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ON THE U N I Q U E N E S S OF SOLUTIONS 
AND THE CONVERGENCE OF SUCCESSIVE 

APPROXIMATIONS IN THE DARBOUX PROBLEM 
FOR CERTAIN D I F F E R E N T I A L EQUATIONS 

OF THE TYPE 

Uxy = /(-*?, V, U, UX, Uy) 

VLADIMIR IDURIKOVIC, BRATISLAVA 

Received May 14, 1968 

1. I N T R O D U C T I O N 

B. Pa lezevsk i [4] has proved the convergence of Picard's successive 
approximations in the Darboux problem for the equations of the type 
uXy = f(x, y, u) under the conditions of the Krasnosielski and Krein 
type. These conditions for uniqueness had been generalized together 
with other conditions for uniqueness by J. S. W. WONG in the paper [7]. 
J. S. W. Wong has proved in his further paper [6] under these conditions 
not only the uniqueness of solutions but also the convergence of successive 
approximations in the Darboux problem for the equations of the type 
uxy = f(x, y, u). In the present paper we want to show that the conditions 
of the Krasnosielski-Krein and Nagumo-Perron-van Kampen [1] type 
generalized in a certain sense are making it possible to prove the uni­
queness of solutions and convergence of successive approximations in 
the Darboux problem for the differential equations of the type uxy = 
= f(x, y, u, ux, uy). For the proof of following theorems we shall use 
the results from the paper W. A. J. L u x e m b u r g [3]. 

2. A T H E O R E M ON C O N T R A C T I O N 

First of all we shall define the idea of the generalized metric space. 
Let X be a non-void set; and let d(x, y) be a non-negative real valued 

function 0 ^ d(x, y) ^ +oo defined on the Cartezian product X X X. 
Let the function d(x, y) be satisfying for arbitrary elements (x, y, z) € X 
the following conditions: 

a) d(x, y) = 0 if and only if x = y, 
b) d(x, y) = d(y, x), 
c) d(x, y) ^ d(x, z) + d(z, y), 
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d) If the sequence {xn}f of elements xn e X is a d-Cauehy sequence, 
i.e. Mm d(xn, xm) = 0, then there exists an element xeX such, that 

w,n->oo 

lim d(x, xn) = 0. 
TI-VOO 

An abstract set X on which a distance is defined in this way is called 
generalized complete metric space. It differs from the usual concept of 
complete metric space by the fact that not every pair of elements 
(x,y)e X necessarily has a finite distance d(x,y). 

Theorem 1 (Luxemburg [3]). Let X be a generalized complete metric 
space and T a mapping of X into itself satisfying the following conditions: 

1°. There exists a constant A, 0 < A < 1, such, that 

d(Tx, Ty) <, Xd(x, y) 

for all (x, y) e X with the distance d(x, y) < +oo. 
2°. For every sequence of successive approximations xn = Txn~\, 

n = 1, 2, ..., where x0 is an arbitrary element of X, there exists an index 
N(xo) such, that d(xx, xmi) < +oo for all I = 1, 2, ... 

3°. If x and y are two fixed points of mapping T, i.e. Tx = x and 
Ty = y, then d(x, y) < +oo. 

Then the equation Tx = x has one and only one solution, and every 
sequence of successive approximations {xn)f converges in the distance 
d(x, y) to this unique solution. 

3. THE FORMULATION OF THE DARBOUX PROBLEM 

Let us introduce the following denotations and assumptions: 
1. Let D denote the rectangle 0 ̂  x <. a, 0 ̂  y <, b, a, 6 > 0 and 

A = {X: 0 < x <> a, 0 < y <, 6}. 

2. E = D x {—<x> < u < +00} X {—00 < v < +00} X {—00 < w < 
< +00} and Ei = Di X {—00 < u < +00} x {—00 < v < +00} X 
X {—00 < w < +00}. 

3. Let the function y(x) e C-(<0, a)), \p(x) e &((fd, 6>) and <p(0) = 
= V(0). 

4. Let us denote the set of all functions z(x, y) e CX(D) satisfying the 
conditions z(x, 0) = <p(x) for x e <0, a}, z(0, y) = ip(y) for y e <0, 6> by 
M(D). 

