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THE STABILITY OF RITZ-VOLTERRA PROJECTION AND
ERROR ESTIMATES FOR FINITE ELEMENT METHODS
FOR A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE
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Summary: In this paper we first study the stability of Ritz-Volterra projection (see below) and
its maximum norm estimates, and then we use these results to derive some L® error estimates
for finite element methods for parabolic integro-differential equations.
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1. INTRODUCTION

In the study of finite element methods for parabolic integro-differential equations
[1, 2, 6], Sobolev equations and the equations of visco-elasticity [6], the following
Ritz-Volterra projection has been introduced: For u(f)e W(Q), teJ = (0, T],
its Ritz-Volterra projection V,(t): C(J; W3(Q)) » C(J; S,) is defined by

(1.1) A(t; Viu — uy x) + [6 B(t, 5 Vyu(z) — u(z), x)dt =0, x€S,, tel,

where A(t; -, +) and B(t, 7; -, *) are the bilinear forms associated with the positive
symmetric definite elliptic operator A(t) and an arbitrary second order operator
B(t, 7), respectively, with smooth coefficients, @ = R*(d = 1) is a bounded domain,
and S, < Wé(Q), with a small parameter h > 0, are finite dimensional subspaces.
1, =1lo.s I:] =|-llo,> and ||, denote the norm on the Sobolev spaces
Wy(Q)for2 < p < oo.

Notice that when ¢t = 0, we have V,(0) = R, the standard Ritz projection associated
with the operator A4(0).

It has been proved in [1, 2, 6] that the Ritz-Volterra projection ¥}, defined by (1.1)
exists and is unique, and it also enjoyes the following approximation properties [6]:
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forteJ,
. ) j
(1.2) [DiVs u(t) = w(@)] + K[ Di(Viaa(e) = w(@)] .2 = C . [P u(0)] -
=0
for ueWlnws, j=01, 1<r<k,
provided that the approximation space S, satisfies for some k = 2 the inequality

inf {Ju— 7] + W~ 22} < CRfulzs 15

X€Sh

mu(t)mr,p = “u(t)“rp + 6 “u(T)Hrp dr.

Here and in what follows we denote by C the generic constants independent of u and
h, if not stated otherwise.

Now we consider the finite element solution for the following parabolic integro-
differential equation

[IA

ks

where

(1.3) u, + A(t)u + [ B(t,tyu(t)dt = f in Qx J,
u=0 on 02 xJ,
u=v in Qx {0},

and let u,(1) be its semi-discrete finite element analogue [1, 6]. By using the Ritz-
Volterra projection V, defined by (1.1) the authors of [6] have shown for smooth
data u(0) = v that if [|u,(0) — o] < Ch"|[v],,, then

(14) )~ w®] = CH Loz + Jo fuf)], d)

which is the same error as that for parabolic equations [14]. The estimates (1.4) was
obtained also by Thomee and Zhang in [13] by employing the standard Ritz projec-
tion R, [10]. A slightly weak error estimates similar to (1.4) has been shownin [1, 2].
We know from [1, 2, 6] that it is easier and more convenient to use the Ritz-Volterra
projection V, than the Ritz projection R, in the study of finite element methods
for problem (1.3), and moreover, this new projection ¥, has a variety of other applica-
tions [6].

It is well known (see [10]) that if S, are piecewise polynomial spaces imposed
on quasi-uniform triangulations of Q, the Ritz projection R, satisfies the stability
estimate

(15) RS Clul,. 2595w,

More importantly, this stability can be used to derive some optimal error estimates
for finite element approximations for elliptic [10] and parabolic equations.

