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ON I S O T O N E AND H O M O M O R P H I C MAPS 
OF O R D E R E D PAR T I AL G R O U P O I D S 

J l f t f KARASEK, BRNO 

(Received January 14, 1966) 

In this paper the following problem is studied: Let G, G' be ordered 
sets which are simultaneously partial groupoids. Under what circum
stances is the family of all isotone maps of G into G' identical with the 
family of all homomorphic maps of G into G"\ The problem is solved 
in the case of commutative partial operations in G and G'. 

Our problem is studied in more special form in [1], where it is assumed 
that G, G' are ordered sets and simultaneously so called o-groupoids. 
Therefore the main result of [1] is a corollary of our Theorem 1. 

An ordered set G in which x, y e G, x ^ y implies x = y is called an 
antichain. 

Let G be a set. If to some pairs of elements a, b e G an element ceG, 
written c = ab, is assigned, then G is called a partial groupoid. A partial 
groupoid G in which a, b eG, ab defined implies that ba is defined and 
ba = ab holds is called commutative. A map of a partial groupoid G into 
a partial groupoid G' such that a, b e G, ab defined implies that f(a) f(b) 
is defined and/(ab) = f(a)f(b) holds is called homomorphic. 

In the following it is assumed that G, G' are ordered sets and commuta
tive partial groupoids. / denotes the family of all isotone maps of G 
into G', H the family of all homomorphic maps of G into G'. 

Lemma 1. Let ab be defined for a pair of elements a, b eG and let 
I c H. Then a'2 is defined and a'2 = a' holds for arbitrary a' eG'. 

Proof. Put f(t) = a' for all t e G, where a' is an arbitrary element 
of G'. I t i s / e l , consequently / e H. Therefore f(a) f(b) = a'2 is defined 
and a'2 = f(a) f(b) = f(ab) = a' holds. 

Lemma 2. Let ab be defined for a pair of elements a, b e G such that 
a < b and let I £ H. Then for each pair of elements a', b' e G' such that 
a' < b' a'b' is defined and 

Proof. Put 

0 \v 
for ab <ţ a 
for ab ^ a' 

for t djĹ a 
fortša' 
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It i s / e l , consequently / e H. Therefore /(«)/(&) = a'b' is defined and 

Lemma 3. -ke£ / £ H a.*î  Ze£ # ' /ai£ to 6e aw antichain. Let ab be defined 
for a pair of elements a, beG. Then neither ab fg a, a6 ^ 6, wor a6 ^ a, 
a6 ^ 6. 

Proof. Assume that o6 fg a, ab ^ 6. Let a', 6' e #', a' < 6'. Put 

л.-{5 
for t J aб 
for ř .> aб* 

Then / e I, so that / e IT and we have 6'2 = f(a) f(b) = f(ab) = a', which 
is a contradiction with Lemma 1. 

The second part of the proof is analogical. 
Lemma 4. Let I £ H and let G'fail to be an antichain. Let ab be defined 

for a pair of elements a, beG. Then the elements a, b are comparable. 
Proof. Let a', b' e G', a' < 6'. Assume that, on the contrary, the 

elements a, 6 are not comparable. Define 

and 
ш-[í 

fS) - {*'. 

for t fg a 
for t £ a 

for t S b 
for tS 6 ' 

We have fl9 f2el, consequently fx, f2eH. Let o6 <; a. Then a'6' = 
= M*)fi(b) = Mob) = a'. If it were a6 S b, a'b' = 6'a' = f2(a)f2(b) = 
= f2{°^b) — b' would hold, which is not possible. Therefore a6 <I 6. 
Since a || 6 and a6 ?g a, a6 <I 6, it is necessarily ab < a, ab < b and we 
have a contradiction with Lemma 3. Consequently it is not possible 
that ab ^ a should hold; therefore a6 ^ a. If we interchange the role 
of the elements a, b, we obtain ab d^b. Analogically it would be shown 
a6 ^ a, a6 ^ 6. Consequently it is a || a6 || 6 and we have again a con
tradiction with Lemma 3. The supposition a \\ 6 leads to a contradiction 
in all cases, therefore the elements a, 6 are comparable. 

Lemma 5- Let I <= H and let G' fail to be an antichain. Let ab be de
fined for a pair of elements a, beG. Then ab equals either a orb. 

