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ON THE BEHAVIOUR OF THE SOLUTIONS 
AND T H E I R F I R S T (n —1) DERIVATIVES OF THE 

ri — th ORDER D I F F E R E N T I A L EQUATIONS 
WITH P E R I O D I C C O E F F I C I E N T S 

Rahmi Ib rah im Ib rah im Abdel Karim, Cairo 

(Received September 1, 1969) 

§1 . INTRODUCTION 

Consider the differential equation 

(a) L[x] = x^ + ax(t) x'*-» + . . . + an(t) x = f(t)9 

where the coefficients a^t) (JU = 1, 2, . . .^n) and the function f(t) are 
continuous periodic functions of the same period p 

<*$ + P) = M*) (A* = 1, • • -,n),f(t + p) =f(t). 

The homogeneous and adjoint differential equations corresponding to 
(a) are 

(b) L[y] == y(n) + ai(t) y<»--> + . . . + an(t) y = 0 

and 

(c) L[z] == (—1 )««<*> + (—l)n-i(ai(t)z)(n-i) + . . . + an(t) Z = Q 

respectively. 
Definition 1: The inhomogeneous differential equation (a) is said to 

be in the resonance case, if the adjoint differential equation (c) possesses 
at least one periodic solution z(t) of period p, for which 

fz(t)f(t)dt^O. 
o 

Equation (a) is said to be in the exceptional case, if for all periodic solu
tions z(t) of (c) the relation 

fz(t)f(t)dt = 0. 
o 

holds; and in the principal case, if (c) has no periodic solution of period p. 
Referring to [1] and [2], § 2, we can obtain the following: 
Theorem 1: For the inhomogeneous differential equation (a) there exist 

bounded solutions, if the adjoint equation (c) has either at least one perio-
p 

die solution z(t) of period p for which / z(t)f(i)dt = 0 (exceptional case) 



238 

or no periodic solution of period p at all (principal case). But if (c) has 
p 

periodic solutions z(t) of period-p, such that for all these z(t), J z(t)f(t) dt =£ 
0 

-?-: 0 (resonance case), then the modulus of each solution of (a) inde
pendent of the initial values tends to oo. 

It was shown in [2], that in the resonance case the so-called "normal 
solution" x(t) of (a) (see definition 4)—independent) of the initial condi
tions—takes at least values of power order equal to a certain power tm. 

In this paper, we consider an arbitrary solution of (a) and we study 
its minimal power order in the resonance case. Further, we study the 
minimal power order of the first (n— 1) derivatives of any arbitrary 
solution. 

§ 2. THE PARTIAL-RESONANCE CASE 

It is proved in [3], § 2, that the homogeneous differential equation (b) 
possesses the fundamental system of solutions Y(t), which can be obtained 
in the form 

(1) Y(t) = 0(t) e « 0(t) = (^ lW> . . . , ^ntt>), 

where the matrix @(t) is of period p and the constant matrix K is in the 
Jordan canonical normal form with the submatrices 

K, 
0CV 1 

' . ' 1 
a« 

of order mv ^ 1. For the eigenvalues a„, we can make the limitation 
(see [3], (18)) 

<*, - j </<«-,)--y--S-j. 

The corresponding fundamental system of (c) is (see [1], (17) or [4], 
§1-4) 

Z(t) = {Y-^t))? = (*--(*))-". e-«r«, 

where (Y- 1) 1 denotes the transposed matrix of Y-1. 

Let 

(3) * ( - £ for,= 1,2. . . ,e 
w V\^:0 for v = Q + 1, . . . , 5 . 
By virtue of [3], § 2 or [1], § 3, it follows that the differential equation 
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(b) has Q linear independent with p periodic solutions y(V)(t) = iy(V(t)) 
(v = 1, . . . , Q), which are the Is* components of the vectors y(V)(t) in 
the fundamental matrix Y(t). Further the equation (c) has also the 
same number of linear independent with p periodic solutions z[v](t) = 
= riz[v](t), which are the nth components of the vectors ss[V](t) of the 
fundamental matrix Z(t). The stated indices are defined by 

(4) O0 = I>„ + i. M = t«V 
1 1 

Definition 2: The inhomogeneous differential equation (a) is said to be 
w.r.t. an index v in the partial-resonance case, if the adjoint differential 
equation (c) possesses the periodic solution Z[v](t) of period p (i.e. the 
corresponding ocv = 0), such that 

fzlv](t)f(t)dt = a w # 0 . 
o 

Equation (a) is said to be w. r. t. an index v in the partial-exceptional 
case, when a„ = 0 and simultaneously the relation 

fz[v](t)f(t)dt = 0 
o 

holds. But if ocv ^ 0, then the equation (a) is said to be w.r.t. the index 
v in the partial-principal case. 

Let the matrix Y(t) or Z(t) be so arranged that 

(6, f«mm*—v,{Zl g.lj'+i;:..,,. 
Then the equation (a) is w.r.t. the indices v = 1, . . . , a in the partial-
resonance case, while (a) is w.r.t the indices v = o + I, . . . , g in the 
partial-exceptional case. 

Definition 3: The index v will be called a resonance, exceptional or 
principal index, if the differential equation (a) is w. r. t. this index in the 
partial-resonance, partial-exceptional or partial-principal case. 

