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ONE CHARACTERIZATION
OF SPECIAL TRANSLATION PLANES

Véclav HaveL (BrNoO)

Received June 5, 1967

§ 1 M. Hall gives in [1] a description of near-field planes using some
permutation groups. This concept will be now adapted also for affine
planes over Veblen-Wedderburn systems with the right inverse property.

Let S be a set with at least two distinct elements. Let 2 and 2* be
sets of permutations of § satisfying the following conditions:

(a) Let @y, y,, @5, ¥, be elements of S such that z; # z, and y; # y,.
Then there is precisely one ¢ € X such that 27 = y, and 2§ = y,.

(b) Let «x € 2" and x,, 9, € S with 2% # y,. Then there is at most one
f € X' such that 2§ = y, and that 8! O « changes all elements of S.

(¢) If 0 € X then 071e .

(d) The identity permutation idg belongs to 2'*, 2'* is properly con-
tained in X and each o € 2\ 2* keeps one element of § fixed.

(e) If €2 and o* € 2* then o* QO o€l

(f) The sets A,. = {(x, y) e S x 8|y = a*'}, o* € 2* form a decompo-
sition of 8§ x 8.

Now we deduce some conclusions.

1. (Z*, Q) is a group. In fact, by (e) we have 8 O a €2 for any
a, BeX* From (f) it follows that § O « changes each element of S
so that 8 O a € 2* by (d). If « € 2* then a~1 € 2* by (b). Following (f),
a1 must change all elements of S. Consequently by (c) it is a! e 2*.
But idg € 2* by (d) so that (X*, Q) is a group. Q.E.D.

2. Let a € X and ,, Y, € S with a% # ¥,. Then there is at least one
B eZ such that af =y, and that S5O« displaces all elements of S.
In fact, the sets A..,, = {(z, y) | y = 2°**}, o* € 2* form a decomposition
of 8§ x 8 by (e) and (f). So there is a f* € 2* such that af* =y, and
that A;:,, 4, are disjoint. But this means that (8* O «)~* O « displaces
each element of 8. Q.E.D.

3. A= (8 x 8, L, €) is an affine plane where L = {{(z, ) | x =
=a}|aeS}U{{x y)ly=0b}1beS}u{{(x 9) |y=2}|oceZ}.Infact
using (a), (b), Proposition 2 and the assumption card § = 2 we easily
verify the axioms of affine planes: Any two points are contained in
exactly one common line. Through each point it goes precisely one line
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parallelly to a given line (i.e. disjoint to a given line or coinciding with it).
There are three points which are not contained in the same line. Q.E.D.

Now choose in A a coordinatizing frame F consisting of the points
0, J,, J, J, forming a parallelogram such that O = (0, 0), J, = (1, 0),
J = (1,1), J, = (0,1) where 0, 1 are some distinct elements of S.!) The
Hall’s coordinatization principle ([2]) gives the ternary operation 7:
S x 8 %X 8 —8 where 7(z, 0,v) = v for all 2, ve S and 7(z, %, v) =
= y for u # 0 should mean that the point (z, ) lies on the line going
through (0, v) parallelly to the line O(l, u). The derived addition and
multiplication on S are defined by x;v = t(, 1, v) and x;u = 7(z, u, 0).

4, The linearity property v(z, w, v) = x;,u,v is valid. In fact, denote
a*:t —t/vand a: ¢ > 2u. Then a*€2*, acXando* O 0: v - zjuv
belongs also to X, by (e). Since 0°¢ = v and 1¢*°¢ = u'v (by O;u =0
and l;u =), it follows ¢* Qo:2 - 7(x, w, v). Thus t(z, u, v) =
= zuv. QE.D.

5. The right tnverse property (bia).a” = b holds for all a e S\ {0},
be S where a” € 8 is determined by a;a” = 1. Consequently a";:a =1
(so that a” can by denoted us usually by a—!). In fact, let a # 0. Consider
the inverse mapping a~! : y — y;c,d of the mapping « :  — z;a. Here «
must belong to X so that by (¢) we have a=1 € 2. From 0* = Qand 1* = a
it follows d =0 and ¢ =a". Thus ¢! QO «:z — (;a); a”. Let a'eS
be determined by a’;a = 1. Then for z = a’ we obtain (a’)*'°* = a’, i.e.
e’ =a". QE.D.

6. (S, ) is a group. This follows at cnce from the definition of |
and from Proposition 1. The element 0 is neutral for the investigated
group. Q.E.D.

7. The distributivity law (a;b);c = a;c'b,c holds. In fact, choose
B :x —x,a'b where a, b e S\ {0}. Then $-! has the form z - za~1'¢c
because for «:x -0 we have a!:a2 —wxa1 and consequently
a1 O B, & O -1 change all elements of S. Thus -1 O f : « — (z,a 1}c);
a;b. For x = 0 we obtain 0 = c;a;b and for # = b,a we have b;a’za =
= (b;@,a1}c), a,ie. ba'c.a = (b, c), a. The cases @ = 0, b = 0 are easily
to consider. Q.E.D. '

The arguments of [3] imply now the commutativity of / and as a final
result, (S, 7,;) is shown to be a Veblen-Wedderburn system (in the sense
of [4]) with the right inverse property. Conversely, if (S, +, .) is a Veblen-
Wedderburn system with the right inverse property then the set X of all
mappings x —> x . 4 + v(u € S\ {0}, v € 8) and the set 2*of all mappings

‘1) If A is an affine line with a general coordinatizing frame § = 0J,JJ, then
we shall use the denotation 0J, = 5?5’ 0J, = ng» 0J =g A parallelogram

ABCD will be called §§-distinguished if AB || CD || g DA || BC || 5{; and BD = Z,‘%.
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x> + w(w e S) satisfy conditions (a) to (f). The evident proof may
be omitted. Of course, the alternative field is a particular case of the
above Veblen-Wedderburn system. But no example of a proper (i.e.non-
distributive and non-associative) Veblen-Wedderburn system with the
right inverse properry is known to the author.

