Archivum Mathematicum

František Neuman

A note on differential equations with periodic solutions

Archivum Mathematicum, Vol. 6 (1970), No. 3, 189--192

Persistent URL: http://dml.cz/dmlcz/104722

Terms of use:

© Masaryk University, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE ON DIFFERENTIAL EQUATIONS WITH PERIODIC SOLUTIONS

F. NEUMAN, BRNO

(Received April 20, 1969)
I. Problem. It is known [1, p. 136] for two differential equations $y^{\prime \prime}=q_{1}(t) y$ and $y^{\prime \prime}=q_{2}(t) y, q_{1}$ and q_{2} continuous on ($-\infty, \infty$), with the same basic central dispersion of the $1^{\text {st }}$ kind $\varphi(t)$ (for the definition, see $[1, p .105])$, that the difference $q_{1}(t)-q_{2}(t)$ vanishes at least four times on any interval $a \leqq t<\varphi(a), a$ being an arbitrary number.

Especially, for $\varphi(t)=t+\pi$ and $q_{2}(t)=-1$, the expression $q_{1}(t)+1$ vanishes at least four times on the interval $0 \leqq t<\pi$ for every differential equation $y^{\prime \prime}=q_{1}(t) y, q_{1}$ continuous on ($-\infty, \infty$), every solution of which is half-periodic ${ }^{1}$) with period π and has exactly one zero on $0 \leqq t<\pi$, or in the other words, for every differential equation $y^{\prime \prime}=$ $=\left[\lambda+q_{1}(t)\right] y, q_{1}$ periodic with period π and continuous on ($-\infty, \infty$) for which the first interval of instability $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ disappears, as $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=0$ (see [1, p. 11]).

Another simple criterion of disappearance of the $1^{\text {st }}$ interval of instability can be found in [2].

In this paper we shall investigate the behaviour of $q(t)$ for the differential equation $y^{\prime \prime}=[\lambda+q(t)] y, q(t)$ continuous on $(-\infty, \infty)$, for which an interval of instability disappears.

For construction of all differential equations $y^{\prime \prime}=[\lambda+q(t)] y$, for which one or two intervals of instability disappear, see [3].
II. Let $C_{\mathrm{I}}^{\mathrm{n}}$ ($n \geqq 0$, integer) denote the set of all continuous functions on I having here continuous derivatives up to and including the order n; $C^{n}(-\infty, \infty) \equiv C^{n}$.

Consider differential equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y, \quad q \in C^{\circ} . \tag{1}
\end{equation*}
$$

Let $\alpha(t)$ be a $1^{\text {st }}$ phase of the equation (for the definition, see [$1, p$. 33]) and $\varphi(t)$ its basic central dispersion of the $1^{\text {st }}$ kind; further on, only phase and dispersion.

In [3] there was proved (Theorem 1) that "Every solution of (1) is periodic or half-periodic of period π with exactly n zeros on $0 \leqq t<\pi$ iff

$$
\begin{equation*}
\alpha(t+\pi)=\alpha(t)+n \pi \cdot \operatorname{sgn} \alpha^{\prime} \tag{2}
\end{equation*}
$$

[^0]for all $t \in(-\infty, \infty)$, or equivalently
\[

$$
\begin{equation*}
\varphi^{[n]}(t)=t+\pi, \tag{3}
\end{equation*}
$$

\]

for all $t \in(-\infty, \infty)$,
where

$$
\varphi^{[1]}(t)=\varphi(t), \quad \varphi^{[n+1]}(t)=\varphi\left(\varphi^{[n]}(t)\right) .{ }^{\prime \prime}
$$