5. Let f(x, y, u, v, w) be a continuous function on the domain E. 
We shall understand by the solution of the Darboux problem 

(1) ~^^=f(xiyiu,uXiuy) 
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(2) u(x,0) = cp(x), u(0,y) = W(y), <p(0) = v(0) 

an arbitrary function u(x, y) e M(D) which has a continuous second 
partial derivative uxy on D and identifies the equation (1). 

Then the Darboux problem (1), (2) is equivalent to solving the integro-
differential equation 

x y 

(3) u(x, y) = g0(x, y) + ff f[a, T, U(O,T), ux(a, T), uy(a, T)] dcrdT 
o o 

where g0(x, y) = <p(x) + \p(y) — (f(0). With respect to (3), the sequence 
of Picard's successive approximations {un}± is defined by the equation 

x V 

(4) un(x, y) = g(x, y) + ff f[a, T, un-x(a,T), un-Xx(a, T),un-} (a, T)]dadr 
o o 

and the sequences of the derivatives {unx(x, y)}f, {unv(x, y)}™ are deter­
minated, by: 

y 
f/?/ (x u\ I 

(4i) — y ^ — =gx(x,y)+ J f[x,T,un-i(x,T), un-lx(x, T), un-Xy(x, T)]dT 
0 

x 
Hti (OP ii\ I 

(42) —y-^—=g y (x , y )+ j f[o,y,un-i(a,y),un-lx(o,y),un-iy(o,y)\&a 
o 

for n = 1, 2, ... and (x,y)eD, where g(x,y), u0(x, y) are arbitrary 
functions from the set M(D) such, that gxy ~ 0 o n 1 ) . 

4. THEOREMS ON THE E X I S T E N C E AND UNIQUENESS 

In the following theorem we shall use the generalized conditions of 
Krasnosielski and Krein. 

Theorem 2. Let f(x, y, u, v, w) be defined continuous and bounded on E 
and let it satisfy the conditions 

(5) | f(x, y, ui,vx, wi) —f(x, y, u2,v2, iv2) | ^ 

k I x u \ 
^ \\U1 — U2\ +—r\vi—V2\ +-d=r\w1—W2\\, k > 0 

xy \ yk yk J 
(6) I f(%> y> % > *>i > m) —f(x, y, u2,v2, w2) I S 

Q 

= —fj (IU1 ~ W2 la + ** IVl ~ Vz 'a + *" I W 1 ~~~W1 l * » c > ° 



226 

withO < a < 1,/J < aand9AJ(1—a) 2 < (1 — f})2forall(x9y9Uj9vi9Wj)e 
€ Eti j z= 1. 2. Then there exists one and only one solution u(x, y) of the 
Darboux problem (I), (2) and moreover Picard's sequence of successive 
approximations, which is defined by the equation (4) for any function 
uQ(x, y) e M(D) and g(x, y) e M(D) such, that gxy = 0 on D. converges 
uniformly on D to this unique solution. 

Proof. For the proof of this theorem we shall apply Theorem 1. 
In this way we must choose a suitable generalized complete metric 
space X and an operator T mapping the space X into itself, and to show 
that this operator fulfils the conditions 1°, 2°, 3°. 

On the set M(D) let us define the distance 

, v , x l , s dzi(x9y) dz2(x9y) 
zi(x9y) — z2(x,y)\ + ~y=r 

(7) sup 
D, 

дx õx 

+ 

JĽ 
Џ 

(xy)^k 

Szi(x,y) dz2(x,y) 

õy õy 

(xypV* 

for an arbitrary pair of the elements zu z2 e M(D)9 where p satisfies the 
inequalities p2k(l —a) 2 < (1 —fi)2, p2k > 1. Hence we immediately see, 
by the hypothesis 9k(l — a)2 < (1 — p)2 that p e ( 3 , 1 0 ( 1 — 0)/(l —a)). 
The function d(zl9z2) defined by relation (7) evidently fulfils the 
properties of the metric a), b), c), which are given in the part 2. From 
the inequality 

(8) max \(ab)-P V* | z, — z2 \ + - ' l 2 

+ 
0,-PЬ ь-pVк + i 

џ 
ÔZi 

дy 

Џ 
õz2 

дy Ь 
I дx õx 

d(zl9z2) 

