Archivum Mathematicum

Václav Havel

One characterization of special translation planes

Archivum Mathematicum, Vol. 3 (1967), No. 3, 157--160

Persistent URL: http://dml.cz/dmlcz/104639

Terms of use:

© Masaryk University, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ONE CHARACTERIZATION

OF SPECIAL TRANSLATION PLANES

Václav Havel (Brno)

Received June 5, 1967
§ 1 M . Hall gives in [1] a description of near-field planes using some permutation groups. This concept will be now adapted also for affine planes over Veblen-Wedderburn systems with the right inverse property.

Let S be a set with at least two distinct elements. Let Σ and Σ^{*} be sets of permutations of S satisfying the following conditions:
(a) Let $x_{1}, y_{1}, x_{2}, y_{2}$ be elements of S such that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. Then there is precisely one $\sigma \in \Sigma$ such that $x_{1}^{\sigma}=y_{1}$ and $x_{2}^{\sigma}=y_{2}$.
(b) Let $\alpha \in \Sigma$ and $x_{0}, y_{0} \in S$ with $x_{0}^{\alpha} \neq y_{0}$. Then there is at most one $\beta \in \Sigma$ such that $x_{0}^{\beta}=y_{0}$ and that $\beta^{-1} \bigcirc \alpha$ changes all elements of S.
(c) If $\sigma \in \Sigma$ then $\sigma^{-1} \in \Sigma$.
(d) The identity permutation id $_{S}$ belongs to Σ^{*}, Σ^{*} is properly contained in Σ and each $\sigma \in \Sigma \backslash \Sigma^{*}$ keeps one element of S fixed.
(e) If $\sigma \in \Sigma$ and $\sigma^{*} \in \Sigma^{*}$ then $\sigma^{*} \bigcirc \sigma \in \Sigma$.
(f) The sets $\lambda_{0}=\left\{(x, y) \in S \times S \mid y=x^{*}\right\}, \sigma^{*} \in \Sigma^{*}$ form a decomposition of $S \times S$.

Now we deduce some conclusions.

1. (Σ^{*}, \bigcirc) is a group. In fact, by (e) we have $\beta \bigcirc \alpha \in \Sigma$ for any $\alpha, \beta \in \Sigma^{*}$. From (f) it follows that $\beta \bigcirc \alpha$ changes each element of S so that $\beta \bigcirc \alpha \in \Sigma^{*}$ by (d). If $\alpha \in \Sigma^{*}$ then $\alpha^{-1} \in \Sigma^{*}$ by (b). Following (f), α^{-1} must change all elements of S. Consequently by (c) it is $\alpha^{-1} \in \Sigma^{*}$. But $i d_{S} \in \Sigma^{*}$ by (d) so that (Σ^{*}, \bigcirc) is a group. Q.E.D.
2. Let $\alpha \in \Sigma$ and $x_{0}, y_{0} \in S$ with $x_{0}^{\alpha} \neq y_{0}$. Then there is at least one $\beta \in \Sigma$ such that $x_{0}^{\beta}=y_{0}$ and that $\beta_{0}^{-1} \bigcirc \alpha$ displaces all elements of S. In fact, the sets $\lambda_{\cdot \circ \circ \alpha}=\left\{(x, y) \mid y=x^{\sigma}{ }^{\circ} \alpha\right\}, \sigma^{*} \in \Sigma^{*}$ form a decomposition of $S \times S$ by (e) and (f). So there is a $\beta^{*} \in \Sigma^{*}$ such that $x_{0}^{\beta * \alpha}=y_{0}$ and that $\lambda_{\beta: \alpha}, \lambda_{\alpha}$ are disjoint. But this means that $\left(\beta^{*} \bigcirc \alpha\right)^{-1} \bigcirc \alpha$ displaces each element of S. Q.E.D.
3. $\mathbf{A}=(S \times S, L, \in)$ is an affine plane where $L=\{\{(x, y) \mid x=$ $=a\} \mid \alpha \in S\} \cup\{\{(x, y) \mid y=b\} \mid b \in S\} \cup\left\{\left\{(x, y) \mid y=x^{0}\right\} \mid \sigma \in \Sigma\right\}$.In fact using (a), (b), Proposition 2 and the assumption card $S \geqq 2$ we easily verify the axioms of affine planes: Any two points are contained in exactly one common line. Through each point it goes precisely one line
parallelly to a given line (i.e. disjoint to a given line or coinciding with it). There are three points which are not contained in the same line. Q.E.D.