Proof. Since a6 is defined, the elements a, 6 are comparable by 
Lemma 4. I t suffices to consider the case a <i 6 with regard to the 
commutativity. Admit a ?-= o6 =7= 6. Let a', b' eG', a' < 6'. If it is 
a ^ a6, 6 <g a&, we have a contradiction with Lemma 3. Say that a <I 06. 
Then a < ab. If it is 6 <! a6, we have b < ab, which is again a contradic
tion with L* mma 3. Thereby the lemma is proved for a = 6. Consequently 
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it remains to consider the case a < b. Let it be a < ab, 6 ^ a6. Define 

for t > 6 л»-{ř foг ř £ 6" 

We have fxel, so that A e H and a '6 '=/1(a) /1(6) =/ t (a6) 
Further define 

/,(.)={»; forť>a 
for t j> a * 

Since / 2 e J c H, we have a'6' =/ 2(«)/ 2(^) ~ fz(ab) = 6'. This is 
a contradiction with the preceding result, therefore a < ab cannot hold. 
The last possibility a ^ a6, 6 < a6 is excluded by the transitivity. 

Lemma 6. Let I c H and let G' fail to be an antichain. Let a, 6, c, 
deG, a < b, c < d (a > 6, c > d). Let the products ab, cd be defined 
and let ab = a. Then cd = c. 

Proof. I t is either cd = c or cd = d by Lemma 5. Admit cd = d. 
Let a', 6' e #', a' < 6'. According to Lemma 2 we have partly a'6' = a' 
(a'6' = 6'), for ab ^ a (ba fg 6), partly a'6' = 6' (a'6' = a'), for c i ^ c 
(dc S d). Thereby we passed to a contradiction. 

Remark 1. Lemmas 1, 2, 3, 5, 6 are valid-even in the case that the 
partial operations in G and G' are not commutative. The proofs of 
Lemmas 1, 2, 3, 6 are the same, but Lemma 5 must be proved in another 
way. 

Lemma 7. Let I = H and let G, G' fail to be antichains. Let a', 6' e G', 
a' \\b'.Thena' ^ a'V ^b'. 

Proof. Admit a'6' = a'. We choose an arbitrary element aeG such 
that it is not maximal and define 

ЛW = { 
V for t%a 
a' for t g « * 

Clearly fx<£I, consequently fx <£ H. Therefore there exist elements ax, 
bxeG such that axbx is defined, but either/1(a1)/1(61) is not defined or 
fi(ai)fi(bi) T-=/I («A) holds. I t cannot be ax = bx, for then f\(ax) = 
= /x(af) would hold by Lemma 1 and 5. According to Lemma 4 ax \\ bx 

cannot hold. We may suppose ax < bx. Neither ax g a, bx S & nor 
% $ « , & ! $ « can hold simultaneously, for it would be fx(ax)fx(bx) = 
^ fi(aibi) by Lemma 1 and 5. I t cannot be ax ^ a, bx g a. Consequently 
a i S a, bx <g a. If it were axbx = al9 then / ^ a j A A ) = a ' & ' = a ' = 
^ / i ( a A ) would hold, which is a contradiction. Therefore a161 = bx. 
Define 

m = {i 
Again / 2 £ j t s o that / a £ H. Therefore there exist elements a** h e G 

îoľ t d^ u 
for t < a' 
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such that a262 is defined, but either/2(a2) A ^ ) is nbt defined or/2(a2)/2(62) 
^ Ma2^i) holds. Similarly as in the preceding it cannot be a2 = 62 

or a211 62. We may suppose again a2 < b2 and obtain that it can be 
only a2 <; a, b2 $ a. Since axbx = 6X, a262 = 62 holds by Lemma 6. But 
then we have/2(a2)/2(62) = 6'a' = a' = f2(a2b2), which is a contradiction. 
The supposition a'6' = 6' leads also to a contradiction, for if we inter
change the elements a', 6', we obtain the preceding case. 

Agreement, Q denotes the relation on G defined in the following way: 
For a, beG aob holds if and only if a6 = a. a = Q U {(a, a) | a e G}, 
C denotes the transitive hull of the relation a. _< denotes the relation on 
G' defined in the following way: For a', 6' e G' a' j< 6' holds if and only 
if a'6' = a'. 

Theorem 1. Let G, G' fail to be antichains. Then the following statements 
are equivalent: 

(A) I = H. 
(B) For arbitrary elements a, b eG such that ab is defined ab = a or 

ah = 6 holds; the relaiton £ is identical with the ordering on G and the 
relation _< is identical with the ordering on G' or the relation C is dual to 
the ordering on G and the relation _< is dual to the ordering on G'. 

Proof. I. Let (B) hold true. 
1. Letf el, a,beG,ab = a. Then af_6, consequently a _; 6(a _: 6). 

Thence /(a) <; /(6) [/(a) _: /(&)] and in both cases f(a)f(b) =f(ab). If a, 
beG, ab = 6, the proof is analogous. 