As a complement we shall formulate still two assertlons

8. For the plane A of Proposition 3, ¢ X, o¥*eX* =01 O¢* O
OoelZ In fact, let ¢: 2 —2u, v and o*: v -z w(u e S\{0}, ve s,
weS). Then o lix - 2;u™1!(fv); v, 1 O o* O o:a—> (zu1}([v),
u~tw): utv = x((;viw,uw). Thus 671 O o* O o € 2*. Q.E.D.

9. Let A be an arbitraty affine plane with a coordinatizing frame .
Let X' be the set of all mappings « — v(z, u, v) with w e S\ {0}, ve S
where 7 is the corresponding ternary operation. Then (c) <= (I) where

(I) If ABCD is a variable g§-distinguished parallelogram with the
point 4 ranging over a line m noa || &, %g, then C ranges also over a line.

The proof may be omitted. This configuration theorem (I) can be used
for a geometrical proof of Proposition 5. ‘

§2 Now we shall investigate the independence of the ,inversing*
operation and express the corresponding situations by some algebraic
or geometric conditions.

Let A be the plane of Proposition 3.We shall suppose that the coordlm
atizing frame § = 0J,JJ, introduced after Proposition 3 is now fixed.
£ F =0JJJ,is a coordmatxzmg frame then define the inversing
operation iz as the mapping S\{O} — S\ {0} which sends each element
a € S\{0} onto the element a’ € S\ {0} such that 1 = 7’(a’, a, 0) where 7”
is the ternary operation determined by &’.

10. The left inverse properfy a~';(a;b) = b is valid iff 13 is indepen-
dent on the change of {3, by fixed 75 . In fact, take a € S\{0}, be 8™\
{0, 1} and construct the hne {(=, y) | y = z;b}, the points (a, ab),
(1, a;b), (1, b), the line {(z, y) | y = #;(a;b)} and ﬁnally the point (a-1,"
a~1:(a;b)). The mentioned mdependence of 1y is now expressed by
(@, a7l (a;d)) € {z, y) | y = b}. QE.D.

11 The independence of iy on the choice .of #g by fixed (g is.
equivalent to

(I1) If 4,4,A,A,A,4;, B,B,B,B;B,B; are polygonal lines with
Ay = By = (a, 0) # 0; A4, =(a, a); Aed, || A4, || AA5; A4, |}
|| Agdy || &5; J € Apdy; Asely; A,€04,, Ajeby; B, = (b, b) # 0;
BB, || BB, || BB;; B\B, || BsB, || £5; By € {g; Bye OB,; Bje &g then

5 = Ds-

The proof is obvious.

12. Let A satisfy the harmonic point axiom ([5]) Thenf 1y is inde-
pendent on the change of ng by fixed fg ..t v comizws a7w
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Proof. If suffices to verify the configuration thecrem (I). Let all
assumptions of (I) be satisfied; we have to show that 4, = B;.
Both polygonal lines 4,4,4,4;4,4;, B,B,B,B;B,B; can be ,,shortened‘
onto A,A4,JA;4,, A(B,JB3B; where A,J || A;4,, BJ || ByB;.2) Now
Ay = By follows by the further lemma: Let @ be constructed using the
polygonal line ABJCQ with B = (b, b) # 0, JC || AB, C e (g, CQ || JB,
Qe&g. Then @ = (a7, 0). In fact, let & be the line through (a1, 0)
parallelly to BJ. The equations of JC and h are y = («;1); ((b;a)~'b] and
y = (x;a)71;((b;1)~;brespectively. The point of instersection O’ of these
lines lies on (g iff o = (x;1);((b;a)1;b) = (z@1); ((b71)71:0), ie. iff
z,(1;67L:a) = z;1, 2;(1;67!) = z;0~1. By the distributivity law z;(y:z) =
= #x,ytx;z we obtain in both cases ¥ = a~1;b so that ¢ = C’. Q.E.D.

Corollary. If A satisfies the harmonic point axiom then 3 is inde-
pendent on the choice of 7g and (g

For the case 1 4+ 1 s 0 this is proved by other methods in [6].

13. Let A be such that the left inverse property (cf. Proposition 10)
be valid. Construct the polygonal line 4,4,4,4,A4, with 4, = (a, 0) # 0,
A, =(1,a),4,=(1,0), A3 = (a1, 1), A, = (a7, 0). Then 4,4, || 4,4,

Proof. The lines A4,4,, 4,4, have the slopes (l;a)%a, (a~1;1)1
respectively. By the left and right inverse properties it follows that
(1;a)"1:a7! = (a~%;1)! is equivalent to a7;1 = a7 ';1. Q.E.D.

It is an open problem whether the independence of 13- on the choice
of ng and (g implies the remaining distributivity law.
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%) This can be verified by the direct computation.
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