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BIFURCATION OF HETEROCLINIC ORBITS 
FOR DIFFEOMORPHISMS 

MlCHAL FECKAN 

(Received April 20, 1989) 

Summary. The paper deals with the bifurcation phenomena of heteroclinic orbits for diffeo-
morphisms. The existence of a Melnikov-like function for the two-dimensional case is shown. 
Simple possibilities of bifurcation of the set of heteroclinic points are described for higher-
dimensional cases. 
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1. INTRODUCTION 

In this paper we investigate bifurcation of heteroclinic orbits for diffeomorphisms. 
The results are obtained by the Lyapunov-Schmidt method. This method was used 
for the study of an analogous problem for ordinary differential equations in [4, 8]. 

2, TWO-DIMENSIONAL CASE 

Let us consider a C00-smooth mapping #: R2 -» R2 with the following properties 
on the set M = ( -1 /2 , 3/2) x ( - c o , oo) 

i) <£ has the form <P(x, y) = (f(x), g(x, y)), where g(x, 0) = 0 for each 
x 6 ( -1 /2 , 3/2), 

ii) the mapping f:R -» R has fixed points 0, 1 such that f'(0) > 1, / ' ( l ) < 1, 
/ ' ( • ) > 0 and g3,(*,0) 4= 0. Further we assume the existence of a sequence 
{*„}-£ c (0, 1), x„+1 = / (x n ) , x„ -» 1(0) a s n - . oo(-oo). 

Thus <$ has the heteroclinic orbit F = {(xn, 0)}t% from (0, 0) to (1, 0). We note 
that 0 also has the family of heteroclinic orbits Jt = {{/"(*), 0)}1 ™, x e (0, 1)} and 
this family contains F. We perturb this mapping and try to find heteroclinic orbits 
near F for the perturbed mapping. 
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Let us consider the variational equation of <P around F: 

MB+I ~f(xn).uH = an9 

vn+1 ~ g,(xn90).i\ = b„. 

For the mapping g we have the following four cases: 

A. \gy(0, 0)| > 1', \gy(l, 0)| < 1 . 

Lemma 2.1. Let X = {{(an, bn)}±Z, an, bneR9 \{(an, bn)}\ = sup {\an\, \bn\} < co} 
and consider the linear operator L:X -> X, 

Щ(un>
 vn)}~Z) = {un+i - f(xn) . un9 vn+í - gy(xn, 0) . vn}±Z . 

Then 
dim Ker L~ 2 , codim Im L = 0 . 

Proof. From the equation 

"_,+ I = f(xn) • un, vn+1 = gy(xn, 0) . vn 

using lim jy/(jcw)| ^ 1 and lim \g,(xH, 0)| JS 1 we have 
n-> ± GO M-+ ± CO 

Ker L = _.{(__ /'(x„), 0)}_» © R{(0, fl 0,(x„, 0)}_£ , 
1 1 

where 

fao . . . a„-i , " £ - 1 
n«B = {l , n-0 

1 [ l / f l . 1 . . . l / f l B , n < 0 . 

For {(an9 bn)}t* e X we solve the equation 

(2.2) ww+1 = / ' (*„) M„ + a„, 

^H+l = 0J.(*_P 0 ) !>„ + & „ . 

The first (and similarly the second) equation of (2.2) has the general solution 

- _ = / ' ( * - - _ ) • • •/'(*<>)(-5 
- n - 1 

/ ' (x . ) . . . / ' (*o) 

«0 = __, _ _ . = ( - „ _ , + J _ ) / E ( x _ 1 ) , 

1 

+ K), n ^ l 

" f'(xи)...f'(x.1) 

n < - 2 . 

(Ľ;2 - aif'(xi+1)...f'(x.1) - в_, + __), 

Since lim |/'(x„)| < 1 we have sup |w„| < oo. The proof of the other cases is similar. 
n-* oo n ^ 1 

B. | ^ ( 0 , 0 ) | > 1 , | ^ (1 ,0) | > 1 . 
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Lemma 2.2. In this case dim Ker L = 1, codim Im L = 0. 

Proof. The case dim Ker L = 1 is clear. In this case the first equation of (2.2) 
has a bounded solution for each K. The second has a bounded solution iff the corre
sponding K is 

K = - __+0° bf 

a y (x; ,0) . . .g3,(x 0 ,0) 

This series is convergent and thus codim Im L = 0. 

