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Summary. We introduce a fuzzy equality for F-observables on an F-quantum space which
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Let (Q, &, E) be a probability space and f: @ — R' a real valued, #-measurable
random variable, i.e. f"!(E)e & for any set E € B(R'), where B(R') is the Borel
o-algebra of the real line R'. The mapping x: B(R') —» & defined as x(E) = f~*(E),
E € B(R"), is a o-homomorphism, called an observable of %.

Gudder and Mullikin [1] introduced many types of convergences for the obser-
vables in a quantum logic. Motivated by their definitions, we present some conver-
gences of F-observables in F-quantum spaces.

1. F-QUANTUM SPACE

We recall that according to [2], an F-quantum space is a couple (@, M), where Q
is a nonvoid set and M < [0, 1]? is a system of fuzzy subsets of Q such that

(i) if (w) =1 for any we Q, then 1e M,
(ii) ae M implies a* :=1 —aeM,
(iii) if 1/2(w) = 1/2 for any w e Q, then 1/2 ¢ M,
(iv) if {a,},ey = M, then ) a,:= supa,e M.
neN neN
The () is a fuzzy union, and the fuzzy intersection, (), is defined via () a, := inf a,.
The set M is also called a soft fuzzy o-algebra [4] neN neN
The soft fuzzy o-algebra M can be regarded as a partially ordered set in which we
define a < b iff a(w) < b(w) for any w € Q.
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Using the complementation L:ar>at =1 — a, we see that it satisfies two
conditions:

(i) (a*)* = a forany ae M,

(i) @ < b implies b* < a*.

Two fuzzy sets a and b are called orthogonal or W-separated and we write a L b,
iff a < b*.

It is clear that a L a* for any a € M.

We say that a fuzzy set a € M is a W-empty set (W-universum), iff a < a*(a = a*).
It is evident that the following assertions are equivalent:

(i) a is a W-empty set (W-universum),
(ii) a < 12 (a = 12),
(iii) a n a* = a(a v a* = a),
(iv) a* is a W-universum (W-empty set).
We denote by W,(M) and W,(M) the sets of all W-empty sets and W-universes,
respectively, from M.
If a,beM, a £ b, be Wy(M) then ae Wo(M) and if a < b, ae W,(M) then
be W,(M).
Let B(R") be the Borel g-algebra of the real line R'. By an F-observable of (2, M)
we mean a mapping x: B(R') - M such that
(i) x(E°) = x(E)*, Ee B(R'), E° = R! — E,
(ii) x(E) L x(F) if EnF = 0, E, F € B(R"),
(ii) if {E,},en = B(R'), E;n E; = 0 for i # j, then x(| E,) = U x(E,).
neN neN

If a is a fuzzy set from M, then the mapping x, defined via

anat if 0,1¢E,
at if 0cE, 1¢E,
a if 0¢E, 1eE,
avuat if 0,1€E

x,(E) =

for any E € B(R!) is an F-observable of (2, M) and plays the role of the indicator
of the fuzzy event a € M.

If x is an F-observable and f: R' — R! is a Borel function, then fo x: E >
> x(f ~*(E)), E € B(R"), is an F-observable of (Q, M), too. In particular, if /() = |,
te R!, we put le = f o x, etc. Similarly —x is an F-observable defined via

(1.1) —x(E) = x({t: —te E}) forany EeB(R").

Let x and y be two F-observables. By the sum of x and y (see [5]) we mean an
F-observable z such that

VR GE X LE(CENE)
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for any t e R!, where Q is the set of all rationals in the real line R! and we write
z = x + y. In the paper [5] it has been proved that the sum of any pair of F-
observables exists and is unique. We shall denote by O(M) the set of all F-observables
of (2, M).

An F-state on (2, M) is a mapping m: M — [0, 1] such that

(i) m(au a*) =1 forany ae M,

(ii) if {a,},ev = M, a; < aj for i # j, then m() a,) = Y. m(a,).
neN

neN

According to [6], we define K(M) as the set of all subsets 4 = Q such that there
is a fuzzy set a € M satisfying

(1.3) {a>1)2 c Ac{a= 12},
where {a > 1/2} = {w e Q: a(w) > 1/2}, similarly for {a = 1/2}.
The following result holds (see [6], [7]).