In this paper we study the stability of our Ritz-Volterra projection ¥,. Due to the
complexity of the problem, the integral term and the corresponding loss of ellipticity,
we shall consider only a special case of (1.1). Namely, we assume that Q = R?,

(1.6) A(ty= =V.a(-,1)V, B(t,1)= -V.b(-,1,7)V
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where a(x, t) = a, > 0 and b = b(x, t, t) are smooth functions, and V is the gra-
dient operator in R?. Thus, the Ritz-Volterra projection V} in (1.1) becomes

(a(+, t) V(W u(t) — u(t)) + {6 b(-, 1, 7) V(V; u(r) — u(z))dr, V) = 0,
«€S,, tel,

or for short,

(1.7) a(t; Vyu(t) — u(t), z) + {6 b(t, v Vyu(r) — u(x), x)dr = 0,

reS,, ted,

where a(t; -, +) and b(t,t; -, +) are the bilinear forms associated with the above
special operators in (1.6).
We shall show in Section 2 the following result for ¥}, defined in (1.7).

(18 e, = @iy 2EpS o

Although (1.7) is a very simple case of (1.1) it still preserves the essential features
for the general Ritz-Volterra projection V. That is, it is our conjecture that the sta-
bility result (1.8) will hold for the general form (1.1).

In Section 2 we state and prove our main theorems. In Section 3 we shall employ
the results obtained in Section 2 to derive some optimal error estimates for finite
element methods for parabolic integro-different equations.

2. STABILITY OF RITZ-VOLTERRA PRGJECTION

Let Q be a bounded domain in R? with smooth boundary 0Q. Fork = 2,0 < i <
< 1,let S¥ be a one parameter family of finite-dimensional subspaces of VVZ‘(Q),
consisting of piecewise polynomial functions of degree at most k — 1, defined on
a quasi-uniform partition of Q. It is required that S¥ possesses the following approxi-
mation property: For all w e W;(Q) n W(Q),

@ty = 2l + Hly =t S CRly, p22, 1S5Sk

Lemma 2.1. Let P,: [}(Q) — S}, be the I*-projection, then

(2.2) [Pwls, = C|w|sp» s=0,1, 2Sp= 0.
Proof. See [9]. Q.E.D.
Let z € Q and let &% € Sf be the discrete d-function at z such that

(23) 0 10) =x(2), x€S,
Let G* be the smooth Green’s function at z that

(2.4) -V.aVG*=¢; in Q,

G'=0 no 3Q.
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It is obvious that G* e W3(Q) n W3(Q) exists and is unique, and it follows by (2.3)
that

(2.5) a(t; G, w) = P,w(z), we Wi(Q).
Let G € S} be the Ritz projection of G7, i.e.,

(2.6) a(t; G* — G, 1) =0, yeSk.

It is well known [12] that

G 1 if k=2
2.7 G — G|y < Ch(log=) , k*= ’
(2.7) I il = <°gh> {0 if k3.

Define [8]

z+Az __ iz
0,G° = lim TG
Az-0, Az//L ]Azl

where L is an arbitrary fixed direction. We know from (2.4)—(2.6) and [8] that
0,G* € W3(Q) n W3(Q) exists and is such that

(2.8) a(t; 0zG*, w) = 0, w(z), we W3(Q),
(2.9) a(t; 0,G° — 0,Gi,x) =0, xeSf.

Let ¢(x) = (|x — z|> + 0?7, with ¢ = yh and y large enough, be the weight.
We define the weighted norms for o € R,

Iflle= = (52 ¢71* dx)*72,
[711.6- = (G $*(111* + [V717) dx)*/2.
It follows from a direct computation that
fod*(x)dx < Cla — 1)71 72D | o> 1,
We now recall the following results concerning the estimates for Green’s function

G* and its Ritz projection Gj [8, 10].

Lemma 2.1. Under our assumptions on Sk, we have
(2.10) |0.G* — 0,Gj||y 4-1-- = Ch*, e€(0,1),
(2.11) [0.6% — 0.Gi[|1,1 + |G*||1,1 + |Gill1x +
(2.12) .67, = C, 1=<q<32.

Proof. (2.10)—(2.11) can be found in [8, 10]. For (2.12), let w satisfy

=C,

|G}

—V.aVw=g, xeQ, w=0, on 0Q.
and
”W[ll»p§cp”g”p’ l<p<o.
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Let p, = 3, we see from (2.7), stability of P, and Sobolev imbedding theorem that
(0,G*, g) = a(t; 0,G*, w) = 0,P, w(z) <
< Cwli, = Cwl2s = Csllgls = Cllgl,, 3<p=w.