Now choose in A a coordinatizing frame F consisting of the points O, J_{x}, J, J_{y} forming a parallelogram such that $O=(0,0), J_{x}=(1,0)$, $J=(1,1), J_{y}=(0,1)$ where 0,1 are some distinct elements of $\left.S .1^{1}\right)$ The Hall's coordinatization principle ([2]) gives the ternary operation τ : $S \times S \times S \rightarrow S$ where $\tau(x, 0, v)=v$ for all $x, v \in S$ and $\tau(x, u, v)=$ $=y$ for $u \neq 0$ should mean that the point (x, y) lies on the line going through $(0, v)$ parallelly to the line $O(1, u)$. The derived addition and multipication on S are defined by $x_{\tau}^{+} v=\tau(x, 1, v)$ and $x_{i} u=\tau(x, u, 0)$.
4. The linearity property $\tau(x, u, v)=x_{\tau} u_{\tau}^{+} v$ is valid. In fact, denote $\alpha^{*}: t \rightarrow t_{\tau}^{+} v$ and $\alpha: x \rightarrow x_{\tau}^{*} u$. Then $\alpha^{*} \in \Sigma^{*}, \alpha \in \Sigma$ and $\sigma^{*} \bigcirc \sigma: x \rightarrow x_{i} u_{\tau}^{+} v$ belongs also to Σ, by (e). Since $0^{\sigma^{* \sigma} \sigma}=v$ and $1^{\sigma^{*} \sigma_{\sigma}}=u_{\tau}^{+} v$ (by $0_{\tau}^{*} u=0$ and $1_{\tau} u=u$), it follows $\sigma^{*} \bigcirc \sigma: x \rightarrow \tau(x, u, v)$. Thus $\tau(x, u, v)=$ $=x_{i} u_{\tau}^{+} v$. Q.E.D.
5. The right inverse property $\left(b_{\dot{\tau}} a\right)_{\dot{\tau}} a^{\prime \prime}=b$ holds for all $a \in S \backslash\{0\}$, $b \in S$ where $a^{\prime \prime} \in S$ is determined by $a_{i} \cdot a^{\prime \prime}=1$. Consequently $a^{\prime \prime}{ }_{i} a=1$ (so that $a^{\prime \prime}$ can by denoted us usually by a^{-1}). In fact, let $a \neq 0$. Consider the inverse mapping $\alpha^{-1}: y \rightarrow y_{\tau}^{\cdot} c_{\tau}^{+} d$ of the mapping $\alpha: x \rightarrow x_{\tau} a$. Here α must belong to Σ so that by (c) we have $\alpha^{-1} \in \Sigma$. From $0^{\alpha}=0$ and $1^{\alpha}=a$ it follows $d=0$ and $c=a^{\prime \prime}$. Thus $\alpha^{-1} \bigcirc \alpha: x \rightarrow\left(x_{\tau} a\right)_{\dot{\tau}} a^{\prime \prime}$. Let $a^{\prime} \in S$ be determined by $a_{\dot{\tau}}^{\prime} a=1$. Then for $x=a^{\prime}$ we obtain $\left(a^{\prime}\right)^{\alpha^{-1} \circ \alpha}=a^{\prime \prime}$, i.e. $a^{\prime}=a^{\prime \prime}$. Q.E.D.
6. $\left(S,{ }_{\tau}^{+}\right)$is a group. This follows at cnce from the definition of ${ }_{\tau}$ and from Proposition 1. The element 0 is neutral for the investigated group. Q.E.D.
7. The distributivity law $\left(a_{\tau}^{+} b\right)_{\tau} c=a_{i} c_{r}^{+} b_{\tau} c$ holds. In fact, choose $\beta: x \rightarrow x_{i} a_{\tau}^{+} b$ where $a, b \in S \backslash\{0\}$. Then β^{-1} has the form $x \rightarrow x_{i} a^{-1+} c$ because for $\alpha: x \rightarrow x_{\tau} a$ we have $\alpha^{-1}: x \rightarrow x_{\tau} a^{-1}$ and consequently $\alpha^{-1} \bigcirc \beta, \alpha \bigcirc \beta^{-1}$ change all elements of S. Thus $\beta^{-1} \bigcirc \beta: x \rightarrow\left(x_{\tau} a^{-1+}{ }_{\tau}\right)_{\tau}$ $a_{\tau}^{+} b$. For $x=0$ we obtain $0=c_{\tau}^{\cdot} a_{\tau}^{+} b$ and for $x=b_{i} a$ we have $b_{i} a_{\tau}^{+} x_{\tau} a=$ $=\left(b_{\tau} a_{\tau} a_{\tau}^{-1+} c\right)_{\dot{\tau}} a$, i.e. $b_{i}^{*} a_{\tau}^{+} c_{\tau} a=\left(b_{\tau}^{+} c\right)_{\tau} a$. The cases $a=0, b=0$ are easily to consider. Q.E.D.