Theorem 1.1. Let (2, M) be an F-quantum space. Then K(M) is a c-algebra of
subsets of the set Q.If m is an F-state, the function P = P,: K(M) — [0, 1] defined
via

(1.4) P(A) = m(a), AeK(M),
where A and a satisfy (1.3), is a probability measure on K(M) with
(1.5) P({a=12})=0 forany aeM.

Moreover, if m, n are F-states such that m #+ n, then P,, + P,.
Conversely, let P be any probability measure on K(M) with (1.5), then the
mapping m = mp: M — [0, 1] defined via

(1.6) m(a) = P(A), aeM,

where a and A fulfil (1.3), is an F-state. Moreover, if P #+ Q, then mp + mgy. In
addition, m = mp and P = P

Lemma 1.2. Let {a,},oy © M. Then
() Ufanz 12} = {Ua, 2 1]2},
() U fan > 12} = (U0, > 112},
) yar > 1) < () {ar > 112
) (a2 12 = N fa 2 112,
(v) ,-;GZ,,G w,(M) for any neN, then
"E)N{a,, =1/2} {,,Qqa" =1/2}.

\
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Proof. It is straightforward and, therefore, it is omitted.
A. Dvurecenskij proved the following representation theorem.

Theorem 1.3 [7]. For any x € O(M) there is a K(M)-measurable, real-valued
Sfunction f on Q such that

(1.7) {x(E) > 1/2} = f"YE) = {x(E) = 1/2}

for any E € B(R"). If g is any K(M)-measurable, real-valued function on Q satis-
fying (1.7), then

{we Q: f(w) + g(w)} = {x(0) = 1/2} .

Conversely, let f: Q - R' be any K(M)-measurable function. Then there is an
F-observable x satisfying (1.7). If y is any F-observable satisfying (1.7), then
x(E) n y(E°) € Wy(M) for any E € B(R").

We shall denote by F(M) the set of all K(M)-measurable real-valued functions
on Q and write x ~ f for x e O(M) and f € F(M) such that (1.7) holds.

Theorem 1.4 [7]. Let x ~ f, y ~ g and h be any Borel function. Then
D) x+y~f+g,

(ii) hox ~hof,

(iii) x.y ~ f.g, where x.y:= 1[2((x + y)* — x* — y?),

(iv) if £ = 0 then x([0, 00)) = x(R").

Lemma 1.5. Let ae M, A€ K(M) be such that the condition (1.3) holds. Then
X, ~ 14, where I , is the indicator of the set A.

Proof. By the assumptions of the lemma, {a > 12} ¢ 4 = {a = 1/2}. Let
EeB(R')and0, 1 ¢ E. Thenx,(E) = a na*and {x,(E) > 1[2} = {ana* > 12} =
=0 =1I;"(E) = {x,(E) = 1/2}. If EeB(R") is such that 0€ E and 1¢E, then
xE) = at and {x,(E) > 12} = {a* > 12} c A° =I;'(E) = {a* 2 12} =
= {x,(E) = 1/2}. If Ee B(R") is such that 0,1 € E, then x,(E) = a U a*, and due
to Lemma 1.2, {x,(E) > 12} = {ava* > 12} c A A= Q=1I;'(E) =
={ava' 2 1)2} = {x,(E) = 1)2}.

Finally, if E € B(R") is such that 0 ¢ E and 1 € E, then x,(E) = a and I '(E) = A.

We see that {x,(E) > 1/2} = I;'(E) = {x,(E) = 1/2} for any E € B(R"), which
implies x, ~ I,.

2. FUZZY EQUALITIES AND FUZZY INEQUALITIES

Let (2, M) be an F-quantum space. According to [8], a non-void subset I of M
is said to be an F-ideal (F-o-ideal) if:
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(i) ana*el forany ae M,
(ii) if aeM and a < b, bel, then ael,
(iii) if @ n b el for some be Wy (M), then a€el,

(iv) a, bel implies au bel (| a,el whenever {a,},.y < I).
neN

Suppose that I is an F-o-ideal and put a ~; b iff a n b* and a* N b are from 1.
Then ~ is a congruence (o-)relation on M (see [8]), i.e.,

(i) ~ is an equivalence relation on M,

(ii) ana* ~;0 forany ae M,

(iii) a ~; b implies a* ~; b*,

(iv) ay ~; b, and a, ~; b, imply a; U a, ~; b, U b,

(ay ~;b,, neN, imply U a, ~;U b,).
neN

neN

Denote by

I, = {ae M: thereis a ¢ € Wy(M) such that a n ce Wo(M)}.