+ 

follows that ^-convergence of the sequence {zn(x9 y)}™ of the functions 
z%(x9 y) € M(D) for n = 1, 2, . . . implies the convergence of the sequences 

in the sense of the distance 

(8t) d(zifz2) = max \zx-
D 

In addition we have the equalities 

(82) lim zn(x, y) = Z(x, y) e M(D), Hm 

• * -

дzn(xf y) 
дx дx 
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дzn(x, y) дZ(x, y) 

dy dy 

Let the sequence {zn(x, y)}f be d-Cauchy now, i.e. Km d(zm, zn) =- 0. 
m, n -> oo 

Then the inequahty 
x ti 

\zm zn\ + —lip I z™x — znx\ + ~\j=- I zmy — znv I 
Ji ^ \ h Vk 

d(Zm,zn) = sup * _ _ _ _ - _ J _ _ _ < e 

Di ( a # ) p y * 
holds for any s > 0 and m, n > N(e), where N(x) > 0 is real valued 
function. This implies that the sequences 

W ^ Z V IV-H^H' i f i i ^ H 
converge uniformly on the domain Di and from (82) it follows that the 
inequalities 

1 e 
—-—~\zn — Z\<1-: for n>Nx(e), 
(xyf vk 3 

X F 

• Zx | < —- for w > N2(e), 1/— . v 1/7- 1 % "X V. — 

* | z- — Zy\ < 4 - for n > N3(e) 

are satisfied on D\. If we denote No(s) = max (Ni, N2, N3) then we 
have d(zn, Z) ^ e for n > No(e), i.e. lim d(zn, Z) = 0. This ends the 

« - > 0 0 

proof of property d). Consequently the set M(D), on which the 
distance is defined by the equality (7), is the required generalized com­
plete metric space X. 

The operator T defined by the relation 
x y 

(9) Tu(x,y) = g(x,y) + jjf{o,x, u(a,x),^^-, - ^ ) « k r d T 

0 0 

for (x, y) GD maps the space X into itself. Moreover the following 
relations 

(9i) (Tu)x = -g- Tu(x, y) =_ gx(x, y) + 

v 

/

A / du(x,r) du(x,x) \ , 

/^ T ,^, T , ,_L-J., -^-i-jdT 
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) (Tu)y = -^Tu(x,y) = 

Яy(%>У) + / f{a,y,u(o,y), 
дu(o, y) õu(o, y) 

õx õy 
)ào, 

hold on D. Therefore, the problem to find the solution of the Darboux 
problem (1), (2) or of the integro-differential equation (3) is transformed 
to the problem of finding the fixed point of the mapping T on the set 
M(D). The sequence of Picard's approximations (4) is equivalent to the 
sequence {un = Tun-\)\° and sequences of the derivatives (4i), (42) are 
equivalent to the sequences {un% = (Tun~i)x}i '> {uny ~ (Tun~\)y}i for 
any function uQ(x, y) e M(D). 

Proof of the property 1°. Let ui} u2 be two arbitrary functions from 
the space X with d(u}, u2) < +oo . Then by the hypothesis (5) we have 

x y 

\Tui — Tu2\ S J J \f(o,r,ul,Uix,uly)—f(o,r,u2,u2x,u2y)\dodr^ 

0 0 

* * o r 
Ul — U2 I + -y= | Ulx — U2x | + --=- | Uly — U2y | 
- r-* l l (or)^-1 do dr £ < k 

o o 

(or)v Vk 

й d(щ, u2) 
(xy)^k 

P 

for (x, y) sD\. Similarly we obtain in Di the following inequalities 

j/& dx dx 

y x r 
' tul — u2\ +^\ulx — u2x\ + y=-\uiw — u2y 

žxyk {XX) >yғ 
(OT)*V*-ldT._ 

ѓ d(щ, u2) (xy)^k 

P 

ӯғ 
JLT д 
õy õy 
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yЏ 

[\Ul — U2\+ -j~r | Ulx — U2x I + ?/Y I Uly — U2U 

(oy)pVk 
(cry)pV*-1 der g 

ѓ d(щ, u2) 
(xyyh 

P 

From the given inequalities it follows 

d(TuuTu2) <> M(uuu2), 

where A = 3jp. From there, the first condition of Theorem 1 is proved. 