The arguments of [3] imply now the commutativity of ${ }_{\tau}^{+}$and as a final result, $\left(S,{ }_{\tau}^{+}, \dot{\tau}\right)$ is shown to be a Veblen-Wedderburn system (in the sense of [4]) with the right inverse property. Conversely, if ($S,+$, .) is a VeblenWedderburn system with the right inverse property then the set Σ of all mappings $x \rightarrow x . u+v(u \in S \backslash\{0\}, v \in S)$ and the set Σ^{*} of all mappings

[^0]$x \rightarrow x+w(w \in S)$ satisfy conditions (a) to (f). The evident proof may be omitted. Of course, the alternative field is a particular case of the above Veblen-Wedderburn system. But no example of a proper (i.e. nondistributive and non-associative) Veblen-Wedderburn system with the right inverse properry is known to the author.

As a complement we shall formulate still two assertions:
8. For the plane \mathbf{A} of Proposition 3, $\sigma \in \Sigma, \sigma^{*} \in \Sigma^{*} \Rightarrow \sigma^{-1} \bigcirc \sigma^{*} \bigcirc$ $\sigma \in \Sigma$. In fact, let $\sigma: x \rightarrow x_{\tau} u_{\tau} v$ and $\sigma^{*}: x \rightarrow x_{\tau}^{\dagger} w(u \in S \backslash\{0\}, v \in S$, $w \in S)$. Then $\left.\sigma^{-1}: x \rightarrow x_{\tau} u^{-1+}{ }_{\tau}^{-} v\right)_{\tau}^{\tau_{\tau}} u^{-1}, \sigma^{-1} \bigcirc \sigma^{*} \bigcirc \sigma: x \rightarrow\left(x_{\tau} u^{-1+}{ }_{\tau}{ }_{\tau}^{-} v\right)_{\tau}$ $\left.u^{-1}{ }_{\tau}{ }^{2} w\right)_{\tau} u_{\tau}^{+} v=x_{\tau}^{\tau}\left(\tau_{\tau} v_{\tau}^{+} w_{\tau}^{*} u_{\tau}^{\dagger} v\right)$. Thus $\sigma^{-1} \bigcirc \sigma^{*} \bigcirc \sigma \in \Sigma^{*}$. Q.E.D.
9. Let \mathbf{A} be an arbitraty affine plane with a coordinatizing frame \mathfrak{F}. Let Σ be the set of all mappings $x \rightarrow \tau(x, u, v)$ with $u \in S \backslash\{0\}, v \in S$ where τ is the corresponding ternary operation. Then (c) $\Leftrightarrow(\mathrm{I})$ where
(I) If $A B C D$ is a variable \tilde{F}-distinguished parallelogram with the point A ranging over a line m noa $\| \xi_{\mathfrak{F}}, \eta_{\mathfrak{F}}$, then C ranges also over a line.

The proof may be omitted. This configuration theorem (I) oan be used for a geometrical proof of Proposition 5.
§ 2 Now we shall investigate the independence of the ,,inversing" operation and express the corresponding situations by some algebraic or geometric conditions.