Then I, is an F-¢-ideal, I, = I for any F-o-ideal and 1¢1I,. In particular, if M
consists exclusively from crisp subsets of Q, then I, = {0}.

Definition 2.1. We say that two fuzzy sets a, b e M are fuzzy equal and we write
a=pb,iffanb,atnbel,.

Let x,ye O(M). We say that x and y are fuzzy equal and we write x =p y,
iff x(E) n y(E°) eI, for every E € B(R").
Let A, Be K(M). We say that A and B are fuzzy equal and we write A =p B,

iff there is a c € Wy(M) such that A \ B < {we Q: c(w) = 1/2}, where A A\ B =
= An By A°n B.

Let f, g: Q@ - R' be K(M)-measurable functions. We say that f and g are fuzzy

equal and write f =p g, iff there is a c € W,(M) such that { € Q: f(0) * g(w)} =
c {we Q: ¢(w) = 1/2}.

The relation =, is an equivalence relation on M, O(M), K(M) and F(M). It is
simple to verify that the following assertions hold:

(i ana* =50 and au a* =;1 forany ae M,
(ii) x(9) =40 and x(R') = 1 for any x € O(M).

Lemma 2.2. Let a, be M and let A, Be K(M) be such that (1.3) holds. Then

(i) a =4 b if and only if A =p B,

(ii) a =p b implies m(a) = m(b), where m is an F-state on M.

Proof. (i) If @ = b, then there are c, d € W;(M) such that a n b* n c € Wo(M)
and a* N b de Wy(M), which implies {a n b* > 12} = {¢ = 1/2} and
{at 0 b > 1]2} = {d = 1/2}. From (1.3) we have {a > 12} = 4 = {a = 1/2} and
{b* > 1/2} = B° = {b* = 1/2}, which gives, by Lemma 1.2, {an b* > 1J2}
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cAnB clanb 212} ={anb' > 12} u{anb =12} = {c=1]2}u
vi{ianbtuand) =12} ={cn((anbd)u(an b)) =12}.Putu = cn
An((anbyu(anbt)t). Then ue Wy(M) and An B° < {u = 1/2}. Similarly
A°n B < {v=1J2}, where v=dn((a*nb)u(a'n b)")e W, (M). Therefore,
ANB=AnB uAnBc{u=12}u{v=12} ={unv=1/2}, where un
N ve Wy(M). which gives A =p B.

Let now A =y B. Then there is a ce Wy(M) such that AN B°U AN B <
c{c=1/2}.Wehave{anb* > 12} « AnB° < {c =12}and{a*nb > 12} =
= A°n B = {¢ = 1/2} and this is equivalent to anb*nc¢ < 1/2 and a*nbn
ne =12

(ii) Ifa = b then from (i) we have A = B, which implies that thereisa c € W,(M)
such that 4 A B = {c¢ = 1/2}. Let P be a probability measure on K(M) defined
via (1.4). From (1.5) we have P(4 n B°) = 0 and P(4°n B) = 0. Then P(4) =
=P(An B°U AN B) = P(An B°) + P(An B) = P(A n B) and similarly P(B) =
= P(A n B), which gives the equality P(4) = P(B)and by (1.6) m(a) = m(b). [

Lemma 2.3. Let x, and x, be two indicators of fuzzy sets a and b, respectively.
Then x, =p x, if and only if a =p b.

Proof. It is evident. O

Lemma 2.4. Let x, y € O(M). Then x =y y if and only if there is a c e W,(M)
such that x(E) n y(E°) n ¢ € Wo(M) for any E € B(R").