Let us choose a periodic function $P(t) \in C^{4}$ with period π such that $P(t) \not \equiv 0,\left|P^{\prime}(t)\right|<1$ and $P^{\prime}(t)$ has no more than two (then exactly two) zeros t_{1}, t_{2} on $0 \leqq t<\pi$. Moreover, let $P^{\prime \prime}\left(t_{1}\right) . P^{\prime \prime}\left(t_{2}\right) \neq 0$. Then there exist neighbourhoods $O\left(t_{1}\right)$ and $O\left(t_{2}\right)$ of t_{1} and t_{2}, resp., such that $\left|P^{\prime \prime}(t)\right|>c_{1}>0$ for all $t \in O\left(t_{1}\right) \cup O\left(t_{2}\right)$ and $\left|P^{\prime}(t)\right|>c_{0}>0$ for all $t \in\langle 0, \pi\rangle-O\left(t_{1}\right) \cup O\left(t_{2}\right)$. E. g., $P(t)=a \sin 2 t,|a|<1 / 2, t_{1}=\pi / 4$, $t_{2}=3 \pi / 4, O\left(t_{1}\right)=(\pi / 8,3 \pi / 8), O\left(t_{2}\right)=(5 \pi / 8,7 \pi / 8), c_{0}=c_{1}=a$.

For an arbitrary integer $n, n>1$, put $\alpha_{1}(t)=n t+n P(t), \alpha_{2}(t)=$ $=n t-n P(t)$. Let $\alpha_{1}(t)$ and $\alpha_{2}(t)$ be phases of the differential equations (it is possible according to [1, p. 36])

$$
\begin{equation*}
y^{\prime \prime}=q_{1}(t) y \quad \text { and } \quad y^{\prime \prime}=q_{2}(t) y \tag{1}
\end{equation*}
$$

resp. Since α_{1} and α_{2} satisfy (2), every solution of any of the two differential equations $\left(4_{1}, 2\right)$ is periodic or half-periodic of period π with n zeros on $0 \leqq t<\pi$. Let us note that both q_{1} and q_{2} must be continuous and periodic with period π.

Let $\alpha_{i}(t) / n$ be a phase of the differential equation

$$
\begin{equation*}
y^{\prime \prime}=q_{i}^{*}(t) y, \quad i=1,2 \tag{i}
\end{equation*}
$$

Functions $q_{i}(t)$ and $q_{i}^{*}(t)$ are (cf. [1, p. 90]) in the relations

$$
\begin{equation*}
q_{i}(t)=q_{i}^{*}(t)-\left(n^{2}-1\right)\left(\frac{\alpha_{i}^{\prime}(t)}{n}\right)^{2}, \quad i=1,2 \tag{6}
\end{equation*}
$$

Thus

$$
q_{1}(t)-q_{2}(t)=\left[q_{1}^{*}(t)-q_{2}^{*}(t)\right]-\left(n^{2}-1\right) \frac{\alpha_{1}^{\prime 2}(t)-\alpha_{1}^{\prime 2}(t)}{n^{2}}
$$

or

$$
q_{1}(t)-q_{2}(t)=\left[q_{1}^{*}(t)-q_{2}^{*}(t)\right]-4\left(n^{2}-1\right) P^{\prime}(t) .
$$

The function $\left[q_{1}^{*}(t)\right.$ - $\left.q_{2}^{*}(t)\right]$ is continuous and periodic with period π, and has continuous derivative (cf. $P(t) \in C^{4}$). Thus $\left[q_{1}^{*}(t)-q_{2}^{*}(t)\right]$ and $\left[q_{1}^{*}(t)-q_{2}^{*}(t)\right]^{\prime}$ are bounded. Since $P(t)$ has the above properties, there exists a sufficently large n that $q_{1}(t)-q_{2}(t)$ vanishes only twice on $0 \leqq t<\pi$.

Thus, we have proved

Theorem 1: There exist an integer n and two differential equations

$$
y^{\prime \prime}=q_{1}(t) y, \quad y^{\prime \prime}=q_{2}(t) y, \quad q_{1} \in C^{\circ}, \dot{q}_{2} \in C^{\circ}
$$

which admit only periodic or half-periodic solutions of period π with n zeros on $0 \leqq t<\pi$ (n even or odd, resp.) such that the difference $q_{1}(t)-q_{2}(t)$ vanishes only twice on $0 \leqq t<\pi$.