Let A be the plane of Proposition 3. We shall suppose that the coordin+ atizing frame $\mathfrak{F}=O J_{x} J J_{y}$ introduced after Proposition 3 is now fixed. If $\mathscr{F}^{\prime}=O J_{x} J^{\prime} J_{y}^{\prime}$ is a coordinatizing frame then define the inversing operation ${ }^{\prime}{ }_{\mathfrak{Y}}$, as the mapping $S \backslash\{0\} \rightarrow S \backslash\{0\}$ which sends each element $a \in S \backslash\{0\}$ onto the element $a^{\prime} \in S \backslash\{0\}$ such that $1=\tau^{\prime}\left(a^{\prime}, a, 0\right)$ where τ^{\prime} is the ternary operation determined by \mathfrak{F}^{\prime}.
10. The left inverse property $a^{-1}{ }_{\tau}\left(a_{i} \cdot b\right)=b$ is valid iff $\imath_{\mathfrak{F}}$ is independent on the change of $\zeta_{\mathfrak{F}^{\prime}}$, by fixed $\eta_{\mathfrak{Y}^{\prime}}$. In fact, take $a \in S \backslash\{0\}, b \in S$ $\backslash\{0,1\}$ and construct the line $\left\{(x, y) \mid y=x_{i} b\right\}$, the points $\left(a, a_{i} b\right)$, $\left(1, a_{\tau} b\right),(1, b)$, the line $\left\{(x, y) \mid y=x_{\tau}\left(a_{\tau} b\right)\right\}$ and finally the point (a^{-1}, $\left.a^{-1}\left(a_{i} b\right)\right)$. The mentioned independence of $\imath_{\mathfrak{F}^{\prime}}$ is now expressed by $\left.\left(a^{-1}, a_{i}^{-1}\left(a_{i} b\right)\right) \in\{x, y) \mid y=b\right\}$. Q.E.D.
11. The independence of $\imath_{\mathfrak{Y}}$ on the choice of $\eta_{\mathfrak{Y}^{\prime}}$ by fixed $\zeta_{\mathfrak{Y}^{\prime}}$ is equivalent to
(II) If $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}, \quad B_{0} B_{1} B_{2} B_{3} B_{4} B_{5}$ are polygonal lines with $A_{0}=B_{0}=(a, 0) \neq 0 ; A_{1}=(a, a) ; A_{0} A_{1}\left\|A_{2} A_{3}\right\| A_{4} A_{5} ; \quad A_{1} A_{2} \|$ $\left\|A_{3} A_{4}\right\| \xi_{\mathfrak{F}} ; J \in A_{2} A_{3} ; A_{3} \in \zeta_{\mathfrak{F}} ; A_{4} \in O A_{2}, A_{5} \in \xi_{\mathfrak{F}} ; B_{1}=(b, b) \neq 0$; $B_{0} B_{1}\left\|B_{2} B_{3}\right\| B_{4} B_{5} ; B_{1} B_{2}\left\|B_{3} B_{4}\right\| \xi_{\mathfrak{F}} ; B_{3} \in \zeta_{\mathfrak{F}} ; B_{4} \in O B_{2} ; B_{5} \in \xi_{\mathfrak{F}}$ then $A_{5}=B_{5}$.

The proof is obvious.
12. Let \mathbf{A} satisfy the harmonic point axiom ([5]). Then $\imath_{\mathfrak{Y}}$, is independent on the change of $\eta_{\mathfrak{\mho}^{\prime}}$ by fixed $\zeta_{\mathfrak{\Im}^{\prime}}$.

