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GLOBAL IN TIME SOLUTIONS TO QUASILINEAR TELEGRAPH 
EQUATIONS INVOLVING OPERATORS WITH TIME DELAY 
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(Received May 30, 1990) 

Summary. The existence of small global (in time) solutions to an abstract evolution equation 
containing a damping term is proved. The result is then applied to fully nonlinear telegraph 
equations and to nonlinear equations involving operators with time delay. 

Keywords and phrases: Quasilinear telegraph equations, bounded solutions, time-periodic 
solutions, time delay. 
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Providing important mathematical models for a variety of physical phenomena, 
telegraph equations represent a subject many authors have made contributions 
towards. The present paper addresses the case when both the coefficients and the 
right-hand side of the equation are nonlinear operators allowed to contain time 
delay. 

Let us denote £Pu = utt + dut — cuxx where c, d > 0. With u = u(x, t) a function 
defined for x G [0,1], t e IR1 we study the equation 

(E) SPu + 0>\u9 X) utt + ^ 2 (u , X) uxt + ^ 3 (u , X) uxx = J^(u, X) 

for x e [0, J], t G [0, + oo) together with the conditions 

(B) u(0, t) = u(l, l) = 0 , t e U1 

(I) u(x, t) = ut(x, t) = 0 , x e [0, /] , t e ( - oo, 0] . 

Here the operators &\ i = 1, 2, 3, J^ are supposed to depend on a parameter X\ 
belonging to a Banach space A. 

To begin with, we intend to prove the existence and uniqueness of the solution u 
on condition that X e A(rj) = [X | X e A, ||A}^ ^ r\], rj > 0 lying close to zero. 
Taking advantage of this result, a unique function which is bounded and solves 
(E), (B) on the whole real axis t e U1 can be found. Apparently, this fact is of great 
interest if the corresponding time-periodic problem is involved. 

According to the choice of the operators 5P\ J% various problems may be attacked. 
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If, for instance, 0>\ <F are substitution (Nemytski) operators, the existence theo
rems can be obtained concerning ordinary quasilinear telegraph equations (cf. 
Matsumura [10], Kato [7]). 

Following Shibata-Tsutsumi [15], the fully nonlinear telegraph equation can be 
transformed to a system consisting of a quasilinear hyperbolic equation and a non
linear elliptic one. Using the Green operator related to the elliptic part we are able 
to cope with this problem as well. For example, the existence of a time-periodic 
solution may be stated avoiding the use of the hard implicit function theorem (cf. 
[8], [12], [14]). Moreover, as an added benefit of the method employed, the uni
queness of the solution is obtained. Recently, Stedry [16] has achieved more general 
results working directly in the space of periodic functions and making use of the 
Schauder fixed point theorem. 

Dealing with integral operators 0>\ <F9 our results apply to hyperbolic problems 
involving time delay (see Aliev [1], Kamont-Turo [6], Poorkarimi-Wiener [13] 
etc.). Moreover, the operators of the form J0 u2

x(x, t) dx can be treated arising in 
equations of a vibrating string (see Arosio [2], Biler [4], Medeiros [11], Feireisl [5]). 

To carry out the program outlined, we proceed as follows. As to the basic notation, 
function spaces and auxiliary lemmas, we refer to Section 1. 

The precise hypotheses concerning the operators in question as well as the main 
results will appear in Section 2. 

Addressing related linear problems Section 3 represents the bulk of the paper. 
It is worth noting that our requirements concerning regularity of the coefficients 
appearing in the equation are slightly more general and correspond with [3]. 

Section 4 is devoted to the proof of the results claimed in Section 2. 
Finally, we mention some applications and examples in Section 5. 

1. NOTATION, FUNCTION SPACES, AUXILIARY RESULTS 

The notation is standard. All function spaces appearing are supposed to be real. 
Throughout the text, the symbols ch i = 1, 2, ... stand for strictly positive real 
constants, hh i= 1,2, ... denote positive, continuous, nondecreasing functions 
on [0, + GO). 

For a (possible) vector function v = (vl9 ..., vm) of x, t, we denote by Dkv the 
vector of components 

' r)i + jv I 
1 ' / = 1,..., m, ij = 0, i +j = k I dx1 dtJ 

and by Dkv (where y = x or y = t 

I = 1, ..., m, 0 = i = k\ . w 
Here (and always) i,j, k, I are nonnegative integers. 
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Let Lp = Lp(Q, 1), pe [ l , +co) be the Lebesgue spaces of integrable functions 
with the norm [| \\p defined in the standard way. For v = (vl9 ..., vm) we set 

|v| = max{||vz[]2 | / = 1, ...,m} . 