Proof. Let {E,},.y be a generator of B(R'). If x=p y, then there are u,, v, = 1/2
such that x(E,) n y(Ef) nu, < 1/2 and x(E{) n y(E,) n v, < 1/2 for any neN.
Denote ¢, = u,nv, and put ¢ = ()¢, Then ¢ = 1/2 and x(E,)n y(E;) n ¢ <

neN
< x(E,) n y(E;) n ¢, = x(E,) 0 y(E5) 0 u, < 1/2 and similarly x(E;) n y(E,) n ¢ £
< 1/2. Denote

K ={EeB(R"): x(E)n y(E)nc £ 1/2, x(E°) n y(E) n ¢ £ 1/2} .
The system K is a non-empty set containing the generator {E,},.y. Moreover, x(0)n
A y(RY) A e =x(0) £ 1/2 and x(R') n p(0) " ¢ = y(@) < 1/2 imply that @ € K and
R'eK. If {A,},ey = K, then x(U 4,) 0 y(NA)ne=Ux(4,)nNy4;)ne =
neN neN neN

neN

< U x(4,) n y(45) n e < 1)2, therefore, () 4,eK. We have proved that K is
neN neN

a g-algebra, consequently, K = B(R').
The converse assertion is obvious. O

Proposition 2.5. Let x, y € O(M) and f, g € F(M) be such that x ~ f, y ~ g. The
following statements are equivalent:

(i) x =p y.
(ii) f =rg.
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Proof. Suppose that (i) holds. From x ~ f, y ~ g we have {x(E) > 1/2} =
cf'l(E) [ {x(E) > 1/2}, {y(Ec) > 1/2} cg YE) < {y(E‘) > 1/2} and
{x(E) n y(E°) > 12} = f"YE) n g~ Y(E°) = {x(E) n y(E°) = 1/2}, too. By Lemma
2.4, there is a ¢ = 1/2 such that x(E) n y(E°) n ¢ < 1/2 for any E € B(R"), which
gives {x(E) n y(E°) > 1/2} = {c¢ = 12} for any E e B(R"). Since {x(E) = 1/2} =
= {x(R") = 1/2} and {y(E°) = 1/2} = {y(R") = 1/2}, we have {x(E)n y(E°) =
= 1/2} = {x(E) 0 y(E°) > 1/2} U {x(E) 0 y(E°) = 1]2} = {¢ = 1J2} L
U {x(R") n y(R') = 1)2} = {c n x(R') n y(R') = 1/2} for any EeB(R'). Put
d=cnx(R")ny(R"), then deWy (M) and we have [ '(E)ng '(E)c
< x(E)n y(E°) 2 1/2} = {d = 1/2} for any Ee B(R'), which implies f~'(E) n
ng N E)VfYE)n g Y(E) = {d = 1/2}, too.

Finally, {we Q: f(0) + g(o)} = U ({o: flo) < r £ g(w)} U {w: gw) <r =
éf(w)})igé(f_'((*ooﬂ”))ﬂg (- o, ) f (=00, 1)) g™ (=0, 1)) =

c{d= 1/2}, where Q is the set of all rationals in the real line, and this gives f = g.

Suppose now that (ii) holds. By definition, there is a ¢ e W,(M) such that
{w: f(0) * g(w)} = {w: c(w) = 1/2}. For any E € B(R') we have {x(E) n y(E) >
> 12} = fTYE)n g Y(E°) < {o: f(o) # g(w)} = {o: ¢(w) = 12}, which implies
x(E)n y(E¥) n e £ 1)2. O

Corollary 2.6. Let x, y € O(M) and f, g € F(M) be such that x ~ f, y ~ g. Let m
be an F-state on M and let P be the probability measure on K(M) defined via
(1.4). If x =p y then f = g almost everywhere with respect to the measure P, i.e.

P({w: f(w) * g(w)}) = 0.
We define a mapping o: B(R') -» M via

o(E)z 1 if 0OeE,
0 if O¢E

for any E € B(R"). The mapping o is an F-observable of M. Moreover, if fo(w) = 0
for any w € Q, then f, is K(M)-measurable real-valued function from Q into the real
line R! and o ~ f,.

Lemma 2.7. Let f, g € F(M). Then f = g if and only if f — g = 0.

Proof. If f =p g then there is a ¢ e W (M) such that {w: f(0) + g(w)} =
< {c=1/2}. But {w:(f — g) (o) * 0} = {0: f(w) + g(w)} = {¢ =1/2}, which
implies f — g =, 0.

The converse assertion is evident. O

Proposition 2.8. Let x, y € O(M). Then x =p y if and only if x — y =po.