Proof. If suffices to verify the configuration thecrem (I). Let all assumptions of (I) be satisfied; we have to show that $A_{5}=B_{5}$. Both polygonal lines $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}, B_{0} B_{1} B_{2} B_{3} B_{4} B_{5}$ can be ,,shortened" onto $A_{0} A_{1} J A_{3} A_{5}, A_{0} B_{1} J B_{3} B_{5}$ where $A_{1} J\left\|A_{3} A_{5}, B J\right\| B_{3} B_{5} .{ }^{2}$) Now $A_{5}=B_{5}$ follows by the further lemma: Let Q be constructed using the polygonal line $A B J C Q$ with $B=(b, b) \neq 0, J C\left\|A B, C \in \zeta_{\mathfrak{F}}, C Q\right\| J B$, $Q \in \xi_{\mathfrak{F}}$. Then $Q=\left(a^{-1}, 0\right)$. In fact, let h be the line through $\left(a^{-1}, 0\right)$ parallelly to $B J$. The equations of $J C$ and h are $y=\left(x_{\tau}^{-1}\right)_{\tau}\left(\left(b_{\tau}^{-} a\right)^{-1} b\right]$ and $y=\left(x_{\tau}^{-a}\right)_{\tau}^{-1} \cdot\left(\left(b_{\tau}^{-1}\right)^{-1} \cdot b\right.$ respectively. The point of instersection C^{\prime} of these lines lies on $\zeta_{\mathfrak{F}}$ iff $x=\left(x_{\tau}^{-1}\right)_{\tau}\left(\left(b_{\tau}^{-a}\right)^{-1}{ }_{\tau} b\right)=\left(x_{\tau} a^{-1}\right)_{\tau}\left(\left(b_{\tau}^{-1}\right)^{-1}{ }_{\tau} b\right)$, i.e. iff $x_{\tau}^{\prime}\left(1_{\tau}^{-b^{-1}}{ }_{\tau}^{\tau} a\right)=x_{\tau}^{-1}, x_{i}\left(1_{\tau}^{-} b^{-1}\right)=x_{\tau}^{-} a^{-1}$. By the distributivity law $x_{\tau}^{*}\left(y_{\tau}^{+z}\right)=$ $=x_{i} y_{\tau}^{+} x_{i} z$ we obtain in both (ases $x=a_{i}^{-1} b$ so that $C=C^{\prime}$. Q.E.D.

Corollary. If A satisfies the harmonic point axiom then $\imath_{\mathfrak{F}}{ }^{\prime}$ is independent on the choice of $\eta_{\mathfrak{Y}^{\prime}}$ and $\zeta_{\mathfrak{Y}^{\prime}}$.

For the case $\mathbf{l}+\mathbf{l} \neq 0$ this is proved by other methods in [6].
13. Let \mathbf{A} be such that the left inverse property (cf. Proposition 10) be valid. Construct the polygonal line $A_{0} A_{1} A_{2} A_{3} A_{4}$ with $A_{0}=(a, 0) \neq 0$, $A_{1}=(1, a), A_{2}=(1,0), A_{3}=\left(a^{-1}, 1\right), A_{4}=\left(a^{-1}, 0\right)$. Then $A_{0} A_{1} \| A_{2} A_{3}$

Proof. The lines $A_{0} A_{1}, A_{2} A_{3}$ have the slopes $\left(1_{\tau}^{-a}\right)^{-1}{ }_{\tau} a,\left(a^{-1}{ }_{\tau}^{1}\right)^{-1}$ respectively. By the left and right inverse properties it follows that $\left(1_{\tau}^{-} a\right)^{-1}{ }_{\tau} a^{-1}=\left(a^{-1}{ }_{\tau} 1\right)^{-1}$ is equivalent to $a^{-1}{ }_{\tau}^{1} 1=a^{-1}{ }_{\tau}^{1} 1$. Q.E.D.

It is an open problem whether the independence of $\imath_{\mathfrak{F}^{\prime}}$ on the choice of $\eta_{\mathfrak{F}^{\prime}}$ and $\zeta_{\mathfrak{F}^{\prime}}$ implies the remaining distributivity law.

REFERENCES

[1] M. Hall, The theory of groups, N. York 1959, § 20.7.
[2] The same book, § 20.3.
[3] G. Pickert, Projektive Ebenen, Berlin-Göttingen-Heidelberg 1955, p. 91.
[4] Cf. the cited Hall's book, § 20.4.
[5] N. S. Mendelsohn, Non-Desarguesian plane geometries which satisfy the harmonic point axiom, Canad. Journ. Math. 8 (1956), 532-562; cf. p. 540. [6] Cf. Mendelsohn's article, pp. 550-551.

[^1]
[^0]: ${ }^{1}$) If \mathbf{A} is an affine line with a general coordinatizing frame $\mathfrak{F}=O J_{x} J J_{\nu}$ then we shall use the denotation $O J_{x}=\xi_{\mathfrak{F}}, O J_{v}=\eta_{\mathfrak{F}}, O J=\xi_{\mathfrak{F}}$. A parallelogram $A B C D$ will be called \mathfrak{F}-distinguished if $A B\|C D\| \eta_{\mathfrak{F}}, D A\|B C\| \xi_{\mathfrak{F}}$ and $B D=\zeta_{\mathfrak{F}}$.

[^1]: ${ }^{2}$) This can be verified by the direct computation.