Thus, (2.12) follows. Q.E.D.
We now state and show our main result in this section.

Theorem 2.1. Assume that u € I'(J; W}(Q)). Then the following stability estimate
Jor our Ritz-Volterra projection V), holds,

@13 [hulli, S Clu@lly. 167, 25 p< 0.

Remark. When ¢ = 0, (1.2) is just the stability estimate (1.5) obtained by Ran-
nacher and Scott [10] for Ritz projection R,.

Proof. It has been shown by an argument of duality in [6] that

it =l < Cllalliys 25 p <o

Thus, the case of 2 < p < 3 follows.
For 3 < p < o, let n = u(t) — V, u(t), then we see from the definition of V,

and Green’s functions that
3,Pyn(z, t) = a(t; n, 0,G*) + [§ b(t, t; n(z), ,G*) dt —
— (6 b(t, t; n(x), 0,G*) dt = a(t; u, ,G* — 9,G) +
+ 6 b(t, 73 n(7), 0.G* — 8,G;) dt — [§ b(t, 75 n(v), 8,G%) dr
= a(t; u, 0,G* — 9,G}) + [§ b(t, 73 u(r) — P,u(z), 0,G* — 8,G;)dt +
+ 6 b(t, 75 Py (7)), ,G* — 8,G;) dt — [§ b(t, v; (7), 0,G7) dt =
=1, + [6(I, + I + 1) dr.
We see from Lemma 2.1 and Holder inequality [ 10] that for I,
(2.14) 1] £ C(fa @' dx)®=2722 ([ o' **(|u]” + [Vu]?) dx)'/? 0,67 —
— 0,Gi||1.4-1-= < Ch**([o ¢***(Ju]” + |Vul?) dx)'/7.

Similarly, we have
(@15)  |L] S CH(fy 6+ (u(s) — Pyu@P + [V(u() — Py u(@)F) dx)',
(2.16) L] < Ch¥/7([ ¢ H(|Py n(2)|? + [VPyn(z)|?) dx)'/7 .
We can write I, as
I, = —b(t, ;s u(tr) — P,u(), 9,G*) — b(t, 1; P, n(z), 8,G°) =
=-M, -M,.
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Thus, it follows from the structure of the two operators in (1.6) and by integration

by parts that
(- 1)V [(’1(7’7))) P, n(f)] v 2.6) -

- <a( 1) P(7) V(%("tt_)r)) v asz) )

o) ]

(e ()00

<[t

< ‘azm [(b(—(_)) e >}| 4 P

where we have used (2.12) for 1 < g < 3/2 since p = 3 and p~* + ¢~ ! = 1. Also,
for the same reason we have

I3} f)_(z,_t,L) u(z,t) — Pyu(z, t u(t)llq ., -
2 () e = Pt )] + clutol
Thus, we obtain from (2.14)—(2.16)

[y = Ch**'"(max fq ' d2)"? [u] 1, < 1C]u]

M| =

=

+ ClPun(@)] 1 ,]0.67], =

M| =

1,50
Il = Clu = Py, = Clu]s,
1151, = ClPu 15,

and by estimates for Ms, we have for I,
”I4HP = C”Phnnlm + CU”Hz,p-

Notice that if

H(x) = N(x) + [{ K(x, 1) dt,
then
1H], = N[, + fo [K@)],de, 2=p= 0.

Thus, we see from the estimates for I's that
P, = Cllu(®ls,, + € fo [Puinfs,pdr, 3=p<o0.

Notice that the above inequality also holds for p = oo by using (2.7) [10]. Thus,
Gronwall’s lemma implies

1Panll 1o = Cllu(@l.p
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and

(2'17‘) “ Vh““hﬂ = HPW”LP + ”‘Phu“Lp é‘cmuy(t)ml.n'

Hence, Theorem 2.1 follows. - Q.E.D.
As a direct application of Theorem 2.1 we show the following result.