C. |g , (0 ,0) |< 1, | g , ( l , 0 ) | > 1 . 

In this case we obtain the same result as in the case B. 

D. Ig ,(0,0) |< 1, | g , ( V 0 ) | > 1. 

Lemma 2.3. In this case dim Ker L = 1, codim Im L = 1. 

Proof. We prove the second part of the lemma. The second equation of (2.2) 
has a bounded solution for n -> oo iff the corresponding K is 

K = - S0 
+ 00 

gy(xi90)...gy(x090)' 

K = S I ^ bigy(xi+ly0)...gy(x_l,0) + b„1 . 

and for n -> — oo iff 

Hence 
j __ y-2 h n (^ n \ ^ t/_! = _._£, Ьigy(xн.u0)...gy(x-1,0) + b.^ + 

gy(x„ 0) ... gy(x0,0) 
+ S J " — ; •——; = 0 

We see that (2.2) has a bounded solution if and only if d„x = 0 and this relation 
implies codim Im L = 1. 

We define the projection P: X ~> X, P({(an, bn)}) = {(0, dn)}t™9 where dn = 0 for 
w=j= - 1 and d_! is defined in the above proof. We see that {(an, bn)}t™ e Im L 
if and only if P({(a„, bn)}) = 0. Thus we define the operator K: (I - P) X -> X, 

K({(^^)}-S) = { K , ^ } _ - , u0 = 0, 

where {(un, vn)}t™ is unique bounded solution of (2.2). 
The mapping <P has hyperbolic fixed points (0, 0) and (0, 0). Hence a perturbed 

mapping <Pe: R2 -> R2 has fixed points pe, qe near them, which are hyperbolic as 
well. Consider the equation 

(2.3) zn+1 -<Pe(zn) = 0 
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on the space X. (We assume #.(•) e C00.) This equation can be written in the form 

(2.4) un+1 + xn+1 = f(xn + ii,) + 0(e) , 

vn+i = 9(xn + M„, i>„) + 0(e). 

We seek for a bounded solution of (2.4) with \un\ + \vn\ + |e| <.| 1, i.e. we solve the 
equation (2.4) in X near 0 eX for e small. It is clear that the linearization of (2.4) 
at 0 e X for e = 0 is precisely the operator L. According to Lemma 2.3 we have 
for the case D 

dim Ker L = 1 and codim Im L = 1 . 

Hence applying the Lyapunov-Schmidt method [1, 10] we derive a bifurcation 
eguation of the equation (2.4), 

(2.5) Q(c, e) = 0, Q:U x U-> R , 

where U is a neighbourhood of 0 e R. Since for e = 0 the equation (2.4) has the solu
tion un = fn(x) — xn, vn = 0 for each x e (0, 1), we obtain that Q(c, 0) = 0. We 
note that each small solution of (2.4) yields a heteroclinic orbit of # e near T. 

Theorem 2.4. For the case D we obtain the above bifurcation equation (2.5). 
Now we investigate the remaining cases. For these cases we have also the equation 

(2.4), but according to Lemmas 2.1, 2.2 the linearization of (2,4), which is the operator 
L, satisfies codim Im L = 0, i.e. L is surjective and applying the implicit function 
theorem we have for e small 

Theorem 2.5. In the case A there is a three-parametric family of heteroclinic 
orbits near F, where one parameter is e and the other corresponds to the parameter 
x from the above mentioned family Jt of heteroclinic orbits of <P. 

Theorem 2.6. In the cases B, C we have a two-parametric family of heteroclinic 
orbits near F, where one parameter is e and the other corresponds to the parameter 
x from the above mentioned family Jt. 

3. GENERAL CASE 

Definition 3.1 (see [6]). Let X be a Banach space and {Tn}neI e 5£(X). We say that 
{Tn}neI has a discrete dichotomy on I — (Z,Z+ = Nu {0}, Z_ = — Z+) if there 
exist positive numbers M, 6 < 1 and a sequence of projections {Pn}n6r such that 

V TnPn — Pn + 1Tn , 

ii) T„/Im Pn is an isomorphism from Im Pn into Im Pn+i. 

iii) if Tntm = T„_i ... Tm+1Tmfor n > m, Tnt„ = Identity, 
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then 

KM - Pm) x\ __ M9n'm\x\ for n __ m , 

|L;j>mPmxf __ M»m-r t |x | for n<m, 

where T„>mPmx = y iff Pmx = TmfJ yfor the case m > n. 