Proof. It follows from Lemma 2.7 and Proposition 2.5. O
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Proposition 2.9. Let x, y € O(M). The following statements are equivalent:
(i) x =¢y,
(i) (x — y)({0}) =¢ 1.

Proof. Let (i) hold and let f, g € F(M) be such that x ~ f, y ~ g. By Proposition
2.5, f=pg and by Lemma 2.7, f — g =, 0, which is equivalent to x — y = o.
Lemma 2.4 yields (x — y) ({0}) =5 o({0}) = 1.

Suppose now that (ii) holds. Then there is a ¢ € W,(M) such that (x — y) ({0}) n
N 1nec <12, which implies {(x — y)({0}°) > 1/2} = {¢ = 1/2}. If EeB(R"),
0¢E,thenE < {0}°and (x — y) (E) < (x — y)({0}°)and so {(x — y) (E) > 1]2} =
< {(x — ¥)({0)°) > 1/2} = {c = 1/2}, therefore (x — y) (E) =5 0 = o(E) whenever
O¢E. If 0 E, then 0¢ E° and (x — y) (E°) =5 0 = o(E°), which implies (x — y).
.(E) =p 1 = o(E) whenever 0 € E. We have proved that (x — y) (E) = o(E) for any
E € B(R"), which is equivalent to (x — y) = 0 as well as to x = y. O

Definition 2.10. We say that a fuzzy set ae M is fuzzy less or equal to be M
and write a <p b, iffan b =y a.

Let x, y € O(M). We say that x is fuzzy less or equal to y and write x <p y, iff
(v = %) ([0, o)) = 1.

Let A,BeK(M).We say that Ais a fuzzy subset of Band write A< (B, iff AnB = A.

Let f, g € F(M). We say that f is fuzzy less or equal to g and write f <, g, iff
there is a c € Wy(M) such that {o: f(w) > g(w)} = {c = 1/2}.

The sets M, O(M), K(M), F(M) are sets partially ordered by the relation <.

Lemma 2.11. Let a, b€ M and A, B e K(M) be such that (1.3) holds. Let m be an

F-state. Then the following assertion hold:
(i) a <p b if and only if A =y B.

(it) If a <p b, then m(a) < m(b).

(iii) If a <pb*, then m(a L b) = m(a) + m(b).

Proof. (i) It is evident.

(ii) If a <p b then by (i) A =y B, which implies A n B = A and Lemma 2.2
yields P(4 n B) = P(4). Then we have m(b) = P(B) = P(AnBu A°n B) =
= P(4 n B) + P(A° n B) = P(A) + P(A° n B) = P(A) = m(a).

(iii) By (ii) we have P(A n B°) = P(A) and then m(a v b) = P(A U B) =
= P(4 n B°) + P(B) = P(4) + P(B) = m(a) + m(b). O

Proposition 2.12. Let x, y € O(M) and f, g € F(M) be such that x ~ f, y ~ g.
Then x <pyifandonlyiff <pg.

Proof. If x <py then from definition (y — x)([0, 00)) =1, which implies
the existence of a ¢ € Wy(M) such that (y — x)([0, 0))* n¢ = 1/2 and {(y — x).
.((=0,0)) > 1/2} = {¢ = 1/2}. The assumptions of the proposition and (i) of

39



Theorem 1.4 give y — x ~ g — f, and from Theorem 1.3 we have

(0= 5) (=0.0) > 112} & (g — 1) (=0, 0) <

& {(y = (=0, 0) 2 12} = {(y — ) (=0, 0)) > 112} &

D10 = ) (=0 0) = 12} < fe = 112} 0

Vil = %) (RY) =12} = fen (v = x) (RY) = 1]2}.
Put d = ¢ (y — x)(R"), then de Wy (M) and {o: f(w) > g(w)} = {w: (g — f).
(w) <0} =(g = f)"" ((—0,0)) = {d = 1/2}, which implies f <, g.

