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O N C A R T E S I A N P R O D U C T S 

MIROSLAV NOVOTNÝ, Brno 

Dedicated to Professor OTAKAR BORŮVKA to the 70th anniversary of his b irthday 

(Received April 1, 1969) 

I N T R O D U C T I O N 

I n the present paper t h e following problem is solved: L e t / : XUk~> 8, 
keK 

f: X Uk> -> S be bijections. We study the existence of sets Ukk> ((&> &') e 
k'eK' 

K X K') and of bijections fk: X Ukk> - * E/*,/*-: X Ukk> -> Uk> (k e K, 
k'eK' keK 

k' e K') with the property f(fk(ukk>)k> eK')keK = f(fk'(ukk')keK)r eK' for 
every system of elements ukk> e Ukk> ((k, k') e K X K'). Necessary and 
sufficient conditions for the existence of such sets Ukk> and bijections 
fk > fk' can be found in the Main Theorem of the paper. 

The Main Theorem contains the set theoretical kernel of Reimer's 
investigations [1] and represents a basis for the proof of theorems about 
the existence of a common refinement of two direct decompositions of a 
relational system (see e.g. [2]). This application will be shown in a latter 
paper. 

I n his books [3], [4], Boruvka tried to build up the group theory step 
by step: I n the first par t of the book there are purely set theoretical 
studies concerning mappings and decompositions of sets. By adding a 
binary operation we get the theory of homomorphisms and quotients 
on groupoids from these set theoretical results. Our theory of Cartesian 
products gives a similar possibility to build u p t h e theory of direct 
products of algebraic structures starting with purely set theoretical 
concepts and theorems concerning Cartesian products. 

I t seemed to be natural and convenient to substitute the concept of a 
Cartesian product by an algebraic structure and to study, instead of 
Cartesian products, the so called Cartesian algebras. 

1. ADMISSIBLE Q U A D R U P L E S AND CARTESIAN ALGEBRAS 

1.1. Definition. Let 8, K be non-empty sets,- Uk a set for every k e K,f 
a bijection of X Uk onto 8, n e 8 an arbitrary element. Then the quadruple 

keK 

(8,(Uk)keKyf} n) is called an admissible quadruple. 
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1.2. Definition. Let (S, (Uk)keK, f, n) be an admissible quadruple. 
We put (nk)keK = f'1 n. 
For every (uk)keK^X &k and every k0GK we put Pk0{uk)keK = uko. 

keK 

- For every k0 e K and every uko e Uko we put okoilko = (v<k)keK ^XUJc 
keK 

where uk = nk for every k e K, k _̂ k0, uko = #*0. 
We put qk = fokpkf~l for every keK. 
We put g(sk)keK =f(Pkf~1 sk)keK for every (**)*6tf e X ^ . 

A; elf 
1.3. Lemma. Ze£ (S, (Uk)keK,f, n) be an admissible quadruple. Then the 

following assertions hold true: 

(i) PkOk = idUfc for every k e K. 
(ii) If k, leK and (um)meK e X Um then 

m e K 

, v i okuk if I = k 
OkPkOiPi(um)meK = { J 

I (nm)meK if I ^ K. 
(Hi) (ui)ieK = (Pk(ui)ieK)keK for every- (Ui)ieK^X Ui-

leK 

The proof is very simple. 
1.4. Definition. Let K be a non-empty set, (S, n, (qk)keK, g) a partial 

algebra (see [5]) where n is a complete miliary, qk a complete unary 
operation for every k e K, and g a partial operation of type K. Let the 
following axioms hold: 

( qk for k, I e K, k = I. 
I n for k,leK,k^l. 

(b) dom g = X qkS. 
keK 

(c) g(qk$)keK = s for every seS. 

(d) Qkg(si)ieK = $k for every keK and every (st)i€K e X <liS-
leK 

Then the algebra (S, n, (qk)keK, g) is called a Cartesian algebra (ab
breviation: C-algebra). 

1.6. Lemma. Le£ (S, w, (g^eK, <l) be a C-algebra. Then the following 
assertions hold true: 

(. f sfor every ke K, se qkS. 
\ n for every k, leK, k -?-= I, s e qiS. 