Remark 3.2 . If T„ is a sequence of isomorphisms then the above definition is 
equivalent to the property that there is a projection P e£?(X) such that 

\T(m) P T~l(s) __ M0m~s, m^s, 

\T(m) (I - P) T~1(s)f f_ M6s"m , s^m, 

where T(n) = T ^ . . . T0 for n __ 1, T(n) = T~l ... T l} for n < 0, T(0) = I. 

Theorem 3.3. Let {AL„}„ez
 oe a sequence of invertible matrices An e <£(Rm, Rm) 

with bounded \An\, \An \ on Z. We assume that {An} has a discrete dichotomy both 
on Z + and Z_. Define the operator 

L:X-+X = {{aH}±Z,mp\aH\ < co, aneRm}9 

L({an}\ = an+1 - Anan. 

Then Lis a Fredholm operator and {fn} e Im Lijff £_^ cnfn = Ofor each bounded 
solution {cn} of the equation 

(3.1) cn = (A*)"1 c„_i (* means the transpose) . 

Proof. We consider the equation 

(3.2) xn+i — Anxn . 

By assumption this equation has a discrete dichotomy on Z + ( _ } with projection 
P, Q. (3.2) has the fundamental solution on Z + 

T(n) = An^...A0, n__ 1, T(0) = I . 

The equation (3.1) on the set Ix = { —1, 0, 1,...} has the fundamental solution 

S(n) = ( A „ V . . . I = (T(n + l ) * ) - 1 . 

We see that (3.1) has a discrete dichotomy on Ix with the projection I — P*. Indeed, 
by Remark 3.2 and using the fact [A| = |A*| we have 

|(T(s + l)*)"1 P* T(m + 1)*| S Mem~s m^s, 

\(T(s + I)*)"1 (I - P*) T(m + 1)*| ^ M0*~m s^m, 

I.Є. 

|S(s) P* S_1(m)| _ M n~s m _ s , 

|S(s)(í - P*) S_ 1(m)| _ M s~m s _ m 
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Similarly, on the setI2 = {..., —2, - 1 } the equation (3A) has a discrete dichotomy 
with the projection I - Q*. It is clear that Ker L___ Vn W, where V = Im P and 
W = KtT Q. Hence dim Ker L = dim Vn W. For (3A) we have dim Ker L* = 
= dim V1 n W1, where V1 is the orthogonal complement of V and L*: X -» X 
has the form 

(L*({c„}_S)„ = c „ - K T 1 c „ _ 1 . 

Using the fact dim Ker L = dim V1 n W1 we see that {cn} is a bounded solution 
of (3.1) iff c0e V1 n W1, and since {A*} has a discrete dichotomy on It and I2 we 
obtain that for each such solution {c„}, cn tends geometrically to zero as n -> ±oo. 
Hence £c*/M is convergent for {/„}__ J bounded. 

For {/„} e Im L and a bounded solution {_•„} of (3.1) we have 

Hence 

Thus 

and 

an+ i — A i ű и + /n • 

E _ : C „ Ч + 1 = £ _ Ж Ч A + <&;). 

i _ ; a : c , _ 1 - ï í ; в в Ч Ч + _:íSc^1 

0 - - - . - . . " Л„*cи) = 2._£c„7и. 
Conversely, if X*^ c*/, = 0 tor each bounded solution {cn} of (3A) then we see that 
for each d e Rm satisfying d*(P - (1 - Q)) = 0 and putting Tj = T(j) for j ^ 0, 
Tj = T(j) = A/1 ... All for ; < 0, the sequence 

(3.3) cfl = ( T 1 T + 1 ) " 1 ( J - p * ) d * " ^ - 1 

c„ = (T:+1y
iQ*d, ^ - 1 

is the solution of (3.1) and hence 

d*(LZlQ(Tn+l)-lfn + S0

+°°(7 - P ) ( T „ + 1 ) - V „ ) = 0 . 

Thus the following matrix equation has a solution g: 

(P - (I - G))_ = s:_ G^.+O"1/- + 20

+CO(I - P) T„;\L. 