Hk = Hk(0,1) are the Sobolev spaces consisting of functions having derivatives 
up to the order k in L2. Further we set Ho = {v\v e H1, v(0) = v(l) = 0}. 

Next, we will make use of vector functions ranging in a Banach space B. I cz U1 

being an interval, we consider the spaces Wk(l, B) containing functions whose de
rivatives up to the order k with respect to t e I belong to Lp(l, B) (for exact definitions 
see [17]). Let <&k(l, B), £%k(l, B) be the spaces consisting of all functions having 
derivatives up to the order k continuous or continuous and bounded on I, respectively 
(see [17] for details). 

To keep the notation simple, we introduce the spaces 

Xk = {v | each component of Dfcv belongs to ^(U1, L2)} , 

Xk
0 =L\veXk, —^^(U1,^), i = 0, ..., k - l j , 

Xk(s) = {v | v eXk, \Dk v(t)\ ^ s for all t e U1} 
and 

Yfc = {v [ each component of Dfcv belongs to L00(lR
1, L2)} , 

Yfc = j v | v e Y f c , --eL^UKHl), i = 0,...,k- l j , 

Yk(s) = {v\veYk, \Dk v(t)\ £ e for a.e. teU1} . 

We conclude with a short review of auxiliary results. Seeing that the spaces H1, H2 

are Banach algebras and due to the embedding relation H1 Q r^[0, J] (see [17]), 
we arrive at the following assertion. 

Lemma 1. Let k = 1 or k = 2, v, w e Yk. 
Then vw e Yk and we have the estimate 

(1.1) |Dfc vw(t)\ i% ci|Dfc v(t)\ \Dk w(t)\ 

for a.e. te U1. 
Combining Lemma 1 with the Taylor expansion formula one obtains. 

Lemma 2. Consider a function #: U cz |Rm -> U1 where U is an open ball centered 
at Oe !Rm, # e^ 4 (E7 , U1). Let functions v = (vl3 . . . ,vm), w = (wu ..., wm) range 
in U, vh wt e Yk, i = 1, ..., m where k = 1 or k = 2. 

Then <P o v, $ o w e Yk and 

(1.2) |Dfc(^ o v - 0 o w) (t)\ ^ hx(z) \Dk(v - w) (t)\ 
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holds for a.e. te U1. If, moreover, <Pf(0) = 0, then 

(1.3) \Dk(<P o v - 0 o w) (t)| ^ h2(z) z|Dfc(v - w) (t)| 

for a.e. te U1. Here the symbol z stands for 

z = z(t) = max {|Dfc v(t)|, \Dk w(t)\} . 

2. SUMMARY OF RESULTS 

To begin with, we specify the conditions imposed upon the operators 2Pl, i = 
= 1, 2, 3, # \ Setting 0 = @'1 or 0 = #" we assume 

(PFj,) 0 = 0(v, X): Xfc + 1(e) x A(n) -> K/c 

where k = 1, 2, e, r\ > 0; 

(PF2) 0(0, X) -> 0(0, 0) = 0 in X2 '2 

whenever \\X\\A ~* 0-
The following (Lipschitz) conditions resemble those appearing in Lemma 2 related 

to substitution operators. Let X e A(rj), v, w e l k + 1 ( s ) for k = V 2, We require 

(P3) \D\<P\v9X)-&\w9k))(i)\ ^ 

S c2 sup{|Dfc + 1(v - w)(s)| I s e ( - o o , t]} 
and 

(F3) \Dk(^(v,X)-^(w,X))(t)\S 

^ g(r], s)sup{|Dfe + 1(v - w)(s)| | s e ( - o o , t]} 

for all t eU1, i = 1, 2, 3. Here O is a function such that £>(n, S) —> 5^ whenever /?,e -> 0. 
The main results of the present paper can be summarized as follows. 

Theorem 1. Let 0>\ i = 1, 2, 3, & satisfy (PFj), (PF2), (P3), (F3). Let the com
patibility condition 

(C) #"(0, A) e ^ 

hold for all X e A(n). 
The number r\ > 0 being chosen small enough, there exists a unique solution 

u e Ko(£) of the problem (E), (B), (l) for every fixed X e A(rj). 