Now we shall use the boundedness of the function f(x, y, u, v, w) on E 
and the assumption (6) to prove condition 2°. We denote M = 
= S U P \fix> V> u> v, w) |. Then by (4), (4X), (42) for any function 

E 

u0(x, y) E X: 
| u2(x, y) — ux(x, y) \ S 2Mxy, 

(10) 
дu2(x, y) дщ(x, y) 

дx дx 
ѓ 2My, 

ôu2(x, y) õщ(x, y) 

ôy дy 
á 2Mxf 

holds in the domain D. By relations (10) and (6) the estimations 

| u3(x, y) — u2(x, y) | ^ 
x y 

If 1/(0*» T» U2, U2X, u2y) — f(0, T, Ulf Ulx, Uly) | dffdT g 
M fi 0 0 

x y 

g O f f | *i — m lg + g" I mg - tt2g |« + r« 1 my — my |« ^ d r < 
J J oW 
o o 

- W f Í ^^IS^- do dr S 3C(2M)« (xy)a~^ (xy), 

for (», y) e f t . 

Similarly, it is possible to show that 

du3(x, y) du2(x, y) 
õx ôx 

ôщ(x, y) дu2(x, y) 

õy дy 

S SC(2M)a (xyy-ì y, 

è ZC(2M)*(xy)a-$xf 



230 

in the domain Di. The following inequalities can be proved by the 
mathematical induction for an arbitrary n = 0, 1,2, ... and (x, y) s Dt 

I un+3(x, V) — un+2(x, y) | g 
( 1 1) < (3O)1+«+-+«n(2if)an+1 (̂ )<«~/*)Uf«+-+«n> (xy), 

dun+3(x, y) dun+2(x, y) I < 

dx dx | 
g (3O)1+a+-+a" (2Jf)an+1 (^)(«^>(i+«+-+«n) ^, 

dun+3(x, y) dun+2(x> y) 
dy dy 

g (3(7)l+«+•••+«,, (2Jf)a"+1 (a*/)<«-/*)<1+«+-+«n) x. 

From the above mentioned relations (11) it follows that 

x 

(12) | un+3(x, y) — un+2(x, y) | + y~ | %+a^ , ?/) — i%+2a;(z, 2/) I + 

+ Y^T | un+3y(x, y) ~ un+2y(x, y) | < 

< (SO)^^ -+an (2if)a"+1 ( l + ^=r\ (^)(«-^)(1+a+- "+«")+-. 
r"(1+?r) 

The hypothesis p̂2ifc(l —a) 2 < (1 -—/?)2 guarantees the existence of the 
number N(p) such that for n ^ N(p) we have 

(a — £)(1 + a + ... + a») + 1 = (1—j8) (1 + a + ... + a") + a«+1 = 

= l z i £ (i _- a*
+1) + a"+1 > <p V& . 

1 — a 

Consequently d(un+i, un) < + oo for n ^ N(jp) + 2. Then on the 
basis of property c) and of distance (7) we conclude that condition 2° 
is proved. 

Proof of 3°. Let us suppose that u, v e X are two fixed points of the 
mapping T, i.e. Tu = u, Tv = v. Using the method from the proof of 
condition 2° we obtain for the difference of the functions u, v and 
their derivatives u%, uy, v%, vy estimates (11) and inequality (12) 
too. Hence it follows d(u, v) < +oo. Thereby, we have proved the 
existence, the uniqueness of the solution of the integro-differential 
equation (3) and the uniform convergence of successive approxima­
tions (4) to this solution for any function UQ(X, y) e M(D). The proof 
of Theorem 2 is given. 

In the following two theorems we shall generalize the Nagumo-
Perron van Kampen's assumption of paper [6] and use it to consider 
the Darboux problem (1), (2). 
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Let us assume that T is the operator defined by relation (9) and 
TM(D) is the set of all the images of the set M(D) under the mapping T. 
If we denote the complete metric space which was obtained by the 
completion of the metric space \TM(D), d2] in the sense of the distance 

(13) d2(zi, z2) = max 11 zt — z2 

дzi дz2 
ÕZi дz2 

дx дx + ôy дy 

by [M*(D), d2], then the following theorem holds: 
Theorem 3. Letf(x, y, u, v, w) be a function defined and continuous on E 

and let it fulfil the following conditions: 

(14) | f(x, y, u, v,w)\ ^ A(xy)P, p ^ 0, A > 0 

for (x, y, u, v, w) e E. 