Suppose now that f < g. Then there is a ¢ € W;(M) such that {w: f(w) > g(w)} =
=(9 — /)" ((—,0)) = {c = 1/2}. From Theorem 1.3 we have {(y — x).
((=0,0)) > 12} = (g = f) " ((—0,0)) = {c = 12} = {cu c* = 1/2}. Putd =
= cu ¢t Itis evident that d € W,(M) and {(y — x) ((— 0, 0)) > 1/2} = {d = 1]2},
therefore, (y — x) ((—0,0))nd < 1/2 and also (y — x)([0, 0))n 1t nd =0 <
< 1/2, which implies (y — x) ([0, ©0)) = 1. O

3. CONVERGENCES OF F-OBSERVABLES

Let x be an F-observable. Then the mean value of x in an F-state m is the expression
m(x) defined by

(3.1) m(x) = [p tdmy(1),

(if the right-hand side exists and is finite), where m, is a probability measure on B(R")
defined via m(E) = m(x(E)), E e B(R"), and we say that the F-observable x is
integrable and write m(x) = [x dm. Moreover, if f is a Borel measurable function,

then m(f o x) = [ f(f) dm,(t), in the sense that if one side exists, then the other
exists, and both are equal.

Motivated by many types of convergences for the observables in quantum logics
[1] we introduce the following notions.

Definition 3.1. We say that a sequence {x,},y = O(M) ({f,}sex = F(M)) converges
to xe O(M) (f e F(M)):

(1) fuzzy everywhere, if, for every ¢ > 0,

o0

U N(r=x)[=0) =1(U 10 =) [=ae]) = 9

n=k k=

(2) almost everywhere in an F-state m (in a measure P), if, for every & > 0,

m(U 0= %) (=) = 1
(P(0, 00 = £ ([=ea]) = D)
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(3) fuzzy uniformly, if, for every & > 0, there is an integer k such that (x — x,) .
([-&¢]) =¢1
(f=f) " ([-ec]) = Q) forall nz=k;

(4) uniformly almost everywhere in an F-state m (in a measure P), if, for every
¢ > 0, there is an integer k such that m((x — x,)([—¢, ¢])) = 1

(P((f = £) " ([-&e])) = 1) for all n = k;
(5) fuzzy almost uniformly in an F-state m (in a measure P), if, for every ¢ > 0
and & > 0 there are a € M(A € K(M)) such that m(a) < §(P(4) < 8) and an

integer k such that a* <p(x — x,) ([ —¢,¢€]) (4° = (f = f,)" ' ([—¢ £])) for
all n =2 k;

(6) in an F-state m (in a measure P), if, for every ¢ > 0lim m((x — x,) ([ —¢, £])) =

= 1(tim P((f ~ £)" ([—2.])) = 1):

n—-»o
(7) in mean p, where 1 < p < o0, if

lim | |x — x,|? dm = 0 (hm folf =1

n—o

We say that a sequence {x,},y < O(M) ({f,}ren = F(M)) is

»dP = 0).

(8) fuzzy fundamental everywhere, if, for every ¢ > 0,

k:UU: '(ik(x,, - xs) ([—8’ 8]) =rl
kQI Fi;(f" —fs)_l ([—8’ 8]) =r Q);

(9) Sfundamental almost everywhere in an F-state m (in a measure P), if, for every
e >0,

m( U ﬂ (xn xS) ([_8’ 8])) =1

=1 n,s=k

(P(U N (=7 (Lo D) = 1)

k= n,s=k

(10) fuzzy fundamental uniform, if, for every ¢ > 0, there is an integer k such
that (x, — x,) ([ —¢,¢]) =5 1

((fy = f) " ([—&€]) =¢ Q) forall n,s = k;

(11) fundamental uniform almost everywhere in an F-state m (in a measure P),
if, for every ¢ > 0, there is an integer k such that m((x, — x,) ([ —¢, ¢])) = 1

(P((fu = f) " ([—&.€])) = 1) for all n,s = k;
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(12) fuzzy fundamental almost uniform in an F-state m (in a measure P), if, for
every & > 0, there is an ae M (A eK(M)) such that m(a) < §(P(A4) < 9),
and for every ¢ > 0 there is an integer k such that

P = x)([—ee])(4° cp (f, = f) ([—e €])) forall n,s = k;
(13) fundamental in an F-state m (in a measure P), if, for every ¢ > 0,

lim m(x, — x,) ([—e €])) = 1

n,s=* o0

(lim P((f, = £)"* ([=ae]) = 1

(].4) fundamental in mean p, where 1 < p < o, if

|fu = fi|r dP = 0).

el

Theorem 3.2. Let x, x,e O(M) and f,f, € F(M), for any n = 1, be such that
x ~ f, x, ~ f,, n 2 1. The sequence {x,},.y converges to x in an arbitrary sense
Sfrom (1) through (14) if and only if the sequence {f,},.y converges to f in the cor-
responding sense.