(H) Qkn = n for every keK. 
(Hi) IfkeK,ske qkS, si = n for every le K, I 7- k then g(si)ieK = sk. 
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Proof, (i) Let seqiS; then there exists an element teS such that 
8 = qit. If k = I then qks = qkqkt = qkt = s,iik ^l then qks = qkq\t = n 
according to the axiom (a). 

(ii) If |K| = 1 then gqk = id# according to the axiom (c). Thus, 
qkn = idsqkn = gqkqkn = gqkn = i&sn = n according to the axiom (a). 
If |K| > 1 then we take a pair of indices I, me K,l •=£ m. Then qiqms = n 
for an arbitrary s e S according to the axiom (a). Thus, qkn = qk(qiqms)-
If k ^ I then the last element is qkqi(qms) = n, if k = I then the last 
element is qkqk(qm,s) = qkqmS = qiqms = n according to the axiom (a). 

(Hi) If sk e qkS then 

{ n for every leK, I ^ k, 
sk for I e K, I = k 

according to (i). Thus, qisk = si for every I e K. Therefore sk = g(qisk)ieK 

= g(si)ieK according to the axiom (c). 

1.6. Definition. Let (S, (Uk)keK, f, n) be an admissible quadruple. 
We put A(S, (Uk)keK, f, n) = (S, n, (qk)keK, g) where the operations n, 
qk for every k e K and g are defined according to 1.2. 

Then A(S, (Uk)keK, f, n) is clearly a partial algebra which is similar 
to a C-algebra. 

1.7. Lemma. Let (S, (Uk)keK, f, n) be an admissible quadruple. Then 
A(S, (Uk)keK,f, n) is a C-algebra. 

Proof. 1. For every k, I e K we have qkqx = fojcpjcf'1 foipif'1 = 
= fokPkOiPif"1. The last mapping i8fokpkf~' =qkiik = l and f(nm)meK = 
= n if k i=- I according to 1.3 (i) and (ii). Thus the axiom (a) holds true. 

2. Clearly, dom g = X QkS which is the axiom (b). 
keK 

3. Let SGS be an arbitrary element. We have g(qks)k*K = f(Pkf~~l 

fokPkf"xs)kBK = f(PkOkPkf~ls)kzK = f(Pkf~ls)keK = ff~xs = s according to 
1.3 (i) and (Hi). Thus, the axiom (c) is proved. 

4. Let us have k e K, (si)ieK e X qfi- Thus, qkg(si)ieK = MPkf'1 

leK 

f(Pif'lsi)ieK = fokPdPif^siheK = fokPkf-^k = qkSk. As sk G qkS then 
there exists an element t e S with the property sk = qkt. Thus qksk = 
= qkqkt = qkt = sk according to the part 1 of this proof. Thus, the 
axiom (d) is proved. 

1.8. Remark. If (S, (Uk)keK, f, n) is an admissible quadruple and 
(S, n, (qk)keK, g)=A(S, (Uk)keK, f, n) then qkS = fojcp^S = fokUk 

for every ke K. 

1.9. Lemma. Let (S, n, (qkheK, g) oe a C-algebra. Then (S, (qkS)keK, 
g,n) is an admissible quadruple and A(S,(qkS)keK,g,n) ^ (S,n9(qk)keK,g). 
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Proof. It follows from the axiom (b) that g is a mapping of X QkS 
keK 

into S, from the axiom (c) that g is surjective and from the axiom (d) 
that g is injective. Thus (S, (qkS)keK, g, n) is an admissible quadruple. 

'We have to prove that the unary operations and the partial operation 
of A(S, (qkS)keK, g, n) coincide with qk and g respectively. 

It follows from 1.5 (ii) and (Hi): If tk = n for every keK then 
g(h)keK = n. Thus, g~xn = (tk)keK where tk = n for every keK. Thus, 
nk = n for every keK. 

