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ONE C H A R A C T E R I Z A T I O N 
OF S P E C I A L T R A N S L A T I O N P L A N E S 

Václav H A V E L (BBNO) 

Received June 5, 1967 

§ 1 M. Hall gives in [1] a description of near-field planes using some 
permutation groups. This concept will be now adapted also for affine 
planes over Veblen-Wedderburn systems with the right inverse property. 

Let S be a set with at least two distinct elements. Let E and E* be 
sets of permutations of S satisfying the following conditions: 

(a) Let xl9 yl9 x2, y2 be elements of S such that xx 7- x2 and yx 7-= y%. 
Then there is precisely one a e £ such that x\ = yx and x\ = y2. 

(b) Let ae£ and x0, y0e S with #g # y0. Then there is at most one 
fi e E such that xft = y0 and that /?_1 O oc changes all elements of S. 

(c) If c/e2;then o^eE. 
(d) The identity permutation ids belongs to £*, E* is properly con­

tained in E and each 0 e E\E* keeps one element of S fixed. 
(e) If a eE and 0* eE* then 0* O a e£. 
(f) The sets A0. = {(x, y) e S X S \ y = #°*}> o* e£* form a decompo­

sition of S X #. 
Now we deduce some conclusions. 
1. (£*, O) is a group. In fact, by (e) we have (I Q oceE for any 

oc, fie£*. From (f) it follows that fl O oc changes each element of S 
so that /? O oc e£* by (d). If a e 27* then a"1 6.27* by (b). Following (f), 
a - 1 must change all elements of S. Consequently by (c) it is a - 1 e£*. 
But /d9 e E* by (d) so that (£*, Q) is a group. Q.E.D. 

2. Let oceE and x0, yQeS with ^ ^ 0 . Then there is at least one 
/? e£ such that <rg = y0 and that PQ1OOC displaces all elements of S. 
In fact, the sets A0,oct = {(x, y) \ y = #°°a}, a* E27* form a decomposition 
of S x 8 by (e) and (f). So there is a /?* 6 27* such that s p = ^0 and 
that A?*a, Aa are disjoint. But this means that (/?* O oc)-1 Q a displaces 
each element of S. Q.E.D. 

3. A = (S X S, i^, e) is an affine plane where L = {{(#, #) | x = 
= a} I a e S } u {{(a?, y) \ y = b} \b e S} [} {{(x, y) \y = x«} | cre£}.Infact 
using (a), (b), Proposition 2 and the assumption card S g> 2 we easily 
verify the axioms of affine planes: Any two points are contained in 
exactly one common line. Through each point it goes precisely one line 



158 

parallelly to a given line (i.e. disjoint to a given line or coinciding with it). 
There are three points which are not contained in the same line. Q.E.D. 

Now choose in A a coordinatizing frame F consisting of the points 
0, Jx, J, Jy forming a parallelogram such that 0 = (0, 0), Jx = (I, 0), 
J = (1, 1), Jy =. (0,1) where 0, 1 are some distinct elements of S.1) The 
Hall's coordinatization principle ([2]) gives the ternary operation T: 
8 X 8 X 8 -> S where r(x, 0, v) = v for all x, v e 8 and r(x, u, v) = 
= y for u ^ 0 should mean that the point (x, y) lies on the line going 
through (0, v) parallelly to the line 0(1, u). The derived addition and 
multiplication on $ are defined by xxv = r(x, I, v) and xTu = r(x, u, 0). 

4. The linearity property r(x, u, v) = xxuxv is valid. In fact, denote 
a*: t -> txv and a: x -> x\u. Then a* e E*, oceE and or* O o*: # -> #r^T' v 
belongs also to 27, by (e). Since 0°°° = v and l°*Co -= ^T

jv (by 0;^ = 0 
and l;w = u), it follows o** O o • # ->T(# , u, v). Thus T(#, %, v) = 
= z ;<v. Q.E.D. 

