the Optimal Design Problem (1.1).

Proof follows from Proposition 3 and Theorem [.
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Souhrn

OPTIMALIZACE OBLASTI
V OSOVE SYMETRICKYCH ELIPTICKYCH ULOHACH
DUALNI METODOU KONECNYCH PRVKU

IvaN HLAVACEK

V praci se uvazuje osove symetricka eliptickd uloha druhého fadu s kombinovanymi okrajo-
vymi podminkami. Je tfeba najit tvar oblasti, pro ktery nabyva minima G&elovy funkcional,
vyjadieny prostfednictvim gradientu feSeni. K pribliZznému feSeni stavové ulohy se pouziva nové
dualni metody kone&nych prvkl. Dokazuje se existence optimalni oblasti a konvergence pribliz-
nych feSeni.

Pe3rome
OINTUMUBALUA OBJIACTU B OCECUMMETPUYECKUX SJUITUIITUYECKUX
3AJAYAX JIBOMCTBEHHBIM METOJOM KOHEYHBIX BJIEMEHTOB
IVAN HLAVACEK
PaccmaTpuBaeTcsi OCECMMMETpPHYECKasi JJUIMIITHYECKasi 3ajaya BTOporo mnopsiaka. Tpebyercs
Haiitu Qopmy 0o6sacTH, IUTsl KOTOPOi LiesieBOi GyHKUMOHAN, 3aJaHHbIA TIOCPEJCTBOM IpajveHTa

pelueHus, JOCTHraeT CBOEBO MHHMMYyma. IIpUMEHSETCS HOBBIN JBOWCTBEHHBI METOI KOHEYHBIX
9EMEHTOB M [OKA3bIBAETCS CyMIECTBOBAHUE U CXOAMMOCTHL TMPUOIMIKEHHBIX PELIEHUH.
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