It follows that for every keK, uke qkS, we have okuk = (ui)ieK 

where uk = uk and ui = n for I e K, I ^ k. As gj% = 1!% for l e K, 
I = k and a^& = ?& for I e K, I ^ k according to 1.5 (i) we get 

OkUk = (qmheK (*) 

Let us suppose s e ^ . Then s = g(qks)keK according to the axiom (c). 
Thus, gr-« = (qks)keK and 

W 1 * = <lkS (**) 

Therefore, okpkg~ls = ô g&s. We have qkseqkS; thus, O*#&s = (qiqks)ieK 

according to (*). It follows gokpkg~xs = g(qiqks)i€K — #A£ according to 
the axiom (c). Thus, the unary operation gokpkg-1 oiA(S, (qkS)keK, g, n) 
coincides with qk. 

Let us have an arbitrary element (sk)keK e X &&- Thus, qksk = sk 
keK 

for every keK according to 1.5 (i). I t follows g(sk)keK = g(qkSk)keK = 
~ g(Pkg~1sk)keK according to (**). Thus, the partial operation of 
A(S,(qkS)keK, g, n) coincides with g. 

Thus, we have proved that gokpkg~x = qk for every keK and that 
g(pkg~1sk)keK = g(sk)keK for every (sk)keK e X qkS. According to 1.2 it 

keK 

means that A(s, (qkS)keK, g, n) = (S, n, (qk)keK, g)-
1.10. Theorem. The operator A is a surjection of the class of all admis

sible quadruples onto the class of all C-algebras. 

2. SUBALGEBRAS OF CARTESIAN ALGEBRAS 

2.1. Remark. Let S, K be sets, / a partial operation of type K on 
the set S. Then / can be considered as a subset of SK X S. If T c 8 
then we put / 1 T = / n (T* X S). Clearly, / 1 T is a mapping defined 
on a subset of TK with values in 8. 

2.2. Theorem. Every subalgebra of a C-algebra is a C-algebra. 
Proof. Let (Sf n, (qk)keK, g) be a C-algebra, T ~\ 8 a closed subset. 
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Then n e T, qkT £ T for every fc e if and g(X (ikS n T)) £ T. Let k, 

IsK. Then 
( qk\Tiovk = l 

(l*\T)(ql\T)=qm\T={niovlc^h 

which is the axiom (a). 
Clearly, qkT c qkS n 21 for every k e K- Let us suppose keK, 

** 6 ft# n T. Then ^ = ft% e ftT according to 1.5 (i). Thus, ^ n r = 
= qkT = ( » | 21) 2\ It follows dom (g | T) -= X (»£ n T) = X (ft I ̂ ) T 

which is the axiom (b). 
For an arbitrary teT we have (g | T) ((ft | T) t)keK = g(qkt)keK = * 

which is the axiom (c). 
Let us suppose k e K and ft)*^ e X (# i r ) T = X ff-^. Then (ft | T) 

(g | T)(ti)teK = qkg(ti)ieK = J* which is the axiom (d). 

3. PAIRS OF CARTESIAN ALGEBRAS 

3.1. Remark. Two mappings/, / ' whose domains are subsets of a set A 
are considered to be equal iff dom / = dom / ' and fx = f'x for every 
x e dom / . We write, in this case, / = / ' . 

3.2. Definition.LetushaveC-algebras (S,n, (qk)keK,g),(S,n,(q'k')k'eK',g')-
Let Skk' be an element of S for every (k, kf) e K X K'. We put 
g'°g(Skk')(k,k')eKxK' = g'(g(skk')keKh'eK') iff the right side member is 
defined. Otherwise, g'og(skk>)(kt k^ eK x K> is considered to be undefined. 

3.3. Theorem. Let (S, n, (qk)keK, g), (S, n, (qk')k'eK', gf) be C-algebras. 
Then the following conditions are equivalent: 

(A) qkq'ti = qjc'qtk f°r every (k, k') e K x K'. 
(B) g'og = gog'. 