Let us define the sequence {xn} by 

x„ = T„Pa + s r ' T„pTs;iL - s„+0° T„(/ - P) Ts;i/S, n g: 0, 

x„ = T„(/ - Q)g + ST.1 TnQT~+\fs - s ; l T„(/ - e)T,;i, n = o , 

where we consider EjJ ... = 0 for p> q. The sequende {x„} is well-defined since g 
satisfies the above matrix equation. It is not difficult to see that {xn} is a solution 
of Lx = /. Now we proceed in the same way as in [4] and hence we obtain that 
codim Im L = dim V1 n W1 and index L = dim V -f- dim W — m. This completes 
the proof. 
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Lemma 3.4. Let {An}„^0 have a discrete dichotomy on Z+, An being invertible, 
bounded on Z+, Ane&(Rm). Let \Bn\ -> 0, Bne^(Rm), as n -> +00 . Further we 
assume that {An + Bn} are invertible. Then {An + Bn}n^0 has a discrete dichotomy 
on Z+ and, moreover, if P, P' are projections of dichotomies for {An}, {An + Btt} 
(see Remark 3.2), then dim Im P = dim Im P'. 

Proof. For e > 0 sufficiently small there is7 e N such that for each n _ j we have 
\Bn\ < e. Hence by [6] the sequence {An x Bn}n^j has a discrete dichotomy with 
projections {Pr

n}n^j. If {Pn}n^j a r e projections for {-4,,},.̂ ! then by [6] we also have 

(3.4) \Pn - P;| <eM1, n^j. 

Since A„ + Bn are invertible we can construct back projections P0, Pi,..., Py_t 

such that {An + #,.}„;> 0
 n a s a discrete dichotomy on Z + with the projections 

{I^-^o- ^ is clear that 

dim Im P„ = dim Im Pn+ x = dim Im P , 

dim Fm P^ = dim Im Pn+1 = dim Im P' . 

By (3.4) we have 

dim Im P' = dim Im P , 

Now we consider a ^-mapping G: U -> Km, U being an open subset of Rm. 
We assume that G has two fixed points yu y2 which are hyperbolic and there is 
a subsequence {-xM}-£! a U such that 

lim xn = yx , lim xn = y2 , xn+ x = G(x„) , det D G(x„) + 0 . 
n-+ — 00 »-» + 00 

Then we can solve the same problem as in the previous section: we put G into a smooth 
family Ge: R

m -> Pm of mappings, G0 = G. We want to find heteroclinic orbits of Ge 

for e small near F = {x„}i^. To this end we consider the equation #<,(•) = 0, 
He: X -+ X, 

He({zn}tZ)n = zn+1 ~Ge(zn). 

We see that #0(F) = 0 and (D #0(F) {zn}t™)n = zn+l - D G(xn) zn, and if we put 
L= D H0(r), by Theorem 3.3 Lis a Fredholm operator. Since xn -*• j 1 ( 2 ) as n —> 
—• oo(— 00), applying Lemma 3.4 we have 

index L— mx + m2 — m , 

where m1(2) is the number (counting multiplicities) of the eigenvalues of D G(y2{l)) 
with absolute values smaller (greater) than 1. Hence we can reduce the equation 
He(z) = 0 near 2 = F by using the Lyapunov-Schmidt method to the bifurcation 
equation 

6(c, e) = 0 , 
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where Q: Ux x U2 -> #dimKerL*, ux, U2 are open neighbourhoods of O e RdimKerL, 
jR respectively, and Q(0, 0) = 0. Note that dim Ker L* = dim codim Im L. Finally, 
we can investigate the equation Q(c, e) = 0 near c = 0, e = 0 by applying the theory 
of singularities of finite-dimensional mappings [5, 9]. We note that each solution 
of He(') = 0 near F for e small yields a heteroclinic orbit of Ge near {xn}l™. 

We will follow the above mentioned procedure for special cases of G in the next 
section. 