2. L e t / G H,a,be G, a <; 6(a _: 6). If a == 6,/(a) = /(6) holds in both 
cases. If a =£ 6, there exist mutually different elements a0, a2, . . . , 
aneG such that a0 = a, an = b and it is a ^ = a0, a ta2 = ax, ..., 
an-xan = an-x. Thence /(at-) = /(a<a<+1) = f(a%) f(ai+1) for i = 0, I, ..., 
n—l. Consequently f(a%) <; f(ai+1) [f(a{) ^ f(ai+x)] for i = 0, I, ..., 
n — l. Therefrom we have f(a) = f(a0) g f(ax) <, . . . S f(a„) = /(6) 
[/(«) = /(«o) S / K ) £ • • • ^ /(«n) = /(&)]• Therefore / e / . 

Therefore (A) holds true. 
II . Let (A) hold true. Since G fails to be an antichain, there exists 

a pair of elements a, b e G, a < 6 such that ab is defined, for otherwise 
each map of G into G' would be homomorphic. According to Lemma 5 
and 6, then, for each pair of elements a, beG, a < b such that a6 is 
defined either a6 = a or a6 = 6 holds. Thereby the first part of the 
statement (B) is proved. Let ab = a (ab = 6) hold. 

1. Let a, 6 e G, a c 6. If a = 6, then also a :_ 6 (a _: 6). Consequently 
let a # 6. Then there exist mutually different elements a0, al9 . . . , 
aneG such that a0 = a,an = b and a0ax = a0, axa2 = a1? . . . , an_-an = 
== an-x. By Lemma 4 it is either â  < a i+1 or at- > a i+1 for i = 0, 1, . . . , 
?V— 1. But by Lemma 6 it is necessarily a% < ai+1 (at- > ai+1) for all i, 
i = 0, 1, . . . , n — 1. Consequently a0 < ax, ax < a2, . . . , an-x < an 
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(a0 > al9 ax > a2, . . . , aM_1 > an). From the transitivity if follows 
a = a0 < an = 6 (a = a0 > an = 6). 

2. Let a, 6 e G> a <£ 6 (a *> 6). Admit that it is not a C 6. Let a', 6' 6 
<?', a' < 6'(a' > 6'). We define 

ftt\ _ / °' for £ non C 6 
J{f)- \ a' f o r * c 6 . 

Then feH. In fact, let c, d e G such that cd is defined. By Lemma 5 it 
is either cd = c or c^ = d. If c C 6, d C 6, it is by Lemma 1 /(cd) = a' = 
= a'2 = /(c) /(d). Similarly if c non C 6, d non C 6, it is/(cd) = 6' = 6'2 = 
= /(c) /(^)- Further let c C 6, d non C. 6. If cd = c, then it is f(cd) = /(c) = 
= a' = a'b' = f(c)f(d). But if cd = d, we have by the definition d C c. 
Since c C 6 and the relation C is transitive, it is d £ 6, which is a contra
diction. Finally, let d C 6, c non C 6. If cd = c, it is c C d, therefore c C 6 
and we have again a contradiction. If cd = d, then it is f(cd) = /(d) = 
= a' = 6'a' =f(c)f(d). Thereby it is shown that feH and therefore 
fel. But a' = / (6) £ /(a) = 6' [a' = / (6) $ / ( a ) = 6']. Consequently 
a :g 6 (a ^ 6) implies a C 6. 

3. Let a', 6' 6 #', a' <; 6' (a' ^ 6'). By Lemma 2 it is in both cases 
a'b' = a', therefore a' -< 6'. 

4. Let a', 6' e £', a' •< 6'. Then it is by the definition of the relation < 
a'b' = a'. By Lemma 7 it is not a' || 6'. Consequently either a' g 6' 
or a' > 6' (either a' *> 6' or a' < 6') holds. But if a' > 6' (a' < 6') 
held, then we should have a'6' = 6', which is a contradiction. Therefore 
a' < 6' (a' £ 6'). 

Therefore the second part of the statement (B) holds true. 
Remark 2. In Theorem 1 the statement (B) implies the statement (A) 

even in the case that at least one of the ordered sets G, G' is an antichain. 
Remark 3. The main result of [1] follows from Theorem 1, for the 

relation C, resp. •< is identical with the ordering 7t, resp. ri derived 
from the multiplication on (?, resp. <?'. 

Theorem 2. Let G be an antichain and let G' fail to be an ordered set 
containing a single element. Then the following statements are equivalent: 

(A)I = H. 
(B) Either no product is defined in G or the product ab of elements ar 

beG is defined only if a = 6 and a% = a holds and simultaneously for 
each a' e G' a'2 is defined and a'2 = a' holds. 

Proof. I. Let (B) hold true. Since each map of G into G' is isotone, 
it suffices to show that each map of G into G' is homomorphic. If no 
product is defined in G, then it is true. Consequently let a product o6 
of the elements a, 6 e G be defined. Then according to the supposition 
a = 6 and a2^= a holds. Let / be an arbitrary map of G into G'. Since 
for each a' e G' a'% is defined and a'2 = a' holds, /2(a) is therefore defined 
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and f2(a) •= f(a) = f(a2) holds. Consequently / is a homomorphic map 
and (A) holds true. 