Proof. 1. Let (A) hold true. Let skk> e S be such elements that 
g'°g(Skk')(k,k')eKxK' is defined, i.e. g (g(skk>)keK)k>eK> is defined. It 
follows skk>eqkS for every (k, k') e K x K' and g(skk>)keKe qk>S for 
every k' eK'. We have qkg(sik>)teK = skk> for every (k, k') e K X K'. 
I t follows qk>skk> = qk'qkg(sik')ieK = qkqk'g(sik')ieK; we have qk'g(sir)uK = 
= g(sik')ieK according to 1.5 (i). I t follows gys*r = qkg(sik>)ieK = ***', 
i-e. %r 6 gi'S and a**- e ftS n g*'#. Therefore g'(skk>)k>eK' is defined. 
We have qk'qkg'(skV)VeK> = qkqk'g

f(skv)VeK> = ft%r = %r according 
to 1.5 (i). Thus,^'(^ r)r6K ' = g'(q'k'qkg'(Ski')i'eK'h'eK' =qkg'(skt')i'eK'eqkS. 
It follows that g(g'(Skk'h'eK')keK is defined. Thus dom </'og c dom go<f. 
Similarly, we prove dom gog' c dom g'o^. It follows that dom g'og = 
= dom grog'. 
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Let us put s = g'(g(skk>)keK)k'eK'. We have qk>s = ?(***'W for every 
k'eK'. It follows qkq'k'S = qkg(sir)ieK = skk>. Thus, &'&« = ***' and 
g(g'(skk')reK')keK = g(g'(q'k'qks)k'eK')keK = g(qks)keK = *-

We have proved gr'og = grogr'. Thus, (H) holds true. 
2. Let (H) hold true. Let us suppose seS, (k, k') e K X K'. We have 

g(qkq'k'S)keK = &'*. I t follows gog'(qkqk>s){k, r> e ifx/r = g,°g(qkq
f
k'S)(k, k') e 

eKxK' = g'(g(qkq'k'S)keK)r eK' = g'(q'k'S)r e K' = s. I t follows qks = 
= qkgog'(qiqk>s)(h k')*KxK' = qkg(g'(qiq'k's)k'eK')ieK = g'(qkqk's)k>eK' and, 
from the last equation, we get g£'gfc$ = q'k'g'(qkq'i's)i>eK' = qkqk'S- Thus, 
(A) holds true. 

3.4. Lemma. .Le£ (£, w, (qk)keK, g), (S, n, (q'k>)k>eK>, g') be C-algebras. 
If the condition (A) of 3.3 is fulfilled then the set qk>S is closed in (S, n, 
(qk)ksK, g) for every k' eK'. 

Proof. According to 1.5 (ii) we have n = qk>n eqk>S and qkq'k'S = 
— q'k'qkS £ qk'S; thus qk>S is closed with respect to the miliary and 
unary operations. 

Let us have sk e qkS n q'k'S for every keK. We put 5 = g(sk)keK-
Then we have qkqk>s = qk>qks = qk'qkg(si)ieK = q'k'Sk = sk according to 
1.5 (i). Thus, s = g(sk)keK = g(qkq'k's)keK = qk>s and s e qk>S. We have 
proved that g | qk>S is a partial operation with values in qk>S. 

3.5. Definition. Let K, K', S be non-empty sets, let Ukk> be a set 
for every (k, k') e K X K', U& a set for every k e K. Le t / : X #* ~> # 

be a mapping, /^: X ^*A?' -> Uk a mapping for every keK. Then f(f'k)keK 
k'eK' 

is the mapping defined on X Ukr m the folloving way: for every 
(k, k')eKxK' 

(Ukk')(k,k')eKXK' € X #** ' We p u t f(f'k)keK(Ulk')(l,k')eKXK' = 
(&, *')eKxK' 

= f(f'k(ukk')k'eK')keK> 

3.6. Lemma. Le£ (i8, n, (g*)*-.*, gr), (£, w, (q'k')reK', g') be C-algebras. 
If the condition (A) O/3.3 is fulfilled then the following condition is fulfilled, 
too: 

(C) For every keK there exists a C-algebra (qkS, n, (qkk')k'eK', g'k) 
and for every k' e K' there exists a C-algebra (q'k'S, n, (qkk>)keK, gr) such 
that g(g'k)keK = g'(gr)reK'-

Proof. The set qkS is closed in (S, n, (qk>)k>eK', g') for every keK 
according to 3.4. If we put qkk> = qk> | qkS for every k' e K', gk = g' \ qkS 
then (qkS, n, (q'kk>)k'eK', g'k) is a subalgebra of (S, n, (q'k')reK', g')fwhich 
is a C-algebra according to 2.2. In a similar way we define (qk'S, n, 
(qkr)teK, gr) for every k' e K'. 