4. APPLICATIONS 

We generalize the problem from Section 2. Consider a mapping f:R-+R with 
the same properties as in Section 2. Further, we consider a C3-mapping G 

x. - f{x) + o(\y\) 
KJ: 

J>I = A(x) y + o(|j;[), 

where yeRT"1. We assume that A(-) e J^(JRm~1), detA(-)/<0, 1> + 0 and A(0), 
A(l) are hyperbolic, i.e. they have no eigenvalues on the unit circle. Then G has the 
trajectory F = {(xn, 0)}t™ and (0,0), (1,0) are hyperbolic fixed points. Consider 
a perturbed mapping Ge: R

m -> Rm, ee B, G0 = G, G.(-) e C3. Now we apply the 
above mentioned procedure from the end of Section 3, and the relevant operator L 
has the index 

(4.1) index L = 2 dim Ker L + m2 + m2 — m , 

where dim Ker L+ m1(2) — 1 is the number of the eigenvalues of A(1,(0)) with 
absolute values smaller (greater) than 1. 

We shall investigate two cases: 

A. dim Ker L = 1 , index L = 0 . 

In this case the bifurcation equation (see the end of Section 3) has the form 

Q: Ut x U2 e R , 

where Ui(2) are neighbourhoods of 0 e R and Q(c, 0) = 0, since G0 = G has the 
family of heteroclinic orbits M = {{(fn(x), 0)}±™, x e(0, 1)}. Hence Q(c,e) = 
= e H(c, c). Thus a necessary condition for the bifurcation is H(0, 0) = 0. Moreover, 
if H(09 0) = 0 and Hc(0, 0) + 0 then by the implicit function theorem we have near 
(0,0) 

e =# 0 and Q(c, e) = 0 iff c = c(e), c(0) = 0 . 

Summing up we have proved the following theorem: 

Theorem 4.1. If H(Q, 0) = 0 and Hc(0, 0) + 0 then in a neighbourhood off there 
is a unique trajectory Fe of Gefor e =j= 0 small. From (4.1) we have m ^ 2 . 

B. dim Ker L _ 2 , codim Im L = 1 . 
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From (4.1) we have m ^ dim Ker L -f 1. In this case the bifurcation equation has 
the form 

Q: U! x U3 x U2 -> R, 

where Ui(2) are neighbourhoods of 0 e R, U3 is a neighbourhood of 0 e RdimKerL-1
> 

e e U2. The variable ceUx corresponds to the family Jt. Hence Q(c, 0, 0) = 0 and 
since Q is the bifurcation equation we have Dx Q(0, 0, 0) = 0, x e U3. We assume 
that Dl Q(0, 0, 0) is a nondegenerate matrix. Then using the splitting lemma [9] 
we obtain that £)(•, •, •) is strongly right equivalent to 

Q(c, 0, e) + (D2
X Q(0, 0, 0) x, x} (1/2), 

where <•, •> is the scalar product in jR
dimKerL~1. Since Q(c, 0, 0) = 0, we obtain 

Q(c,0,e) = eH(c,e). 

If we assume that H(0, 0) =j= 0, then the following theorem holds: 

Theorem 4.2. Under the above conditions in a neighbourhood of F for e small 
either there are infinitely many trajectories of Ge or 

i) there is no heteroclinic point near (x0, 0) e Rm for e < 0(>0), 

ii) the set of heteroclinic points of Ge near (x0, 0) lies on (0, 1) x {0} c R x 
x Rm_1 and is homeomorphic to (0, 1) for e = 0, • •.., 

iii) the set of heteroclinic points of Ge near (x0,0) is homeomorphic to SdimKerL~? x 

x (0, l)fore > 0(<0). 

(We note that a heteroclinic point is a point which lies on a heteroclinic orbit and 
Sk is the k-dimensional sphere?) 

Proof. Near (0, 0) we must solve in (c, x) the equation 

e H(c, e) + (D2
X Q(0, 0, 0) x, x} (1/2) = 0 

for e small. Since H(0, 0) 4= 0 and D2
X Q(0, 0, 0) is nondegenerate the structure 

of solutions near (0, 0) depends mainly on the matrix D2
X Q(0, 0, 0). According as 

this matrix is indefinite or not we obtain either the first or the second assertion. 

Remark 4.3. The conditions of regularity from the above theorems 4.1 and 4.2 
can be expressed explicitly. 