Theorem 2. Let 0>\ i = 1, 2, 3, & satisfy (PF-), (PF2), (P3), (F3). 
Then there is r\ > 0 such that for every X e A(n) there exists a function u eXo(e) 

satisfying (E), (B) for all x e [0, l], t e U1. Moreover, the function u is the only 
(global) solution lying in K3(e). 
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Corollary (time-periodic solutions). Assume that for & = 0*\ <g — $F 

<§(v(t + T), X) = %(v, X)(t + T ) , t e [R1 

where T is a fixed positive number. Then the solution u, the existence of which is 
claimed in Theorem 2, is T-periodic with respect to the variable t. 

Remark. Seeing that X3 Q ,#2([0, I] x U1) and &(u, £) e &([0. Y] x R1), all 
solutions mentioned above are, in fact, classical. 

3. THE LINEAR PROBLEM 

Now we focus our attention on the linear problem associated to (E), (B), (I). We 
look for a function v, 

(L) 5£v + axvtt + a2vxt + a3vxx = / 

for xe [0, I], te[0, +oo), 

(BL) v(0, t) = v(l, t) = 0 , t e [0, + GO) 

(IL) v(x, 0) = v°(x), vt(x, 0) = vl(x), x e [0, I] . 

Our goal is to prove the following theorem. 

Theorem 3, Let us assume 

(3.1) a f e Y2(a), i = 1, 2, 3 

(3.2) feYk for k= 1 or k = 2 

(3.3) v° GHfc+1 n # 0 , v^H^nHJ. 

In case k = 2, the compatibility condition is added: 

(CL) v2 = vf,(0)GHi 

the function v2 being determined with the help of v1, v2, (L). 
I/ the number a > 0 is sufficiently small, then there exists a unique function 

veXl+1 satisfying (L), (BL), (IL). Moreover, we have the decay estimate 

(3.4) \Dk + 1 v(t)\2 g exp(-<50c3|I>fc+1 v(0)|2 + 

+ c4 sup {\Dkf(s)\2\se(-w,t]} 

for a certain 5 > 0 and t e [0, + GO). 
Since the methods of the proof follow the line of standard arguments (cf. [3] and 

the literature listed here), we point out the principal ideas only. 
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STEP 1 (strong solutions). We start with a slightly more general equation 

(U) Sev + axvtt + a2vxt + a3vxx + blvt + b2vx + b3v = f 

together with (BL), (lL). As to the coefficients b1", we assume 

(3.5) ft'ey^a), i = 1, 2, 3 . 

Uniqueness : Arguing similarly as in [3], [9], the uniqueness of the solution v 
may be proved in the class 

veL1?loc(0, + c o ; H 0 ) n W1Joc(0, +oo;L 2 ) 

on condition that fe Lljloc(0, +oo;L 2) , v°eHo, v1 eL 2 . The equation is satisfied, 
of course, in a weak sense. 

Exis tence : 

Lemma 3. Let (3.1) —(3.3) hold for k = 1. Then there is a unique solution v to 
(L'), (BL), (lL) satisfying (3.4) for k = 1 whenever a > 0 is chosen small enough. 
As to regularity, the function v may be prolonged for all t e U1 in such a way that 
veXl 

Proof. 
(a) Taking a „basis" {sin {nnl~1x)}^1, the standard Faedo-Galerkin method 

yields the existence of a weak solution of our problem. Since the coefficients as well 
as the right-hand side of the equation are defined on the whole real axis, the unique 
solution v may be assumed to exist on the interval t e ( —y, + oo), more precisely 

ve<#(-y9 + o o ; H £ ) n ^ 1 ( ~ y , +oo;L 2 ) 

for a certain y > 0 (see [3] for more general results). 

(b) Keeping (3.2), (3.3) in mind, we are allowed to differentiate the equation (If) 
(in fact its Galerkin approximation) with respect to t. Repeating the arguments 
from (a), the regularity of the derivative vt is obtained: 

v,e^(-y, + o o ; H J ) n ^ 1 ( - y , +co ;L 2 ) . 

Note that, due to the choice of the "basis", the approximate problems admit the 
use of the operator d2jdx2. Consequently, the terms containing vxx, vx can be estimated 
with the help of the equation (L'). 

Finally, using (L') again, we infer vxx e <&( — y, +oo;L 2 ) . Clearly, the function v 
can be prolonged on R1 to get v e X%. 

(c) The relation (3.4) represents a standard energy decay inherent to this kind of 
equations. It can be easily deduced by means of multiplying the equation by vt + Sv 
or vtt + Svt. Since we work with the Feado-Galerkin approximations, this step is 
fully justified. Note that we need the number a > 0 to be small. 