Now, g(g'k)keK (sir)d, r) e KXK = g(gk(skr)r*K')keK is defined iff 
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Skk'Zq'wqkS = & I tftS) qkS = q'^qkS = qkqk'S = (qk I q'k>S) q'k>S = 
~ Qkk'qic'S for every (k, k') e K x K' which is a necessary and suf
ficient condition for the existence of g'(gk'(skk')keK.)k' e/r- We have 
g(gk(

skk')k'e K')k e K = g(g'(Skk')k' eK')keK = g'(g(Skk')k e K.)k' eK' = 
= g'(gk'(skk')keK)k'€K' according to 3.3 which means g(g'k)keK = g'(gk')k'eK'. 

Thus, (O) holds true. 

3.7. Lemma. Let (S, n, (qk)keK, g), ($, n, (qk>)k'eKf, g') be C-algebras 
for which the condition (C) of 3.6 ist fulfilled. Then the condition (A) 
of 3.3 ist fulfilled for them, too. 

Proof. 1. Let s e S be an arbitrary element. We have s = g(qks)kex, 
qkS = g'k(qkk'qkS)k'eK' for every k e K. If we put skk' = qkk'qkS for every 
(k, k')eKxK' then s = g(g'k(skk')k'eK')keK- Thus, we have proved, 
for every seS, the existence of a system (skk')(k, k') e KXK' with the 
property s = g(g'k(skk')k'eK')keK. 

2. For an arbitrary s e S we define the elements skk> according to 
the first part of the proof. Then we put Sk> = qk'S = gk'(Skk')keK- Ac
cording to 1 there exists a system (tkk')(k, k') e KXK' with the property 
Sk' = g(gk(hl')l'eK')keK = g'(9l'(tkl')keK)l'eK'. I t follows q'rSk> = gi>(tkl>)k<=K. 
From sk> eq'k>S it follows according to 1.5 (i) 

9i'(hi')keK = qi'Sk> = l 
n for l' G K', V jk kf 

sk> for V e K\ V = kf. 

For V ^ k' we have, according to 1,5 (ii), n = qkvn = qkrgi'(tu>)ieK = 
= tk\>. According to 1.5 (Hi) we have g'k(tki')i'eK' = hk' for every ke K. 
It follows sk> = g(tkk')keK. From the equation gk(Skk)k<sK = sk = 
= gk'(tkk')keK we get skk' = qkk'Sk' = hr for every keK. Thus, sk> = 
= g(Skk')keK and qkq'k>s = qksk> = skk>. 

3. In the same way we prove q'k>qks = skk'. Thus, we have qkq'k>s = 
= qrqkS for every s eS and every (k, k') eK X K'. We have proved 
that (A) is fulfilled. 

3.8. Lemma. Let S, K, K' be non-empty sets, let Uk be a set for every 
keK and Uk> be a set for every k' e Kf. Letf. XUk->S, f: X ^ ' - > ^ 

keK k'eK' 
be bisections, n e S an arbitrary element. Then the following conditions 
are equivalent: 

(d) For every (k, kf) eK X K' there exists a set Ukk>, for every keK 
there exists a bisection f'k: X Ukk> -> Uk and for every kf e Kf there exists 

k'eK' 
a bijection fk>: X Ukk> -> Uk> such that f(fk)keK =f(fk')k'eK'. 

keK 

(y) For the C-algebras A(S, (Uk)keK, / , n), A(S, (U'k>)k>eK>, / ' , n) the 
condition (C) of 3.6 is fulfilled. 
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Proof. I. 1. Let (d) be fulfilled. According to 1.2 we put (nkk')reK' = 
= f'k~~lnk f o r every k G K; if (ukr)reK' e X *?**' w e P u t Pkk'o(ukr)reK' = 

