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APPLICATION TO DIFFERENTIAL EQUATIONS

FRANTISEK TUMAJER

(Received February 20, 1991)

Summary. In this paper the notion of the derivative of the norm of a linear mapping
in a normed vector space is introduced. The fundamental properties of the derivative of
the norm are established. Using these properties, linear differential equations in a Banach
space are studied and lower and upper estimates of the norms of their solutions are derived.
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Let (P1,|]-|l1), (P2,]|-ll2) be normed vector spaces over the field of complex num-
bers. We denote the set of all bounded linear mappings of the space P; to the space
P, by the symbol L(P;, P,). We introduce the structure of the linear space on the
set L(Pi, P2) in the standard way. We define the norm of a bounded linear mapping
by the relation

lAll = sup{llAyll2: llvlls <1} for A€ L(Py, Po).

Further we define the function f1: L(Py, P2) x L(P;, P2) x Rt — R, where Rt =
(0, +00), R = (=00, +00), by the relation
IX +tA|| - |1X]]
n .
Now for any ¥ € (0, 1) and for any (X, A,t) € L(Py, P2) x L(Py, P;) x Rt we have

(1) H(X,At) =

(2)  Itfi(X, A, 98) = || X + 9tA| - [IX]] = I9(X +tA4) + (1 = 9)X|| - I X]|
< O(IX + A = IX]l) = 9tf1(X, A, ), e
fi(X, A, 9t) < fi(X, A t).

193



For any t € Rt we have
3) thi(X, A t) = [|X +tA| = |1X]| > [IX]] - ¢llAll = 1X 1 = =l All,

and so fi(X,A,t) > —||A]

It follows from the relations (2), (3) that f;(X, A,t) is a function of the variable
t which has a finite limit lim f; (X, A, t) for t — 0+, for any X, A € L(P1, P2). We
denote this limit by the symbol fx(A).

Definition. The mapping fx: L(P1, P;) — R, where X € L(Py, P;), defined
by the relation

_ e XA NIX]
@) fx(a) = i IZEEIAEL
is called the derivative of the norm of the mapping X.

Theorem 1. If fx is the derivative of the norm of the mapping X € L(Py, P>),
then

1° fx(X) = || X|l, fx(=X) = =||X|| for any X € L(Py, P2), fx(O) =0, where O
is the zero mapping of the space L(Py, Ps);

2° —||All € —fx(=A4) < fx(A) < ||A|| for any X, A € L(Py, Py);

3° fx(aA) = afx(A) for any a € Rt and for any X, A € L(P1, Ps);

4° fx(A+ aX) = fx(A)+ «||X|| for any « € R and for any X, A € L(Py, P2);

5 max{fx(4) - fx(~B), —fx(~4) + fx(B)} < fx(A+ B) < fx(A) + fx(B)
for any X, A, B € L(P,, P;);

6° fx is a convex functional on the vector space L( Py, Py), i.e. fx (aA+(1—a)B) <
afx(A)+ (1 — a)fx(B) for any a € (0,1) and for any A, B € L(Py, Py).

Proof. 1° The property follows directly from the definition of the derivative
of the norm fx.
2° For any t € Rt we have

X1 — el Al = XN X+ Al = X XL+ tlAL = 11X

- = =||A
41 : AN t il

thus

X + tAll — (1X1|

=20 < fe(a) < Al

) [l < lip,

For any t € Rt we have

X1 = tlAN = IXI_ X =t = A= 0XH X+ (A= X
t t = t ’

—llAll =

194



thus

. B +t(—;a)n —IX0 _ _fy - a).

(6) —llAll < = lim
Further,
X 4+ 2A|| - ||X|| + ||X — 2tA|| - || X
0:,|X+t(A_A)”~“X”<lI + 2tA| - || H;Il I = 11X1]
_ X+ 2t;n —Xi, L IIX+2t(—2;1)H “IX0 s
0< lim X +2eAl = NIXT ||X+2t(—A)|]—||X||’
t—0+ 2t t—0+ 2t
™ 0< fx(A4) + fx(—A).