5. The rigrAfl inverse property (b'xa)'ta" = b holds for all a e 8\{0}, 
be 8 where a" e8 is determined by axa" = 1. Consequently a"xa = 1 
(so that a" can by denoted us usually by a -1). In fact, let a =£ 0. Consider 
the inverse mapping a - 1 : y -> yxcx d of the mapping a : x -> #;a. Here a 
must belong to 2" so that by (c) we have a - 1 e E. From 0a = 0 and l a = a 
it follows d = 0 and c = a". Thus a - 1 0 « : « - ^ (^T^)T

 a" - Let a'eS 
be determined by a'xa = l.Then for a: = a' we obtain (a /)or ,°a = a", i.e. 
a' = a". Q.E.D. 

*>• ($> ?) i s a g r o uP- This follows at cnce from the definition of T 
and from Proposition 1. The element 0 is neutral for the investigated 
group. Q.E.D. 

7. The distributivity law (a^b)Tc = a'rcxbxc holds. In fact, choose 
(} : x -> xxax b where a, b e 8\{0}. Then /J-1 has the form x -> x'p-^c 
because lor a : x -> #Ta we have a - 1 : a; -> ^Ta -1 and consequently 
a"1 O ft, OL O P"1 change all elements of 8. Thus 0-- O P : # -> (a^ar^c); 
a+6. For # = 0 we obtain 0 = c;a+b and for x = b\a we have b\a+x'xa = 
= ( b ; ^ - 1 ^ ) ; a, i.e. b'xa+c\a = (6/c); a. The cases a = 0, b = 0 are easily 
to consider. Q.E.D. 

The arguments of [3] imply now the commutativity of x and as a final 
result, (8, +, ;) is shown to be a Veblen-Wedderburn system (in the sense 
of [4]) with the right inverse property. Conversely, if (S, + , .) is a Veblen-
Wedderburn system with the right inverse property then the set E of all 
mappings x -> x . u + v(u e S\{0}, v e 8) and the set E*of all mappings 

!) If A is an affine line with a general coordinatizing frame g = OJxJJy then 
we shall use the denotation OJx =- £^, OJv = r)%, OJ = f^. A parallelogram 
ABCDwülbee&lled^-disUnguishedifAB \\ CD \\ rj%, DA || BG || ^ and BD = fg. 
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x -> a? + w(w G S) satisfy conditions (a) to (f). The evident proof may 
be omitted. Of course, the alternative field is a particular case of the 
above Veblen-Wedderburn system. But no example of a proper (i.e. non-
distributive and non-associative) Veblen-Wedderburn system with the 
right inverse property is known to the author. 

As a complement we shall formulate still two assertions: 
8. For the plane A of Proposition 3, ere27, a* eZ* => o—1 O'a* O 

O o e 27. In fact, let a : x -> xxuxv and a*: x -> x;w(u e # \ {0} , ve S, 
tv e S). Then a~1: x -» x'Tu-l+(-v)T u~\, a'1 O a* O a : x -^ (xxu~\ (~v)t 

u~u
rw)x u\v = xr((xv>wcucv). Thus a'1 O a* O a e 27*. Q.E.D. 

9. Let A be an arbitraty affine plane with a coordinatizing frame g. 
Let S be the set of all mappings x -> T(X, U, V) with u e S\{0}, v e S 
where T is the corresponding ternary operation. Then (c) <=> (I) where 

(I) If ABCD is a variable ^-distinguished parallelogram with the 
point A ranging over a line m non 11 f ̂ , rj%, then C ranges also over a line. 

The proof may be omitted. This configuration theorem (I) can be used 
for a geometrical proof of Proposition 5. 

§ 2 Now we shall investigate the independence of the „mversing" 
operation and express the corresponding situations by some algebraic 
or geometric conditions. ;. 