If $\alpha_{1}(t)$ is $n t+n P(t)$ again, but $\alpha_{2}(t)=n t$, we have

$$
q_{1}(t)+n^{2}=\left[q_{1}^{*}(t)+1\right]-\left(n^{2}-1\right)\left(2 P^{\prime}(t)+P^{\prime 2}(t)\right) .
$$

The function $\left[q_{1}^{*}(t)+1\right]$ and its derivative are bounded again. The function $\left[2 P^{\prime}(t)+P^{\prime 2}(t)\right]=P^{\prime}(t)\left[2+P^{\prime}(t)\right]$ vanishes on $0 \leqq t<\pi$ only at t_{1} and t_{2}, as $2+P^{\prime}(t) \geqq 1$. Further $\left|2 P^{\prime}(t)+P^{\prime 2}(t)\right| \geqq\left|P^{\prime}(t)\right|$ and $\left[2 P^{\prime}(t)+P^{\prime 2}(t)\right]^{\prime}=2 P^{\prime \prime}(t)\left[1+P^{\prime}(t)\right] \geqq P^{\prime \prime}(t) \cdot \gamma$, where $0<\gamma=$ $=\min _{<0, \pi>}\left[1+P^{\prime}(t)\right]$. Thus, according to the selection of $P(t)$, for sufficently large n, the value of $q_{1}(t)+n^{2}$ vanishes only twice on $0 \leqq t<\pi$. Then we can state
Theorem 1': There exists a differential equation

$$
y^{\prime \prime}=q(t) y, \quad q \in C^{\circ}
$$

every solution of which is periodic or half-periodic of period π with n zeros on $0 \leqq t<\pi$ (n even or odd, resp.) such that $q(t)+n^{2}$ vanishes only twice on $0 \leqq t<\pi$.
III. We have dealt with periodic solutions only. Now we are going to show how the above considerations can be extended to the general case.

Let a function $\varphi(t)$ be given on an interval $(a, b)^{1 /}, \varphi \in C_{(a, b)}^{3}, \varphi(t)>t$, $\phi^{\prime}(t)>0$. Let $\beta(t)$ be chosen such that $\beta(t) \in C_{(a, \varphi(b))}^{3}, \beta^{\prime}(t) \neq 0$, and

$$
\begin{equation*}
\beta(\varphi(t))=\beta(t)+\pi \tag{7}
\end{equation*}
$$

holds for all $t \in(a, b)$. According to [1, p. 124], it is always possible.
Let $\alpha_{1}(t)=n t+n P(t)$ and $\alpha_{2}(t)=n t-n P(t)$, where a function $P(t)$ satisfies the conditions in Sec. II, and n is an integer, $n \geqq 2$. Put $\beta_{1}(t) \stackrel{\text { def. }}{=} \alpha_{1} \beta(t)$ and $\beta_{2}(t) \stackrel{\text { def. }}{=} \alpha_{2} \beta(t)$ for all t for which β is defined. Then

$$
\begin{align*}
\beta_{i}(\varphi(t)) & =\alpha_{i} \beta(\varphi(t))=\alpha_{i}(\beta(t)+\pi)=\alpha_{i} \beta(t)+n \pi \operatorname{sgn} \alpha_{i}^{\prime}, \tag{8}\\
& =\beta_{i}(t)+n \pi \operatorname{sgn} \beta_{i}^{\prime} \text { for all } t \in(a, b) .
\end{align*}
$$

Let β_{i} be a phase of the differential equation $y^{\prime \prime}=Q_{i}(t) y, i=1,2$. If $\varphi_{i}(t)$ denotes the dispersion of the differential equation $y^{\prime \prime}=\boldsymbol{Q}_{i}(t) y$, $i=1,2$, then, with respect to (8),

$$
\varphi_{1}^{[\mathrm{n}]}(t)=\varphi(t)=\varphi_{2}^{[\mathrm{n}]}(t) .
$$

[^1]That means that the distributions of the n-th zeros of the solutions of the both differential equations are the same.