Now the relations (5), (6) and (7) imply
—ll4ll € =fx (= A4) < fx(A) < ||A]l-
3° The proof of this property is evident.
4° According to the definition of the derivative of the norm fx we have

fx(A+aX) = lim XH8A+ X)) = [1X)

t—0+ t

lim (L OIX +t4/(1+ )] - [|X]]
t-irgl-i’ t

i WX LA/Q+ 0Ol = IXI e

= t/(1+ at)

fx(A) + af|X]|.

Il

Il

5° For any t € Rt we have
[|IX +t(A+ B)|| - IX]] _ lIX+2tA+ X + 2tB|| - 2||X]| <
t - 2t =
X+ 2tA|| - || X X tB|| — || X
WX RAL X X EB )y,

®)  fx(4+B)= lim X + (A +t B - IX1l

X+ 2Al - IXI oy IX+ 26BY - XL

< tl—l»%l+ 2t t—0+ 2t
= fx(A) + fx(B).

The first inequality in 5° follows from the inequality
fx(A) < fx(A+ B) + fx(—B)

and from the inequality arising by the interchanging A and B.
6° The proof follows from the properties 3°, 5°.
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Theorem 2. Let I € L(Py, P;) be the identical mapping of the space Py to the
space Py and let A be an eigenvalue of the linear mapping A € L(Py, P1). Then

(i) —fr(—A) < Re) < fr(A4),

(i) =fr(=Allzlly < 1Az, ~fr(A)||z|lx < || Az

for any ¢ € P;.

Proof. Ad (i). Let v € Py be a vector, where Av = Av and ||v||; = 1. For any
t € Rt we have ||I +t(—A)|| = |{Iv — tAv|l1 = |Jv — tAv||1, and so

I +t(=Al -1 e lv—thfh -1 [1-tA-1

t = ¢ - t
Consequently,
I +t(=A)| -1 o 1=tA| -1
—fi(=4) = +—'-—t—"—\—tl_1'%‘;_t—-‘—Re/\'
Further,
- t -1 1 -
||1+t;4|| Ly llv+ /\tvlh _ | +ttf\| LT
||I+tA||~—1 [L+tA] -
fi(4) = t tl—l-o+ t = Red.
Ad (ii). For any t € Rt and for any vector z € P, we have
el = 2= C =AM
—||I—-tA I+t(-A)| -
[ +t(—A
el > — tim LD Doy, o gy,

Replacing the mapping A by the mapping —A in this relation we get the second
relation.
The theorem is proved. O

In what follows we consider a differential equation

(11) 3’: = A(s)z

in a Banach space (Py,]|.||1), where A € L(Py, P1) is a continuous mapping on an
open, unbounded from above interval J C R, and A(¢) is a continuous mapping of J
into L(Py, P;). It has been shown in the theory of differential equations (see [2], p
353, Theorem 10.8.4) that there exists just one continuous mapping (., so, 2o): {s €
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J:s > so} — P for any (s, z0) € J X Py such that dz(s)/ds = A(s)z(s) for any
s > so and z(sg) = zo. This mapping is called the solution of the differential equation
(11). Besides, for any s, where s > sg € J, there exists a mapping F(s) € L(P1, P1)—
the so-called fundamental mapping of the equation (11)—and there exists its inverse
mapping F~1(s) € L(P1, P1) such that z(s, so, z0) = F(s) o F~1(s0)o.

If z(.) is a solution of the differential equation (11) then there exists y(s,t) € P
for any (s,t) € J x Rt with lim||y(s,?)|]; = 0 for t — 04 and such that

()

z(s + t) = z(s) + ——t + ty(s,t) = z(s) + tA(s)z(s) + ty(s,1).