Q.E.D. 
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STEP 2 (regularity). To complete the proof of Theorem 3, we have but to show 
the higher regularity of the solution v corresponding to (3.2), (3.3), (CL) for k = 2. 
At this stage, we are going to treat the original problem (L), (BL), (lL). 

The main idea is to differentiate (L) with respect to t and apply Lemma 3 to the 
function w = vt. Using (L) we can express 

vxx = (c - a 3 )" 1 (vtt + dvt + alvtt + a2vxt - / ) . 

Taking advantage of the above relation and setting w = vt we deduce that w is 
a (unique) weak solution of the problem (L"), (BL), (lL): 

(L") <£w + axwtt + a2wxt + a3wxx + blwt + b2wx + b3w = 

^ f + ^ c - a 3 ) " 1 / , 

(IL) w(x, 0) = vl(x) , wt(x, 0) - v2(x) , x e [0, Z] 

where the coefficients b\ i = V 2, 3 are determined by a1 and satisfy (3.5) in view 
of Lemma 1, Lemma 2. 

By virtue of (3.2), (3.3) and (CL), Lemma 3 yields the regularity of the function w. 
To obtain the regularity of v with respect to x, we have to use the equation (L). 
The estimate (3.4) for k = 2 can be proved in a similar way. 
Thus Theorem 3 has been proved. 
Consider now a function \j/n e ^ ( ( R 1 ) , \\\fn\ ^ c5, 

0 on (— oo, — n\ 

\f/n = e [0, 1] on \_ — n,—n + 1] 

1 on [ — n + I, +oo) . 

In view of Theorem 3, we are able to solve the initial-boundary value problems: 

(L„) <£vn + axvn
tt + a2vn

x + a3vn
xx = xjij 

for x 6 [0, Z], t e[ — n, + oo) 

(B„) v"(0, t) = vn(l, t) = 0 , teU1 

(I„) vn(x, t) = vn(x, t) = 0 , x e [0, Z] , te(-oo, -n] . 

We get the existence of a unique solution v" e X0
+1 satisfying 

(3.6) |Dk+1v«(r)|2 ^ c 6 s u p { | D V „ / ( 5 ) | 2 | ^ ( - a o , t ] } ^ 

Sc7sup{\Dkf(s)\2\se(-^,t]} 

for all t e U1 whenever (3.2) holds for k = 1,2. 
By means of the weak-star topology on the space L00(!R

1, L2), we infer there is 
an accumulation point v e Yk

0
+1 of the sequence {vn},T=i and v satisfies (3.6) for a.e. 

ten1. 
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Dealing with a linear problem we check easily that v solves (L), (B L ) for x e [0,7], 
teU1. Finally, thanks to the regularity result achieved in Theorem 3, we get, in fact, 
veXk

0
+1. 

Thus we have obtained the following theorem. 

Theorem 4. Let the conditions (3A), (3.2) hold for k = 1, 2, and a > 0 sufficiently 
small. 

Then there exists a unique global solution veX0
+1 to the problem (L), (B^) 

on [0,1] x U1 satisfying 

(3.7) \Dk+1v(t)\2 S c8sup{\Dkf(s)\2\se(-oo,q} 

for all teU1. 
Note that uniqueness in the above theorem follows immediately via the estimate 

(3.4). 

4. THE PROOF OF THE MAIN RESULTS 

In this section we prove the theorems formulated in Section 2 via the iteration 
method. To begin with, let us estimate the coefficients appearing in the equation (E). 
Setting w = 0, k = 2 in (P3), we get 

\D20>\v, X)\ ^ c2 sup {|D3 v(s)\ | 5 G ( -oo , *]} + |D2^ f(0, X) (t)\ 

for all tetR1 , i = 1,2,3. 
By virtue of (PF2), e, n > 0 may be chosen so small that 

(4.1) 0>\v, X) e 72(a) , i = 1, 2, 3 , 

where a appears in Theorem 3, whenever v eX3(s), k e A(n). 
The iteration scheme is constructed as follows. Setting w1 = 0, we determine 

un+1 &sun+1 (x, t) = 0 for t S 0, and un+1 is the unique solution of the linear problem 

(Ln+1) J2V + 1 + 0>\un, X) un+1 + &2(un,X) un
x
+1 + 

+ ^3(u", X)un+1 = ^(un
9X) 

for x e [0, J], t e [0, + oo) together with the conditions (B), (I). 
In view of (4.1), the procedure just sketched will work if we are able to show 

(4.2) un e X3
0(e) for all n = 1, ... . 