Proof. Suppose that the sequence {x,},.y converges to x fuzzy everywhere. Let
& > 0 and denote

Z,G (x —x,)([—&¢]) and A4 =k§1 nE}k(f =) ([—ee]).

Then a € M and A € K(M), and by Lemma 1.2 they fulfil the condition (1.3). By the
assumption we have a =j 1, hence there is a ¢ e W;(M) such that a* nc < 1/2,
which is equivalent to {a* > 1/2} = {¢ = 1/2}. Then {a* > 12} < 4° <
cfatz 12} ={a* > 12} u{a* =12} c{c =12} v{avat =12} =
={cn(ava')=12}. Put d=cn(aua®), then evidently de W, (M) and
AnQ =0 c{d=1[2} and A°n Q = A° = {d = 1[2}, too, therefore AA Q =
< {d = 1/2}, which implies 4 =, Q i.e. the sequence {f,},.y converges to f fuzzy
everywhere.
Now we prove the converse assertion. Suppose that A =, Q where A =
= U ﬂ (f )" ([ —e, ¢]) for some & > 0. Then there is a ¢ € W;(M) such that

k=1 n=k

A= AN Q < {c =1/2}. In view of the above ,we have x, ~ I, where a =

=U N(x = x,)([—&e]). Therefore {a* > 1/2} = A° = {c¢ = 1/2}, which gives
K=1n=k
atnc<120ra=pl.

Other types of convergences may be proved in an analogous way. O
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Proposition 3.3. If a sequence {x,},.y = O(M) converges to xe O(M) fuzzy
uniformly then the sequence {x,},oy is fuzzy fundamental uniform. Conversely,
if {Xu}wen is fuzzy fundamental uniform, then there is an x e O(M) such that
{x,}nen converges to x fuzzy uniformly.

Proof.Letf, f, € F(M) for any n = 1 be such that x ~ fand x, ~ f,. By Theorem
3.2 the sequence {f,},.y converges to f fuzzy uniformly. For every ¢ > 0 there is an
integer k such that (f — f,)"' ([—¢, ¢]) =p @ for all n = k. By Lemma 2.4 there
is a ¢ € Wy(M) such that (f — £,) "' ([ —e, £]°) = {¢ = 1/2} for every ¢ > 0 and for
all n = k. Denote A = Q — {c = 1/2}. It is evident that A e K(M) and 4 =, Q.
The sequence {f,},.y converges to f uniformly on the set A, which is equivalent to
the assertion that, for every ¢ > 0, there is an integer k = k(e) such that for all
nszk, Q=pAc(f,—f,) ' ([~ e]). This gives that the sequence {f,},cy is
fuzzy fundamental uniform and applying Theorem 3.2, we obtain that the sequence
{x,}sen 18 fuzzy fundamental uniform, too.

Suppose now that {x,},.y is fuzzy fundamental uniform. Due to Theorem 3.2,
{ fuduen is fuzzy fundamental uniform. Hence, for any integer i > 1 there is an integer
k = k() such that 4,,;:= (f, — f,) ' ([—1/i, 1/i]) = Q for any n,s = k. Put

Ay = ﬂ ﬂ A, Then AyeK(M) and A, =5 Q. For any ¢ > 0 we find an

i=1 n,s=k(i)

integer i such that ¢ > 1/i > 0, which entails that for any n,s = k(i) we have
Q =4, < (f, — f;) ' ([—¢ ¢]), in other words, {f,},y is fundamental uniform
on A,. In view of a classical result, there is a K(M)-measurable function f such that
{f,}nen converges uniformly to f on Ay, that is {f,},.y converges to f fuzzy uniformly,
too. According to the Theorem 1.3, there is an F-observable x such that x ~ f,
which in view of Theorem 3.2 yields that {x,},.y converges fuzzy uniformly to x. []

Analogously we can prove similar results on the relationship of the fundamentality
of a given type of convergence and the existence of the limit-observable of the given
type for F-observables.