Remark 4.4. Using the Morse critical point theory [5] we obtain a precise 
picture of the set of heteroclinic points of Ge near (x0, 0) for e small in Theorem 4.2. 
For instance, in the second part of this theorem the sphere, which is homeomorphic 
to SdimKerL~2

? in the case iii) shrinks to the point 0 as e -» 0. 
We see that we can use this method for the investigation of local intersections 

of stable and unstable manifolds. For instance, letf: Km -> Rm be a C3-diffeomorphisrri 
with hyperbolic fixed points yu y2 and let us assume that mt = 1, m2 = m — 1 
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(see the end of Section 3). The point y2 has a one-dimensional stable manifold 5 0 

and yx has an (m — l)-dimensional unstable manifold R0. If R0 n S0 B X0 then for 
the orbit {fn(x0)}Z™ we have an operator L from Section 3 and index L = 0, 
dim Ker L :g V If dim Ker L = 0 then L is inverible and for a perturbed smooth 
mapping/,: Rm -> Rm, Re and Se have a transversal intersection near x0 for e small, 
where Pc, Se, are the stable and unstable manifolds of fe near R0, S0, respectively. 
This follows from the fact that in this case the operator He(*). (see the end of Section 3) 
is invertible in {/J(xo)}-S- If dim Ker L = 1 then for fc we obtain the bifurcation 
equation Q(c, e) = 0, Q: U x U -+ JR, where U is a neighbourhood of 0 e R and 
Q(0, 0) = 0, gc(0, 0) =0. The generic conditions are Qcc(0, 0) + 0 and Qe(0, 0) + 0. 
Under these conditions R0 is tangent to S0 at x0, since Re, Se have no intersections 
near x0 for small e > 0 (e < 0), and have precisely a two-point transversal inter
section near x0 for small e < 0(>0). This last assertion follows from the fact that 
our assumptions for Q imply that Q = 0 is equivalent to c2 ± e = 0. 

Now we return to the case D from Section 2. It is a particular case of the case A 
of this section and we are going to derive the bifurcation equation Q from the end 
of Section 3. Thus we consider the mapping 

(4.2) zn+1 = /(z„) + eh(zn,yn), 

y»+i = g(^>y„) + et(zn,yn), 

where/, g have the properties from Section 2, h, t e C3. We put vn = yn, zn = xn + 
+ cen + un, where F = {xH}Z™9 {en}Z™ e Ker L, u0 = 0. Then 

w„+1 =/ (*« + c, en + u„) -f(xn) - cen+l + eh(;, •) 

vn+i = g(xn + cen + un, vn) + e. t(;, •) . 

Using the projection P from Section 2 we have 

un+i = / (*„ + cen + un) -f(xn) - cen+l + eh(-, •) 

(̂  ~ p ) {»n+i - g(^ + cen + un, t?w) - et(% •)} = 0 

^{^i+i ~ d(*n + ce„ + u„, v„) - el(% •)} = 0 , 

where by the implicit function theorem we can solve the first two equations and 
inserting this solution in the last equation we obtain the bifurcation equation 

Q(c, e) = P{vn+l(c, e) - g(xn + cen + un(c, e), vn(c9 ej) - et(% •)} = 0. 

As a matter of fact, we have just carried out the Lyapunov-Schmidt procedure for 
our case. 

We see that 

Qe(0,0) = P{t(xn,0)}. 

Further, using vn(c, 0) = 0, un(0, 0) = (d/dc) un(c, 0)/ c = 0 = 0 we obtain 

Qce(0, 0) = P{ -tx(xn9 0) en - ve
n(0, 0) gyx(xn, 0) en} , 

364 



where the sequence {v*(0, 0)} satisfies 

(4.3) {ve
n+1(0, 0) - <(0, 0) gy(xn, 0)} = (I - P) {t(xn, 0)} . 

Taking the system {xn(s)}l™, se(-S,d), xn(s) = f"(s + x0) we repeat the above 
procedure and the equation (4.3) assumes the form 

K + ,(s, 0, 0) - ve
n(s, 0, 0) gy(xn(s), 0)} = (I - P(s)) {t(xn(s), 0)} , 

where P(s) is the projection from Section 2 corresponding to {x„(s)}*00. Differentiat
ing the above equation by s we find 

(4.4) {v?+ L(0, 0, 0) - C(0, 0, 0) gy(xn, 0) - ve
n(09 0, 0) gyx(xn, 0) xs

n(0)} = 

= (I - P(0)) {tx(xn, 0) xl(0)} - Ps(0) {t(xn, 0)} . 