In this case, the above problem can be uniquely solved by means of Theorem 3. 
To prove (4.2), assume that we have already stated un e K0(e). Evoking the estimate 

(3.4) together with (F3), we have 

\D3 un+1(t)\2 S c9Q
2(n, a) sup {|D3 un(s)\2 | s e U1} + 

+ c 1 0sup{ |D 2^ ' (0 ,A)(s)f 2 fsGR 1}. 
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Consequently, rj, s > 0 being small enough, we get (4.2) for u"+1. 
Now let US consider the function vn = un+1 — uneXl(2e). Clearly vn = 0 for 

te ( — co,0], vn solves the linear problem (L), ( B L ) , ( I I ) with v° = v1 = 0, a1 = 
= 0>\un, X) i = 1, 2, 3, and 

(4.3) / = &(un, X) - ^(un~\ X) + 

+ \JPx(un~\ X) - »\un, X)\ un
tt + 

+ [0>2(un~\ X) - ^2(u", X)] un
xt + 

+ \y>z(un~\ X) - ^3(u", X)] un
xx. 

Our aim is to apply the estimate (3.4) for k = 1 together with Lemma 1, Lemma 2. 
According to (P3), (F3), one deduces 

\D\f(t)\ S cxl(Q(ri, s) + e) sup {|D2(u" - u""1) (s)\ | s e U1} . 

For small values of rj, s, we infer from (3.4) 

(4.4) sup {[D2(uM + 1 - un) (s)\ | s e U1} ^ 

S co sup {[D2(u" - u"_1) (s)\ \seU1} 

where co < 1. As a consequence of the contraction mapping principle, we obtain 
the existence of a function u e Xl — the unique limit of the sequence {wn}J5°=1. 

According to (P3), (F3), we get 

(4.5) 0>\un, X) -> 0>\u9 X) , &(u\ X) -+ &(u, X) in Y1 . 

Moreover, in view of (4.2), u e Y0(e) by virtue of the weak-star convergence of the 
derivatives in L^IR1, L2). 

Using (4.5) we deduce that u is a solution of (E), (B), (l). A regularity argument 
concerning linear problems (see Theorem 3) gives finally u eXo(8)-

In order to complete the proof of Theorem 1, the uniqueness of the solution u 
is to be proved. Consider two possible solutions uuu2 satisfying (E) on [0, l] x 
x [0, T] for some T > 0, |D3 ut(t)\ :g e, i = 1, 2. Repeating the above arguments, 
we get similarly as in (4.4) 

sup{|D2(u1 - u2)(s)||se(-co, T]} ^ 

^ co sup {|D2(u! - u2)(s)| | S G ( - c o , T ] } . 

Clearly, ux(t) = u2(t) for all t e ( - co, T] . 
As to the proof of existence in Theorem 2, we proceed similarly as above using 

Theorem 4 instead of Theorem 3 and (3.7) in place of (3.4). 
The uniqueness of the solution claimed in Theorem 2 is proved analogously, 
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5. EXAMPLES AND APPLICATIONS 

Our eventual goal is to present some applications of the results stated in Section 2. 

Example 1 (fully nonlinear telegraph equations). We examine the problem 

(5.1) Sev + F(vtt, vxt, vxx, vt, vx, v) = f 

(5.2) v(0,t) = v(l,t) = 0, ten1 

(5.3) v(x, t + T) = v(x, t ) , x e [0, ?] , teU1 

(cf. [8], [12], [14]). Here the function / i s supposed to satisfy (5.3) as well. 
Using the idea of Shibata-Tsutsumi [15] (cf. also [16]), the problem can be trans

formed to the system 

(5.4) Seu + F'x(D
lu, D2

xv) utt + F^DY D2
xv) uxt + 

+ F'3(D
lu, D2

xv) uxx = - F ; ( D Y D2
xv) ut - F'5(D

xu, D2
xv) ux -

- F'6(D
lu,D2

xv)u + / 

(5.5) ~cvxx = —ut — du — F(Dxu, D2v) + / 

(5.6) u(0, 0 = u(l, t) = v(0, t) = v(l, t) = 0 for all t e U1 

(5.7) u(x, t + T) = u(x, t), v(x, t + T) = v(x, t) for all x e [0, J] , 

t e R 1 

via differentiating with respect to t and setting vt = u. Here, of course, the symbols F-
stand for the derivatives of the function F with respect to the i-th variable, i = 1, ..., 6. 