It is clear that:

(i) the convergence (fundamental) almost everywhere follows from the con-
vergence fuzzy (fundamental) everywhere, as well as from the convergence (funda-
mental) uniform almost everywhere;

(ii) the convergences fuzzy (fundamental) everywhere, (fundamental) uniform
almost everywhere and fuzzy (fundamental) almost uniform follow from the con-
vergence fuzzy (fundamental) uniform;

(iii) the convergence (fundamental) in an F-state m (in a measure P) follows from
the convergence (fundamental) uniform almost everywhere;

(iv) the convergence fuzzy (fundamental) almost uniform follows from the con-
vergence (fundamental) uniform almost everywhere.
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Theorem 3.4. Let x,x,e O(M) for any neN. The following statements are
equivalent:

(i) A sequence {x,},.y converges to x fuzzy almost uniformly in an F-state m.

(ii) A sequence {x,},oy converges to x almost everywhere in an F-state m.

Proof. Suppose (i). Let ¢ > 0 and put 6 = 1/i, i = 1,2, .... Then there is an
a;e M such that m(a;) < 1/i and there is an integer k = k(i) such that a; <,

<y (x - x,)([—&¢]) for all n =k, as well as ai <, ﬂ (x —x,)([—& €]). Put
a= ﬂ a;. We have 0 < m(a) < m(a) < ]/l fori = 1,2,..., which gives m(a) = 0

i=1

or m( a‘) = 1. Then a* U ar __FU ﬂ(x - X,) ([‘—8 e]) < U ﬂ(x x,) -

i=1n=k j=1n=j
. ([, €]), which implies 1 = m(a*) < (U ﬂ (x = x)([—&¢]) =1
j=1n=j

Let now (ii) hold. By Theorem 3.2, a sequence {f,},.y converges to f almost
everywhere in a measure P, where f, f, € F(M) are such that x ~ f, x, ~ f, for any
neN, and by the Jegorov theorem [9], the sequence {f,},.y converges to f almost
uniformly in a measure P, which gives that this sequence converges to f fuzzy almost
uniformly in a measure P, too, and again applying Theorem 3.2 we obtain that the
sequence {x,},ey converges to x fuzzy almost uniformly in an F-state m.

Proposition 3.5. Let a sequence {x,},.y = O(M) converge to x € O(M) in an F-state
m. Then this sequence is fundamental in the F-state m.

Proof. Let ¢ > 0 and let x ~ f, x, ~ f, for all n > 1, where f, f, € F(M). By the
assumption and by Theorem 3.2 we have '

tim P((f = £) " ([=of2. 2D) = 1 or
tim P((f = £)"* ([=5/2 /21 = 0.

Because (f, — f,) "' ([—& ¢]°) = (f, — )" ([—¢/2, ¢/2]) U

O (f = £)7 ([ —¢[2, ¢/2]), we have P((f, — £)"! ([—&,e])) =

S P((fu = )7 ([—¢f2, ¢2]) + P((f — f)7 ' ([—¢[2, ¢/2]7)) and hence 0 <
< lim P((f, — f,) "' ([—e, €]°)) < 0, which gives lim P((f, — f,) ' ([~ ¢])) = 1.

n,s— o n,s— oo D

Proposition 3.6. If a sequence {x,},.y = O(M) is fundamental in an F-state m,
then there is an F-observable x such that the sequence {x,,},,EN converges to x in the
F-state m.

Proof. Let {f,},.y = F(M) be such that x, ~ f, for all n e N. By Theorem 3.2
the sequence {f,},y is fundamental in a measure P and by Theorem 6.44 in [9]
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there is a K(M)-measurable function f such that the sequence {f,},.y convergers to f
in the measure P. According to Theorem 1.3, there is an F-observable x such that
x ~ fand by Theorem 3.2 the sequence {x,},.y converges to x in the F-state m. [
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Sahrn
FUZZY ROVNOST A KONVERGENCIE
F-POZOROVATELNYCH V F-KVANTOVYCH PRIESTOROCH
FERDINAND CHOVANEC, FRANTISEK KOPKA
V F-kvantovom priestore zavedenim relacii fuzzy rovnosti a fuzzy nerovnosti sa definuji rézne
typy konvergencii pre postupnosti F-pozorovateInych a vyuZitim reprezenticie F-pozorovatelnych

bodovymi funkciami definovanymi vo vhodnom meratelnom priestore sa dokdZu niektoré
konvergenéné vety.
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