I I . Let (A) hold true. If no product is defined in G, then (B) holds 
true. Consequently let a product ab of the elements a, 6 e G be defined. 
Then by Lemma 1 for each a' e G' a'2 is defined and a'2 = a' holds. 

1. Let G' fail to be an antichain. Since G is an antichain, it is a = 6 
by Lemma 4 and a2 = a by Lemma 5. 

2. Let 0 ' be an antichain. Admit that a ^ 6. Let a', 6' e 6?', a' 7̂  6'. 
Define 

лw-{Ѓ 

/,«) = { I 

for £ = a 
for č є # — {a}' 

for t = a 
for *єt7 — {a}' 

The maps / 1 ? /2 are isotone and therefore homomorphic. But if a6 = 6, 
we have 6' = fx(ab) = ft(a) fx(b) = a'6' and simultaneously a' = /2(&6) = 
= f2(a)/2(b) = 6V, which is a contradiction. If a6 = a, we have a' = 
= fi(ab) =/i(^)/i(6) = a'6'and simultaneously 6' =/ 2(a6) =/2(a)/2(6) = 
= 6'a', which is again a contradiction. Therefore a = 6. Further admit 
that a2 ^ a. Then it is 6' = /x(a2). = /f(a) = a'2, which is contradictory 
to Lemma 1. Consequently a2 = a. 

Therefore (B) holds true in both cases. 
Theorem 3. Let G' be an antichain. Let G' fail to be an ordered set 

containing a single element and Gfail to be an antichain. Then the following 
statements are equivalent: 

{A) I = H. 
(B) For each a' G G' a'2 is defined and a'2 = a' holds; for each homo

morphic map cp of an arbitrary component K <= G into G' <p[K] is a set 
containing a single element; if a e K, b e G, ab defined, then 6 e K, ab e K. 

Proof. I. Let (B) hold true. L e t / e I, a,b e G, ab defined. Let K c G 
be the component for which a e K holds. Then b e K, ab e K and con
sequently f(ab) = f(a) =/(6) . We have therefore /(a6) =/(a)/(6) and 
/ e H. Let / e H. Then for an arbitrary component K c: G the restric
tion /1 K o f / t o K is a homomorphic map of K into G', so that /[K] 
is a set containing a single element and / e I. 

I I . Let (A) hold true. Since there exists a map of G into G' which 
is not homomorphic, there exist elements a, b eG such that a6 is de
fined. Consequently for each a' e G' a'2 is defined and it is a'2 = a' by 
Lemma 1. Let a', 6' e G', a' ^ 6'. Let K £ G be such a component that 
a G K. Admit 6 e C7 — K. We define 

>-<«> = { £ for*GK 
for t G C7 — KJ 
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/-<*> = { «' for ť Є Z 
foг ř є в — K > 

I t is /i, /2 £ / , consequently /x, /2 e H. If ab e K, we have a' = ft(ab) = 
= fi(a)f±(b) = a'b' and simultaneously 6' = f2(ab) =f2(a)f2(b) = bV, 
which is a contradiction. Ifab eG-— K, we have b' = fx(ab) = /x(«)/i(b) = 
= a'b' and simultaneously a' = f2(ab) =f2(a)f2(b) = b'a', which is 
again a contradiction. Therefore it is b e K. If it now were ab eG — K, 
we should have b' = fx(ab) = fx(a)fx(b) = a'2, which is impossible. 
Therefore also ab e K. Let cp be a homomorphic map of a component K 
into G' such that cp[K\ fails to be a set containing a single element. Then 
there exist elements ax, a2e K such that ax, a2 are comparable and 
9>K) ¥" 9?(a2). Put 

f m _ / 9>W f o r * e i ^ / 3 W *" \ cyK) for teG — K. 

If ae K, b eG, ab defined, then according to the preceding b e K, 
ab e K. Since cp is a homomorphic map of K into G', it is/3(ab) = cp(ab) = 
= <f(a) <p(b) = h(a)fz(b)> If aeG — K, b eG — K, ab defined, then 
abeG — K. Consequently it is f2(ab) = cp(ax) = cp2(ax) =fz(a)fz(b). 
I t is / 3 e H , so that / 3 eJ , but fz(ax) = cp(ax) ^ cp(a2) =fz(a2), which 
is a contradiction. Therefore for each homomorphic map cp of K into 
G' 9?[K] is a set containing a single element. 

R E F E R E N C E 

[1] Fiala F . and Novak V., On isotone and homomorphic mappings, to appear 
in Archivum Math. (Brno). 
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