To apply the results of Section 2, we are forced to require F e ^4((7) for some 
open ball U centered at 0 e U6, and 

(5.8) F(o) = F;.(o) = 0 , i = l , . . . , 6 . 

In agreement with the notation of Theorem 2, we set A = X3, X = / 
To apply Theorem 2, we need the following auxiliary lemma. 

Lemma 4. Let f e A(n), u e X2(s) where n, e > 0 are sufficiently small. 
Then there exists a unique (small) solution v = ST(f, u) of the "elliptic" equation 

(5.5) satisfying the boundary conditions (5.6). Moreover, D ^ e l J , and 

(5.9) |D*DV - v2) (0| = c12\D
k+1W - u2) (0| 

\D2
xD

k v°(t)\ = c13|Dfc/| , k = 0, 1 

where vf = F(f, u% i = 1, 2, v° = ST(f, 0). 
If u G K3(s), then D2

xv e X2
0 and (5.9) holds for k = 0, 1, 2. 

Proof, First of all, consider a linear problem 

(a) v^ = h 

(b) v(0, t) = v(l, 0 = 0 , teU1 . 
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As to the above problem, we have the following result. If h eXk, k = 1, 2, then 
there is a unique solution v such that 

(c) D2
xveXk, 

and 

(d) \D2Dk v(t)\ = c14|D
fc h(t)\ , teU1 . 

(Cf. [15] for a more general case.) 
Fix for the moment ueXk(s), feA(rj). Consider the operator S determined 

uniquely as a solution of 

-c(Sv)xx = -ut - du - F(Dlu, D2
xv) + / 

Sv(0, t) = Sv(l, l) = 0 , t e U1 . 

Combining (d) with Lemma 2, we get 

(e) J D ^ S ^ - S v 2 ) ^ ) ^ 

= c15(8 + |D 2 DV(*) | + | D 2 D ^ t ) | ) ( | D x
2 D V ~ »2)(0|) 

(f) |D2D*Sv| = c16(e + I, + (s + |D^DfeSv|)2) . 

One checks easily by means of the contraction mapping principle that for s, rj > 0 
small enough, S has a (unique) fixed point. Using the results of Lemma 2 w7e can 
show the estimate (5.9). 

Q.E.D. 

In accordance with the notation of Theorem 2, we can set 

0>\u, A) = P;(DY D2
x3T(f, u)) , i = 1, 2, 3 

<F(u,X) = -F\(Dxu,D2
xST(f,u))ut - ... - F'6(D

lu, D2
x«r(f,u))u + / , . 

It is a matter of routine, by combining Lemma 1 with Lemma 2, to verify all 
assumptions required in Theorem 2. Thus the existence of a unique solution to the 
problem (5.1) — (5.3) can be proved via the results of Section 2. 

Example 2 (integral operators). Consider integral operators of the form 

&\u9 X) = JJ°° p*(s, D1u(x, t - s))ds , i = 1, 2, 3 , 

#"(u, A) = Jo °° ̂ (s, Dru(x, t - s)) ds + A 

where A e l 3 . 
As to the functions pl = pl(s, y), i = 1, 2, 3, F = F(s, y), we assume that they 

are defined on [0, +oo) x U, U being an open neighborhood of the point Oe tR3. 
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Further, p\ F are supposed to be smooth and 

(5.10) \Dk
yg(s, y)\ S <Pk(s) fe = 0, 1, ... 

for g = p\ F where cpk are functions integrable on the set [0, + oo). 
Moreover, we require 

(5.11) Dx
yF(s, 0) = 0 for all s e [0, + oo) . 

Taking Lemma 1, Lemma 2 into account, we are able to verify all requirements 
appearing in the theorems of Section 2. 
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Souhrn 

GLOBÁLNÍ V ČASE ŘEŠENÍ KVAZILINEÁRNÍCH ROVNIC 
SE ZPOŽDĚNÍM 

EDUARD F E I R E I S L 

V práci je dokázána existence malých globálních (v čase) řešení abstraktní evoluční rovnice 
s tlumícím členem. Výsledek je aplikován na silně nelineární telegrafní rovnici a na rovnice 
obsahující operátory se zpožděním. 

Authoťs address: RNDr. Eduard Feireisl, CSc, Institute of Mathematics of the Czechoslovak 
Academy of Sciences Žitná 25, 115 67 Praha 1, Czechoslovakia. 
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