In general, if $\alpha, \beta, \alpha \beta=\alpha(\beta(t))$ are phases of differential equations $y^{\prime \prime}=p_{\alpha}(t) y, y^{\prime \prime}=p_{\beta}(t) y, y^{\prime \prime}=p_{\alpha \beta}(t) y$, resp., then the relation

$$
p_{\alpha \beta}(t)=p_{\beta}(t)+\left[p_{\alpha}(\beta(t))+1\right] \beta^{\prime 2}(t)
$$

holds for all t for which the functions are defined, see [1, p. 6 (17) or 188]. Thus we can write

$$
\begin{equation*}
Q_{1}(t)-Q_{2}(t)=\left[q_{1}(\beta(t))-q_{2}(\beta(t))\right] \beta^{\prime 2}(t) . \tag{9}
\end{equation*}
$$

Because the function $\beta(t)$ is defined on $(a, \varphi(b))$, the functions $Q_{i}(t)$ are defined on the same interval. Thus, according to (7), we can consider an interval $\langle c, \varphi(c)) \subset(a, \varphi(b))$ which is transformed by β onto $\langle\beta(c)$, $\beta(c)+\pi)$. And, with respect to (9) and Theorem 1 of See. II., the difference $Q_{1}(t)-Q_{2}(t)$ vanishes only twice on every such interval $\langle c, \varphi(c)$).

Thus we can state
Thoerem 2: There exist two differential equations

$$
y^{\prime \prime}=Q_{1}(t) y \quad \text { and } \quad y^{\prime \prime}=Q_{2}(t) y, \quad Q_{1} \in C_{\mathrm{I}}^{\mathrm{o}}, Q_{2} \in C_{\mathrm{I}}^{\mathrm{o}}
$$

with the dispersions $\varphi_{1}(t)$ and $\varphi_{2}(t)$, resp., satisfying the relation

$$
\varphi_{1}^{[n]}(t)=\varphi_{2}^{[n]}(t)
$$

everywhere, where they are defined, such that the difference $Q_{1}(t)-Q_{2}(t)$

IV. The differences $q_{1}(t)-q_{2}(t)$ in Sec. II or $Q_{1}(t)-Q_{2}(t)$ in Sec. III. must vanish at least twice on considered intervals, because the relations $q_{1}(t)-q_{2}(t)>0$, or $q_{1}(t)-q_{2}(t)<0$, or $Q_{1}(t)-Q_{2}(t)>0$, or $Q_{1}(t)-$ $-Q_{2}(t)<0$ on these intervals together with the Separation Theorem lead to the contradiction with the supposition on distributions of zeros,

Thus, the above considerations do not give any criterion, but they show the nonexistence of such criterion. On the other side, we could demonstrate the ability of Prof. O. Borůvka's theory of phases and dipsersions to solve problems of this sort.

REFERENCES

[1] Borůvka, O.: Linear Differentialtransformationen 2. Ordnung, VEB, Berlin 1967.
[2] Neuman, F.: Extremal Property of the Equation $y^{\prime \prime}=-k^{2} y$, Archivum Mathe: maticum (Brno), T. 3 (1967), 161-164.
[3] Neuman, F.: Construction of Differential Equations with Coexisting Periodia Solutions, to appear in Bul. Inst. Polit. din Jassi.
Department of Mathematics
J. E. Purkyné University, Brno

Czechoslovakia

[^0]: $\left.{ }^{1}\right) y(t)$ is half-periodic with period d if $y(t+d)=-y(t)$ for all t.

[^1]: ${ }^{\text {1) }} a=-\infty$ and $b=\infty$ are not excluded.