&'eIT 

= ?teo for every ft0GK'. For arbitrary (k, ft0) G K x K', %&; e Ukk'0 

we put okk'0Ukko = (ukk')reK' where ^ r = % ' for every k' e K', ft' 7~ ^ 
and Ukk'o = Ukko • The symbols n'kk>, p'kk>, o'kk> have a similar meaning 
(instead of f'k we take fk>, instead of nk the element n'k>). We have 
f(fk(nkr)k'eK')keK = f(nk)keK = n = f(7l'k>)k'eK' = f(fk'(n'kk>)keK)k'eK' = 
= f(fk(nkk')reK')keK. As the mappings / , f'k are injections it follows 
fk(nkr)reK> =fk(n'kk>)reK> for every k e K, thus nkr = n'kk> for every 
(k, ft')GK x K'. 

2. The mapping /o*£ is an injection of X u*r onto fokUk == g*# 
^'6R-' 

for every ft G K according to 1.8. Thus, (qkS, (Urkh'eK', fokfk, n) is an 
admissible quadruple and (qkS, n, (q'kr)k'eK', q'ifc) = A((qkS, (Ukr)k'eK', 
fokfk, n) is a C-algebra. Similarly, we define (qk>S, n, (qkr)keK, gr) for 
every k'G K'. According to 1.2 we have q'kk> = fokfkokrPkr(fokfk)'1 = 
= fokfkOkk'Pkrfk'1 Pkf1 and similarly #*' = fo'k>frokk>p,krfk>1Pk'ff'~1' 

3. Let us have arbitrary elements (fto, k'0) e K X K', w«o e f̂cofci,. 
Let us put w*r = r^ r for every (k, k') e K X K', (ft, ft') =£ (fto, *i) and 
^ « ; = #*.*;. Then fok0fkOkkA0ko = fokofk0(

uk0r)reK' = 
= f(fk(ukk')k'eK')keK = f(fk'(Ukk')keK)k'eK' = f OkJk'o(fkko)keK = 
= fo'kJk'p'kQkUk0k0 according to 1. Thus, /o*/*0»' = fok'frokk> for every 
(k, ft') G K X K'. It follows fl^AS = fokfkOkk'Pkrfk^PkfJokPkf^S = 
= fo'kfkOkk'Pkrfk-'Pkf^S = fokfkOkk'Ukr according to 2. Similarly we 
prove that qkrq'k'S = fok>fk>o'kk>Ukk'. Thus, fe^ = fokfk0kk'Ukr = 
= fok'frOkk'Ukr = qkrq'k'S for every (ft, ft') e K X K'. 

4. Let us suppose skr e # for every (ft, ft') e K X K'. Then 
g(g'k(skr)reK')keK is defined iff ***- G &*'£*£ = fe'?*'£ (of. 3) which 
is a necessary and sufficient condition for the existence of 
g'(gr(skr)keK)reK'. In this case skr e fokfokrUkr which means the 
existence of an element Ukr G Ukr with the property skr =fokfkOkk'Ukr = 
= f'o'k'fro'ick'Ukk'. According to 1.2 we have g'k(Skk')k'eK' = 
= fokf'APkrfk^Pkf^krh'eK' = fokfdPkrfk^Pkty^f^ = 

= f°kfk(Ukr)k'eK'. Thus, g(g'k(Skk')k'eK')keK = fPkfJOkfk^kk^k'eK^keK = 
= f(fk(ukk')k'eK')keK according to 1.3 (t). Similarly, we prove 
g'(gr(skr)keK)reK' =f(fr(ukr)keK)reK'-Thus, weha1veg(g'k(skr)reK')keK = 
= f(fk(Ukr)k'eK')keK = f(fr(nkr)keK)k'eK' = ff'(flfc1(skr)keK)k'eK' and the 
condition .(C) of 3.6 is fulfilled for the C - algebras A(S, (Uk)keK,f,n), 
A(S, (Uk>)reK',f, n). Thus (y) holds true. 