Let A be the plane of Proposition 3. We shall suppose that the coordin* 
atizing frame g = OJxJJy introduced after Proposition 3 is now fixed. 
If g ' = OJxJ'Jy is a coordinatizing frame then define the inversing> 
operation i%> as the mapping S\{0} -> S\{0} which sends each element 
a e S\{0} onto the element a' e S\{0} such that 1 = T'(O!, a, 0) where Ty 

is the ternary operation determined by gf'. 
10. The left inverse property a"x

x(axb) = 6 is valid iff %%> is indepen­
dent on the change of £%>, by fixed rj%>. In fact, take a e S\{0}, b e $ \ 
\ { 0 , 1} and construct the line {(x, y) \ y = xxb}, the points (a, axti)r 

(I, a'xb), (I, b), the line {(x, y) \ y == xT(axb)} and finally the point (or1, 
a-\(axb)). The mentioned independence of i%> is now expressed by 
(a~\ a-\(aTb)) e {x, y) | y = b}. Q.E.D. 

11. The independence of i%> on the choice .of rj%> by fixed f-y ml 
equivalent to 

(II) If A0AXA2A3AAAS, BQB^B^B^ are polygonal lines with 
A0 = B0 = (a, 0) * 0; Ax = (a, a); A*AX \\ A2AZ \\ AAA5; AXA2\\ 
| | A 3 ^ 4 | | ^ ; JeA2As; A3e£%; A4eOA2, A5e£d; Bx = (b, b) # 0; 
B0BX || B2B9 || B,B5; BXB2 \\ B3B4 || ^ ; H3 e £%; B, e 0B2; B5 e f9 then 

The proof is obvious. 
12. Let A satisfy the harmonic point axiom ([5]). Then t%> is inde­

pendent on the change o{ rj%> by fixed f̂ /...-.,. t , >:̂  \ i , 
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Proof. If suffices to verify the configuration theorem (I). Let all 
assumptions of (I) be satisfied; we have to show that A5 = B5. 
Both polygonal lines AQA1A2A2A^A5, BQB1B2BSB/LB5 can be ,shortened" 
onto A0AXJA3A5, AQB1JBZB5 where AXJ \\ A3A5, BJ || B3B5.

2) Now 
A5 = B5 follows by the further lemma: Let Q be constructed using the 
polygonal line ABJCQ with B = (b, b) ^ 0, JC \\ AB, Ce^,CQ\\ JB, 
Q e £g. Then Q = (a-1, 0). In fact, let h be the line through (a"1, 0) 
parallelly to BJ. The equations of JC and h are y = (xTl)T ((b^a^b] and 
y = (x-a)~1

t((bTl)~1
Tb respectively. The point of instersection C of these 

lines lies on C% iff # = (^l);((b;«)_1;o) = (a^"1); (.(M)"1^). i-e- iff 
xt(lTb~l

Ta) = x'l, x^fl'b"1) = x^ar1. By the distributivity law x'T(yTz) = 
= xTyTxTz we obtain in both cases x = a-1;b so that C = C. Q.E.D. 

Corollary. If A satisfies the harmonic point axiom then %-$ is inde­
pendent on the choice of r\%> and £$'• 

For the case 1 -f- 1 # 0 this is proved by other methods in [6]. 
13. Let A be such that the left inverse property (cf. Proposition 10) 

be valid. Construct the polygonal line AQAXA2A3A± with AQ = (a, 0) # 0, 
Ax = (1, a),A2 = (1, 0), .A3 = (a~\ 1),A, = (a~\ O J . T h e n ^ ^ || A2AZ 

Proof. The lines A0A1, A2A3 have the slopes (l;a)_1;a, (a -1;!)"1 

respectively. By the left and right inverse properties it follows that 
(l?*)-1;**-1 = (a-1-!)-1 is equivalent to a~\l == a^-l. Q.E.D. 

It is an open problem whether the independence of i%> on the choice 
of rj%> and £-y implies the remaining distributivity law. 
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*) This can be verified by the direct computation. 
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