Note that x„(s) = xn + sen + un(s, 0) for small s, hence 

*I(0) = e„ • 

Finally, we put 

r(s) = P(s)Kx„(s),0)}, 
then 

r(0) = Qe(0, 0) . 

From (4.4) we have 

<2ce(0, 0) = P{ -tx(x„, 0) e„ - ve„(0, 0) ^ ( x „ , 0) en) = 

= P{-P (0) {tx(x„, 0) e„} - Ps(0) {t(x„, 0)}} = 

= -P (0) {tx(x„, 0) e„} - Ps(0) {t(xn, 0)} = - r ' ( 0 ) . 

Hence the conditions Qe(0, 0) = 0, Qce(0, 0) =t= 0 are equivalent to r(x0) = 0, 
r'(x0) 4= 0 and r has the explicit form 

(4.5) r(s) = S : U / H 0 ) ^ + 1 W < > ) - ^ ' 1 W J ( l ) + t(r\s),0) + 

+ s+oo t(f(s),0) 

° aXff(s),0)...^(s50)' 

Summing up we have proved 

Theorem 4.4. For the mapping (4.2) the function (4.5) r: (0, 1) -> R has the 
following properties: If there is s e (0, 1) such that r(s) = 0 and r'(s) + 0 then 
the mapping (4.2) has for e small an orbit Te near T = {(f"(s), 0)}t*. Moreover, 
for e + 0, re is a transversal heteroclinic orbit. Hence the function r plays the same 
role as the Melnikov function for ordinary differential equations 

Finally, we consider the quasi-linear mappings 

f( \ _ \ax ' x ^ 1 / 2 ' a > 1 , a < 2 
/ W ~ { ( 2 - a)x- 1 + a, x ^ 1/2 
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yp , x ^ 1/2 , 0 < p < 1 
.y t>(x) , 1/2 = x = a/2 
y/d , x = a /2 , 0 < d < 1 , 

where v e C3 is increasing on <l/2, a/2> and v = P for x S 1/2, v = 1/d for x ^ a/2, 

k , x ^ 1/2 
t(x,0) = \w(x), 1/2 ^ x ^ a/2 

[t2 , x = a/2 , 

where *e C3, a, p, d, t1} t2 are constants. We will apply Theorem 4.4. In this case 
the sequence {x,,}** has the form 

Xj = aJz , j < 0 

x0 = z , z G (1/2, a/2) 

xj = (2 - a)J* (z - 1) + 1 , j > 0 , 
and 

r ( z ) = E - p m - f 1 + ^ + 2 r ^ = 
»(z) »(-) 

= h 7^— + (w(z) + f2 - 4 - j ) -7 - • 
1 — p \ 1 — aj u(z) 

Further, if 

r(l/2) = - A - + (f. + f2 - ^ ~ > 0 < 0 

(4-6) , / J \ ° f 

r(a/2) = —!— + j f2 + f2 ) i < 0 > 0 
1 - p \ 1 - d) 

then we obtain the following theorem. 

Theorem 4.5. If f, v, t have the above properties, h e C3(R x R, R), the numbers 
f., f2, p, d satisfy the condition (4.6) and r'(-) + 0 on (1/2, a/2), then the mapping 

xi = / (*) + e "(x> y) > 

>>! = .y y(x) + e t(x, y) 

has at least one transversal heteroclinic orbit for e + 0 small near the set (0, 1) x 
x {0}. 

Note that for a general t the function r has the form 

r(z) = XZl) f(Vz, o ^ i ' ^ + f c ^ + 
t>(z) 

+ E+ - f((2 - ay (z-l) + \,0)~, z e (1/2, a/2). 
v(z) 
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Súhrn 

BIFURKÁCIA HETEROKLINICKÝCH TRAJEKTORIÍ DIFEOMEORFIZMOV 

MICHAL FEČKAN 

V článku sa študujú bifurkácie heteroklinických trajektorií difeomorfizmov. Hlavnou metodou 
je Lyapunovova-Schmidtova redukcia. Pre dvojrozměrný případ je odvodená funkcia, ktorá 
hrá tú istú úlohu pre bifurkácie ako Melnikova funkcia pre diferenciálně rovnice. 
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