Corollary. For any function ue L'(J; W) Wk) we have
(2.18) [u(t) = Viu()],, < CR*YJu(D|lep> 2Sp < o0,
219)  [ul) = Vo)l < CH[uOp. 25 p < oo

Remark. (2.19) has been shown in [6] by a different method and (2.18) is an
improvement of the estimates obtained in [6].

Proof. Let I, be the interpolant operator on S¥. We apply Theorem 2.1 for u — Iu
and observe that ¥, = id on S to obtain

(220)  [Hul)) = Lou@]sp £ Cllu() = Lou(@l]iyr 25 p S 0.

Then, (2.18) follows from the approximation properties of the interpolant operator I,,.

To prove (2.19), let pe[2, @), ¢ = p/(p — 1)e(1,2] and we W) n W} be
such that

(2.21) Aw =g =sgn(u — Viu)lu — Vu|'™" in Q,

and

222) vl = Clals = Collu — ViulF7" -

Thus, by (2.21), (2.22) and Hélder’s inequality we have

(2.23) N = Vb = a(t;u — Viu, w — Lw) + a(t; u — V,,u,\I,,w) <
< Clu = V|, |lw — Lw|1q + a(t; u — Viu, Lw)

and by (1.8)
a(t; u — Vi, Lw) = — [§b(t, 5 u(t) — V,u{t), [w — w)dr —

— {6 b(t, ;s u(zr) — Vyu(r), w)dr =

— [6 b(t, v u(r) — Vyu(r), Lw — w)dr +

Jo (u(®) — Vo ), Blo, ) w) de =

[ Ju = Vil el = vl + [])

so that we see from (2.22)—(2.23) that

02— Vil = GOy + €, Jolu — Viu], .

Hence, the proof is complete by Gronwall’s lemma.

A+
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We now consider the case of p = oo, the maximum norm estimates, and show:

Theorem 2.2. Under the assumptions of Theorem 2.1, we have

1 (1 —s)k*
) ul) = Va5 O (tog ) Ol
1 if k=2
— % __ )
$=01, & “{o if k3.

Proof. For s = 1, this is a special case of (2.18) with p = oo.
For s = 0, we have as shown in Theorem 2.1,

Pyn(z, t) = a(t;n, G* — G}) + [6 b(t, 73 n, G* — G})dt —
— [ b(t, v; u(r) — P, u(r)), G*)dr — [§ b(t, 7; Py n(z), G*) dr =
=.Il+J2+J3+J4-
From (2.7) and Theorem 2.1 we obtain
171 + 1o = Cllnll1,e [6* = Gill1.o = Ch¥(log (1/R)"

and for J; we see from the stability of P, that

I = o t)v(”‘ = ?)( u(®) = Pyu(o)) VG,) dr -

' (a< ) (u(s) - Phu(r))v(”‘ o~ )’)), VG,> g =

P, [(”(Z( ’I)T)>( u(z, 7) — Pyu(z, f))] dr +

+Ja(a<-,r><u<r> Pyu(s ))v( (‘?) vc=)dfg

< CJfs “u - P,,u”o,co dr + C [§ Hu - P,,u”o,uo dr"G’",,1 <
Ch* {4 “u“koo dr

Similarly, we have

172l = € 3o [Py,
Collecting the above estimates for J;s we obtain

| Panlo. < CHA(log (1) [[u(®)l. + € [ [Patlo, o de
Thus, Gronwall’s lemma implies

(2:26) IPinllo. = Ci(log (1/A)*" [[u(t)]]..co -

()l e0 5

IIA
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Hence, Theorem 2.2 follows from the inequality
Vit = ullo.cs = [PV = )]0 + [Pt = o,
and (2.26) Q.E.D.

3. AN APPLICATION TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

In this section we consider some L® error estimates for finite element methods for
the parabolic integro-differential equation (1.3). As before we assume that the opera-
tors A(t) and B(t, 7) are the special forms in (1.6).