This implies

(12) lim ”“"('s + t)Hl - “1’(5)”1 = lim ||27(S) + tA(s):c(s)Hl - ||.’c(s)||1
t—0+ t t—0+ t ’

Theorem 3. If (Py,||.||1) is a Banach space and z(.,so, o) is a solution of the
differential equation (11), F € L(Py, P1) is its fundamental mapping, fi is the deriva-
tive of the norm of the identical mapping I € L(Py, Py), then for any s > so € J the
estimates

(13)  llolhrexp [~ [ f1(=A()) do] < [zl < lolls x| [ 11 (A(o) do],

(19 e[~ [ £1(-40) do] <P 0 P 0l < exp [ 1r(A(0)) do],

hold whenever the integrals involved are defined.

Proof. Forany z € Py, t € Rt we have
2|y = (I + tA)e + (I - tA)zlly < |1+ tA)|] - llzlls + 1T + (= A)| - [|z]]1,
and this ir}lplies

2 + tAwll = =l _ (11 +tAl

-1
(15) lelly < t L

_r+=A)l -1
t

According to (12) the relation (15) implies the inequality

16)  —fr(=AG)la(o)l: <t LEFIZI o, (age) paop

t—0+
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If 2o = o € Py, the relation (13) is obviously true. Thus, let us suppose zo # o.
Then also [|z(s, so,zo)il1 > 0 for any s > so € J. From the inequality (16) the

relation
lz(e + Olls = ll=(a)ll1

TECT

—fr(—A(0)) € tﬁl&

follows. By its integration we obtain

- [ 51(-a@) do < B3 < f 11 (40)) a0
J llzollx ;

provided (sg,s) C J.
This yields the inequality (13) as well as the relation (14). O

Theorem 4. Let (P1,||.||1) be a Banach space, in which a differential equation

17 %E = (A+ B(s))z

is given, where A € L(P, Py) is a constant mapping and B(s) € L(Py, Py) is a con-
tinuous mapping on an open, unbounded from above interval J C R. Let z(., so, zo)
be a solution of the equation (17) and let fi be the derivative of the norm of the
identical mapping I € L(Py, P;). Then the following implications hold:

(i) fr(A) =0, ;:oo f1(B(s)) ds < +00 = the solution z(.) is bounded;

(i) fr(4) <0, [ f1(B(s)) ds < +o0 = lim_la(s)[l = 0;

(iii) = fr(—=A) >0, — ;:oo f1(=B(s)) ds > —00, zg # 0 = sjjinoo l|z(s)[]y = +oo;

(iv) =f1(=A) = 0, = [ f1(=B(s)) ds = +00, 20 # 0= lim _|lz(s)lls = +oo.

Proof. The inequality (13) and the property 5° from Theorem 1 imply

[lzollx exp[~/fl(—A)dU—/fI(—B(U)) d”]
<llsollvexe[~ [ f1(=4- B()) do] < )l
< llsolls xp [ [ f1(4+ B()) do]

< ||x0||1exp[]fl(A)d0+]f1(B(0)) dff],
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i.e.

llzoll1 exp[ = fr(—A)(s = s0)] exp [——/f; (=B(o)) da']

< le(6)l < llzoll explUs(4)(s = so)]-exp | [ f1(B(e)) do],
from which the validity of the implications (i), (ii), (iii), (iv) is evident. O
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Souhrn

DERIVACE NORMY LINEARNIHO ZOBRAZENI A JEJ{ APLIKACE
V DIFERENCIALNICH ROVNICICH

FRANTISEK TUMAJER

V é¢lanku je zaveden pojem derivace normy linedrniho :obrazeni v normovaném vekto-
rovém prostoru. Odvozuji se zdkladni vlastnosti derivace normy. Uzitim téchto vlastnosti
jsou studovdny linedrni diferencidlni rovnice v Banachové prostoru a jsou odvozeny dolni i
horni odhady pro normu jejich feseni.
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