(15) \f(x, y, uu ví, wx) —f(x, u2, v2, w2) | ^ 

ш y(\ut — u2 \Q + x* | VÍ — v2 \Q + yQ I wt — w2 \Q) 

for (x, y, uj, Vj, Wj) eEi,j=l, 2, where q ;> I, c > 0, q(l + p) — r = p, 

3C(2A)^-1l(p + l)^ < 1. Then there exists one and only one solution 
u(x, y) e M*(D) of the Darboux problem (1), (2), and moreover the sequence of 
Picard's approximations defined by (4) for any functions g(x, y), u0(x, y) 
G M(D)with gXy = 0 in D, converges uniformly on D to this unique solution. 

Proof: The proof will be given similarly as that of Theorem 1. The 
set M*(D) is a subset of the set M(D), by (13). On the set we can 
define the distance 

(16) d(zг,z2) sup 
# 1 

\zx(xy) — z2(x,y)\ +x 
дzг(x, y) õz2(x, y) 

дx дx 

õzx(x, y) 
дy 

(xy)P^ 

õz2(x, y) 

+ 

дy 
(xy)P+i 

The operator T by (9) mapps the set M*(D) into itself. From the ine­
qualities 

(17) max i(ab)-P~l \ zx -
i) { 

+ a-v-xb-P 

property d) of the metric space X 

*'+'H£-£ 
дzt 

õy 

+ 
'-P-\\S d(zt,z2) 

[M*(D),d] follows: 
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The d-Cauehy convergence of the sequence {zn(x, y)}f of the function 
Zn(#, y) e M*(D) implies the convergence of the sequence {zn(x, y)}f 

idzn(x, y)\co ldzn(x,y)Yi . A1 „ , ,. 
and sequences <—•- —=—J. , I-— \ in the sence of the distance 
(80 and 

lim zn(x, y) = Z(x, y) 
n-+<x> 

um

 dzn(x>y!._ sz(x> y} i i m ^^iPl = ~z(x> y} 
n^ao dx dx ' n^oo dy dy 

for (x, y) e D. Hence we see that the sequence {zn(x, y)}™ converges 
in distance (13) to the function Z(x, y) and Z(x, y) e X. Then we shall 
show analogically to Theorem 2 that the lim d(zn, Z) = 0. 

W-+0O 

The proof of the condition 1°. Let Zi(x, y), z2(x, y) be two arbitrary 
elements of X with the distance d(zu z2) < + co. Then from (13) and 
(14) we obtain: 

2A 
(18) i zx(x, y) — z2(x, y) \ S — r r (xy)^1 

P + 1 

2A 
* I zi,(x, y) — *2x(x, y) | S 1 (xy)^1, 

2A 
y I zlff(x9 y) — z2l,(#, y) | ^ y r r f (^) p + 1 

for (x, y) e D. Moreover, by (15) and (18) we have the following estimates 
in the domain Di: 

\Tz1(x,y)~Tz2(x,y)\ <, 

< C f PZl~**!«+ <*!*** — ^ | g + T g | z ^ ^ ^ | g d r r d T < 
~ J J (or)r 

o o 
x y s c ( ^ ) " 7 / , " , " t " < " z-i)-r+p+i x 

o o 

X 
1 gl — 22 1 + <T 1 Zlx — Z2ж 1 + T | g l y — Z2y 1 ^ < 

(ďт)^ 1 

(2AЏ-1 

áO-ÿ- f --i(-i.«a)(Чf)»«, 
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< Cx 

У 

ï Z ľ •Z2\* + X9\ZÍX—Z2J<1 + r9\zxy — z2„ | 

(«r) ř 

(2A)«-i 

dr < 

йCy 

X 

î - i - 22 |« 

(p +1 )« 

Tг^x.y)-
õy 

Tz2(x, y) < 

• z2x |« + ž/« I гj, — z2y |« 

(<т-V)r 

(2A)«-i 

- ° т ғ + ï ғ ф ь 2 г ) ( a ; г / ) p + 1 -

d<x < 

3(7(2A)^~1 

From the last inequalities it follows that d(Tzu Tz2) ^ — ——d(zu z2) 

Thus condition 1° is proved. 

