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Summary. This paper concerns generalized quadratic forms for the multivariate case.
These forms are used to test linear hypotheses of parameters for the multivariate Gauss-
Markoffl model with singular covariance matrix. Distributions and independence of these
forms are proved.
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l. INTRODUCTION

Let (U, XB,Z ® ¢%V) denote multivariate Gauss-Markoff model, with known
V > 0, where ® is the symbol of Kronecker product of matrices, B is a matrix
of unknown fixed parameters, .\ is a given known design matrix, U is a random
matrix of observations with the expected value ¢(U) = X'B and with a fixed non-
singular matrix X, o2 is unknown positive scalar. Let us state that "= V + XM X',
where M = M’ is an arbitrary matrix such that R(X) C R(T). The symbol R(X)
is used to denote the vector space spanned on the columns of the matrix X.

Problem of testing the hypothesis LB = 0 in the model (U, XB,X® V), V > 0 and
in the model (U, X BA, £®1) is presented by Srivastava and Khatri ([7], pp. 170-193),
G.A.F. Seber ([6], p. 423) considers testing hypothesis LBA = 0in (U, XB,2®I)
or equivalent by testing hypothesis LB* =0 in (U*, XB*,£® I).
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K.V. Mardia, J.T. Kent and J.M. Bibby [1] transform testing hypothesis LBA = D
in (U, XB,X ® I) into testing hypothesis LB = D in (UM, XBM,M'EM Q I).

The case when V is allowed to be singular is discussed in full by Rao and Mitra
[4], but in the univariate case only. The case of a singular V has not received
much explicit attention in literature, so three theorems concerning testing a set of
hypotheses of the form LBA = 0 are presented and proved in this paper. Wilk’s,
Hotelling’s, Pillai’s or Roy’s test can be used.

2. DISTRIBUTIONS OF QUADRATIC FORMS

Let LBA be a set of linear estimable parametric functions, (Roy, [5]) where L and
A are a x m and p x b matrices respectively.
The test of the estimable hypothesis

2.1) LBA=0

can be deduced from the known Wilk’s, Hotelling’s or Roy’s tests.
In constructing the corresponding test functions the following quadratic forms can

be used:

(2.2) Sy = (LBA)'L~(LBA) = (LBA)'(LC4L")~(LBA),

(2.3) Sg = AU'CLUA,

where

(2.4) B=(X'T"X)"X'T~U =C4U = C3U

25) Ci =T~ =T~ X(X'T~X)"X'T- =T~(I - XCs)
? Cy=Cy=(X'T~X)"X'T-

(2.6) L = (LC3)V(LC3) = LC4L!

(Oktaba, [2] (2.1), p. 179).
The symbol L~ is reserved for any choice of the g-inverse, i.e. the following relation

holds:

(2.7) LL L=1L.
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Let the symbol Wy(v, X) denote the central Wishart distribution with v degrees of
freedom and with the dispersion matrix £. We recall that

V. X\~ _(C C
X0 “\Cs -Cy)°
Theorem 2.1. If
(2.8) ) U~ N,,,,(XB,E@O'?V)
where Nyp( , ) denotes an np-variate normal distribution N,, with parameters de-
fined in the “Introduction”, LBA is a set of estimable linear combinations of param-

eters and the hypothesis (2.1) is true, then

Sy ~W, [1‘(L),0’2A'EA]

Proof. Subject to the assumptions that the hypothesis (2.1) is true and LBA
is a set of estimable parametric functions, the quadratic form (2.2) can be presented
in the form:

(2.9) Sy = (LBAYL™(LBA) = (LBA— LBAY L™ (LBA - LBA)
= (LC3U A — LC3X BA)' L™ (LC3U A — LC3X BA)
= (UA = XBA)'(LC3)'L~LC3(UA — X BA) «
=(UA— XBAYDWUA—-XBA)= [UA—-e(UA)]'D[UA —e(UA)),

w!nere

(210) D= [LX'T~X)"X'T") L~ [L(X'T~X)" XT~] = (LC3)' L™ (LC3).
Using (2.8) we obtain that

(2.11) UA ~ Nuy(XBA, A'ZA® o?V).

By the definition of Wishart distribution (cf. Rao, [3], p. 534) we have Sy ~
Wi [r(L), 0> A’SA] if and only if

(2.12) VDVDV =VDV and r(L)=tr(VD),
where {r(A) denotes the trace of the matrix A.
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We will prove now that the relation (2.12) holds. In fact,

(2.13)  VDVDV = V(LCs)' L™ LC5V (LCs)' L~ LC5V
= V(LCs)' L™ LL™LCsV = V(LCs) L™ LCsV = VDV,

and moreover,

tr(V D) = tr [V(LC3)'L™LC3] = tr [L™LC3V(LC3)']
=tr(L™L) =»(L).

Hence the result (2.12) follows. O

Let (V:X) denote a partitioned matrix.

Theorem 2.2. Subject to the assumption (2.8) we have

Sg ~ Wy [r(V:X) — r(X), 02 A'EA]

where Sg is as defined in (2.3).

Proof. By the relation
(2.14) XC=X'[T"-T"X(X'T"X)"X'T"] =0
the matrix-(2.3) can be presented in the form

(2.15)  Sgp=(UAYC,(UA) = (UA (T~ =T~ X(X'T~X)"X'T")UA
=(UA—=XBAY [T~ =T~ X(X'T"X)"X'T~](UA — X BA)
= [UA=eUA))'Ci[UA - (U A)].

In virtue of (2.11) the matrix (2.15) has the Wishart distribution with the parameters
as in Theorem 2.2 if and only if (cf. proof of Theorem 2.1)

(2.16) - VCVCeV = VCV
and
(2.17) ‘ trVCy = r(ViX) — r(X).
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Let us see that conditions (2.16) and (2.17) are fulfilled. In fact, by (2.14) and the
definition of the matrix T" we have V Cy = T'C} and the right hand side of (2.16) can
be written as

(2.18)
VCIVCV = TCYTCV

=T[T7 =T X(X'T"X)"X'T7|T[T- =T~ X(X'T-X)"X'T"|V
=T[T™ =T~ X(X'T"X)"X'T"|V=TCV = VG, V.

The relations (2.18) show that Sg has the central Wishart distribution.
Now we prove (2.17). By the definition of T" and (2.14) we obtain

trVCy =t TC = tr [TT™ =TT X(X'T~X)"X'T~]
(2.19) =TT — e X(N'T™X)"XN'T™ =¢(T) —tr(X'T~X)"X'T~X

=r(ViX) = r(X'T™X) = (VX)) = r(X).
O

Theorem 2.3. If the assumptions of Theorems 2.1 and 2.2 concerning matrices
Sy and Sg are fulfilled, then Sy and Sp are stochastically independent.

Proof: A necessary and suflicient condition for Sy and Sg to be independently
distributed is

(2.20) VDVC WV =0,

where €', and D are defined as in (2.5) and (2.10) respectively. In virtue of (2.14),
X'T~T = X', we have

VDVC\V = VDTC,V = VLX'T~X)" X'T~) L~ [L(X'T~X)~X'T"]TC,V
= V[L(X'T~X)"XT7)'L L(X'T~X)~ X'C,V = 0.

It means that the condition (2.20) holds for Sy and Sg, so the forms considered are
independent. O
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