II . Let (y) be fulfilled. We put_4(S, (Uk)keK,f, n) = (S, n, (qk)keK, g), 
A(S, (U'k>)reK>, / ' , n) = (S, n, (qk')reK', g')> t There exist C-algebras 
(#&#, ft, (q'kk')k'sK', g'k) for every ft e K and (<&£, n, (gkr)keK, gr) for 
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every k' e K' such tha t g(g'k)keK = g'(gk')k'eK' • I t follows from the last 
equation tha t q'kjc'qkS = qkrq'k'S for every (k, k') e K X K'. We pu t 
Ukr = q'kk'qkS = qkkfk'S for every (k, k') e K X K', /* = p * / " 1 ^ for 
every keK, fk> = p'k'f~

xgk' for every k' e K'. According to 1.8 and 
1.9 gk is a bijection of X Ukk> onto a^S =fokUk for every keK. Thus, 

&'e.K' 

•pjt/-1 is a bijection of qkS onto U# for every keK. I t follows tha t fk 

is a bijection of X Ukk> onto U# for every keK. 
k'eK' 

Let us suppose ukk> e Ukk> for every (k, k') e K X K'. Then 
f(fk(ukk')k'eK')keK = f(Pkflg'k(Ujck')k'eK')keK = g(g'k(Ukk')k"eK')keK according 
to 1.2. Similarly, we have f(fk'(ukk')keK.)k'eK' = g'(gjc>(ukjc>)keK)k>eK>. I t 
follows from our suppositions tha t f(fk)keK = g(g'k)keK = g'(gr)k'eK' = 
= f(fk')k'eK'- Thus, the condition (d) holds true. 

4. MAIN THEOREM 

From the results of the paragraph 3 .we get the following theorem: 
4 .1 . Theorem. Let S, K, K' be non-empty sets, let Uk be a set for every 

keK and Uk> a set for every k'eK'. Let f X Uk->S,f: X U'k>-+S 
keK k'eK' 

be bisections, n e S an arbitrary element. Then the following assertions are 
equivalent: 

(d) For every (k, k') e K X K' there exists a set Ukk>, for every keK 
there exists a bijection fk: X Ukk> -> Uk and for every k' e K' there exists 

k'eK' 
a bijection fk>: X Ukk> -> Uk> such that f(fk)keK = f(fk')k'eK'> 

keK 

(a) FOr the C-algebras A(S, (Uk)keK, f n) = (S, n, (qk)keK, g), 
A(S, (Uk>)k>eK>,f, n) = (S, n, (q'k')k'eK', g') ™e h™e qkqk' = qk>qk for 
every (k, k') e K X K'. 

(h For the C-algebras A(S, (Uk)keK, f n) = (S, n, (qk)keK, g), 
A(S, (U'k>)k>eK',f, n) = (S, n, (q'k>)k>eK', g) we have 9'°9 = 9°9'-

(y) For the C-algebras A(S, (Uk)keK, f n) = (S, n, (qkheK, g), 
A(S, (Uk>)k>eK>, / ' , n) = (S, n, (q'k')k>eK', a')the followin9 conditign is fulfil
led: For every keK there exists a C-algebra (qkS, n, (q'kk')k'eK', g'k) and for 
every k'eK' there exists a C-algebra (q'k'S, n, (qkk')keK, gr) such that 
g(g'k)keR = g'(gk')k'eK'> 



110 

B I B L I O G R A P H Y 

[1] O. R im r, On th dir ct d compositions of alg bгas. Publ. Fac. Sci. Univ. 
J . E . Pцrkyn , Brno, No 437 (1962) 449—457. 

[2] J . H a s h i m o t o , On dir ct product d compositon of partially ord r d s ts. 
Annals of Math. 54 (1951) 315—318. 

[3] O. B o r ů v k a , Üvod do t ori grup. Praha 1944. Král. č s. spol. nauk. 
[4] O. B o r ů v k a , Grundlag n d r Gruppoid- und Grupp nth ori . VEB D utsch r 

V rlag d r Wiss nschaft n, B rlin 1960. 
[5] J . S c h m i d t , Üb r di Dim nsion in r parti ll n Alg bra mit ndlich n od r 

un ndlich n Op ration n. Z itschr. f. math. Logik und Grundlag n d. Math. 11 
(1965) 227—239. 

Department oý Mathematics 
J. E. Purkynè University, Brno 
Czechoslovakia 


		webmaster@dml.cz
	2012-05-09T13:43:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