Let u,(t): J — S} be the finite element solution of problem (1.3) defined by

(wne 2) + a(tsup, 1) + 6 b(t, 75 uy(1), x) de = (£, %), x€S;,
u,(0) = v, € Sk
It has been shown in [6] that finite element approximations of parabolic integro-

differential equations have “weak™ L® error estimates. That is, for any ¢ >0 there
exists a C(g, u) > such that

G0 ) — )] S Cles ) B
which is not optimal. Here we shall show the following result assuming sufficient
regularity of the solution u at t = 0.

Theorem 3.1. For k = 2, we assume that u € L'(J; W2 n W2), u, e I}(J, W3) and
v, = V,(0) v = R,(0) v. Then we have

(3.2) Ju(®) = wi(®)llo, = Ch*{log (1/h) (Jo]2, + [Ju(®)]]2.0) +
+ log (1/h) fo [ur].. d2)"/2} .
For k = 3, we assume that u e L'(J; W n W¥), u, e I(J; W¥) and v, = V,(0) v =
= R,(0) v, u, € I*(J; W5), we have
(33) Ju(®) = us(®]o. = CH{lolo + MOl + JuO)]2 +
+ fo e,z d7} -
Proof. As usual we write the error e(t) = u(t) — u,(t) = (u — Vyu) + (Vyu —
— u,) = 1 + 0. Thus, we see from Theorem 2.2 that we need to estimate 6 only.
We first show the case of k = 2. Since v, = V,(0) v = R,(0) v, then 6(0) = 0. It
has been shown in [6] that
(3.4) [6]1.2 = Ch*(|Jv]|2,2 + (§6 [lue]3 .2 d2)'/?).
Thus, (3.2) follows from the “weak” Sobolev inequality on Sy [11],

16]0,. = C(log (1/h))*/2 6] 2
and the triangle inequality.
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Now for the case of k = 3, we see that 0 satisfies
a(t; 0, x) + fo b(t: 71 0(r), 1) = —(enn 7). 1 €S-
Letting y = Gj, it follows
0(z, 1) = a(t; 0, G;) = —(e,, Gi) — [6 b(t, 7 0(z), Gi)dt = K| + K, ,
and as before by Lemma 2.1 we write K, as
K, = - [Oa(t i(.’tt)r) 0(x), G") dr +

o+ j:, (a(-,‘t) o(r)v<bfl'(’. f’t)’)) , vc;) dr <

oo o)

i o i( ft;) ), Gz> e+ C Jo [0l del 6] 5

b(z t r)

i Ph[ o ,;) 0z, r>] dr + C 3 [0, de|67] 1 =

_ ph[b(i - )’) oGz, T)} de +

+ C 6 10]1,0 97 |G; = G|l1,1 + C 6 [0]0.00 dT

/AN

IIA -

By the inverse assumption (quasi- umformlty) stability of P,, (2.7) and Lemma
2.1, we obtain *

K, = C[5]0]o. dr
and '
K, £ [e] [Gi] = el -

Thus, we have:

[olo. = CilerH + € J6 [0llo,.o

and Gronwall’s lemma implies
160, = C(llec] + 15 [lec] de) -

However, we havefrom [6] that

le] = [n] + [6.] =

< ChM{f[[uflle, + w2 + ol + [udO)e2 + 56 [uelle,2 de} -
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Hence, we have

(3.5) [0lo.o = CH{llulll.z + Nuelliz + Nolez + a0 + T Juteele.2 de}
so that (3.3) follows from (3.5), Theorem 2.2 and the triangle inequality.
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Souhrn

STABILITA RITZ-VOLTERROVY PROJEKCE A ODHADY CHYBY
PRO METODU KONECNYCH PRVKU PRO JEDNU TRiDU
INTEGRO-DIFERENCIALNICH ROVNIC PARABOLICKEHO TYPU

YANPING LIN, TIE ZHANG

V &lanku se nejdrive studuje stabilita Ritz-Volterrovy projekce a jeji odhady v maximalni
normé. Pomoci dosaZenych vysledku se odhaduji L ,-odhady chyb pro metodu kone€nych prvki
pro parabolické integrodiferencialni rovnice.
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