Condition 2° follows directly from (18) because hence we have 

d(un, un+1) й 
6A 

< + c o for a n = 1, 2, ... From (18) we obtain 
p + l 

condition 3° too. 
R e m a r k 1. The assuption (14) of Theorem 3 guarantees the 

boundedness of the function f(x, y, u, v, w) in K. In the following theorem 
we shall show that this assumption is not necessary. 

Theorem 4. Let the function f(x, y, u, v, w) be continuous in E and let 
it satisfy the following conditions: 

(19) | f(x, y, u, v, w) | S A(x, y)(xy)v, — 1 < p < O 

for all (x, y, u, v, w)eEi. The function A(x, y) is integrable in the domain D, 
in the interval (0, a> with respect to the variable x, in (0, b> with respect 
to y and it satisfies the inequalities 0 <. A(x, y) S A0, A(x, y) S AQX-P, 

A(x, y) <: A0y~P for A0 ^ 0 in D. Let further, the inequality 

(20) \f(x, y, uu vu wx) —f(x, y, u2, v2, w2) \ <> 

v2 \Q + yQ(P+D | Wí • 
(xy)r • w a | « ) , 

for all (x, y, Uj, Vj, Wj) e Elfj = 1, 2, where q ;> 1 and q(p + 1) — r = p, 

s—, ,v„ I —, 7TT I < 1 hold. The function C(x, y) is integrable 
(p+l)2[(p + 1)2J J 

in the domain D, in the interval <0, a> and <0, 6> with respect to the variable 
x and y, and furthermore the inequalities 0 <, C(x, y) <. C\, C(x, y) <. 
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^ C2X~P, C(x, y) S C3y~P, C0 = Oi + C2 + O3 AoW in D, where CL, 
C2, O3 are suitable positive constants. Then there exists one and only one 
solution of the Darboux problem (I), (2), and moreover the sequence of 
Picard's approximations defined by (4) for arbitrary functions g(x, y), 
UQ(X, y) e M(D) with gxy -= 0 in D, converges uniformly on D to this 
unique solution. 

. P roo f . The operator T is defined by the relation (9) as in the preceding 
theorems . Analogically to Theorem 3 it can also be shown tha t the 
set M*(D) with distance 

(21) d(zt, z2) =-= sup 

zl(x,y) — z2(x,y)\ + xP+1 dzx(x,y) dz2(x,y)\ 

õx дx 

yP+l 

+ 

(xy)P+i 

дzi(xy) дz2(x, y) 

+ 

õy дy 
(xy)P+i 

is a complete generalized metric space. Let us denote it by X. From (13) 
and (19) it follows t h a t 

x y 

(xy)P+i 
(22) I ^1 — z2 

\г\x — ггx 

I Z U — Z 2 „ 

S 2 jf „<„. r)(aт)P åa dт S 2^o 

0 0 

y 

(P +1)2' 

» / 
0 

x 

й 2 S A(a, 

Л(a;,т)(a;т)î>dт ^ 2A0 

yp+l 

y)(ay)P dff й 2A0 

(P + l) 2 ' 

æï>+1 

(P + l)2 

in Di for any pair of functions zt, z2 e M*(D). From inequalities (22) 
and assumption (20) we obtain the estimates 

\Tzi— Tz2 s / / p T)(|Zl — 2 2 | « +0«<í>+1> \Z1X — Z2x\«) 

+ 

0 0 

C((r,т)т«<î>+1> 

(aт) 
X y 

\zly — z2y\<i\ 

(aтY 

d adт á 

+ 

[ г Т Т р T ld{zi'Zi) Jí eK*)(<")(3m)(9_1)-r+2'+1 <Ь <*т й 
o o 
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-[ó^vr^^^- c' (P + l)* ' 

д -. ð _. | , Г 2A 0 l в- 1 .. . _,. o2 ^-i^ht^iy]"1^'^^ dx ' 8x | - _ ( _ > + l )-J * " - ' • ' ( _ > + l ) - ' 

6ty % | L(_P + 1) 2J ( P + 1 ) 3 

for (x, y) e Di. Hence we have the inequality 

Condition 1° of Theorem 1 is proved. The proof of the properties 
2°, 3° we get from the inequalities (22). 
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