By using the method of variation of parameters, we obtain the general 
solution of (a) in the form 

(6) x{t) = t **(0 
I 

with (see [2], (33), (35) and (37)) 
mv 

(7) M O = Y e V r - 5 ^ v & « ® > ^ «,{= n ? r " = i+Y e 

w LA (*»,—/«)! * \ T&0 for v = Q + 1 , . . . , B, 
/ i=0 
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where 

(8) 

"©.-(*) = .£ Ч - У VcHrW foг /* = 0, 1, m,, 1, 

ł П y — 1 

v mvЏ) = E Г « V У + <>+-) <P(WЃ)-

The constants ^ _ y with /̂  — y > 0 are arbitrary constants of inte
gration, while (see (5)) 

= — «[„] Ф 0 for v 
P 

1, •, <т 
(9) v^o 

0 for r = (T + 1, . . . , s. 
Referring to [3], theorem 5, there exist for the components vx(t) 

(for v = Q + 1„ . . .,«) of the solution #(£) of (a) unique periodic functions 
vx*(t) of period #. 

Definition 4: A solution (6) of (a) whose components for v = 1, . . . , Q 
are represented by (7) with ocy = 0 and for v = Q + 1,, . . . , s are unique 
periodic functions vx*(t) of period p, is called a "normal solution". 

§ 3. FUNDAMENTAL LEMMAS 

In this paragraph we prove the following two lemmas: 
Lemma 1: Let r\i(t), rj2(t), . . . , rjq(t) be non-identic vanishing periodic 

functions of period p. Let yi, y2, . . . , yq be real numbers, such that the 
numbers tfw (v = 1, 2, . . . , g ) are pairwise distinct. Then there 
exists a number K0 > 0 such that the modulus of the summation 

(10) -540 = 2: »/-(*) ew 

takes values greater than K0 for arbitrary large values of t. 
Proof: We have only to prove that SP(t)—iwith increasing £—converges 

to a value different from zero. For this purpose, we form the functions 

SЃЏ) = Ż Ч-(0 e*"' 
0 = 1 

SГЏ + p) = £ч*(0 ІÎVť •eiľvP 

t»"»l 

SЃЏ + 2p) = £ ч*(0ei7,,,í • e2f/VP 

t ) - * l 

Sř(t + (g—1)J)) = Ě i ? » ( 0 e * - ' . - j t - w - * . 
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This is a system of equations of the form 

( Ц ) 

SГ(t + p) 
SЃ(t + 2p) = 

-Sŕ(t+(q+l)p)„ 

1 
QbYlP ^ 

ç2i'ňP , 

i , . . . , i 
QЧІV 5 . . . 9 ďYaP 

ÇpЧiV t . . . t çpПqV 

e(q—lЏүxp^ e^-1) 'ľгP . . Q(І—^)ЧV 

Г]i(t) г>i« 

Г]2(t) eЫ 

Г]q(t) ^вř 

Suppose the contrary, i.e. lim £?(t) = 0. Then the vector on the L.H.S. 
t— 00 

converges to zero as t -> oo. But the determinant of the constant matrix 
in (11) is different from zero "Vandermonde's determinant" (see [5], 
§ 4.21), since the numbers e*̂ -5 (v = 1, 2, . . . , q) are pairwise distinct. 
It follows that the vector on the R.H.S. converges to zero, which contra
dicts with our hypothesis on the functions r]i(t), . . ., rjq(t). Thus the 
lemma is proved. 

Lemma 2. Let r](t) be a non-trivial periodic solution of period p of the 
homogeneous differential equation (b) under the condition 

(12) an(t) sffe 0. 

Let /?, y be real numbers, such that (see (2)) 

(13) 
71 ^71 

< y ^ . 

P P 

Then the differential expression 

(D + p + iyY ti(t) 
for every r = 1, 2, . . . , n — 1 is not identic zero, where D denotes the 

d 
differential operator — . 

(XOC 

Proof: Suppose the contrary,i.e. one of the expressions is identic 
zero. Then r](t) will be a solution of the differential equation with 
constant coefficients 

(D + P + iy)rr](t) = 0 
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i.e. 
r—-l 

rj(t) = e-</*+W , ^ c / , 
ju-«0 

where fy are arbitrary constants. Since rj(t) has the period^, then it must 
have the form 

r](t) = c0 e-& e ^ with @ = 0 and e'w = 1, 

It follows from (13), that y is equal to zero and consequently 

rj(t) = c0 = const, 

i.e. the periodic solution ^(J) of (b) is a constant ^ 0. This is a contra
diction with the fact that the homogeneous differential equation (b) 
can not—under the condition (12)—possess a constant solution. Other
wise, by substituting in (b), we get 

an(t) y = an(t) . const]= 0 => an(t) s= 0. 

§4 .THE SOLUTION OF THE INHOMOGENEOUS D I F F E R E N T I A L 
EQUATION (a) 

Consider an arbitrary solution x(i) of (a). This can be written in the 
form 
(14) x(t) = x*(t) + y(t), 

where x*(t) is a particular solution of (a) and y(t) is the general solution 
of (b). I t is comfortable to sum up the terms of y(t) whose constant 
factors are equal. Referring to (6), (7), (8), we obtain 

a j mv—1 / fmv—r \ 

(15) *(*)= E —aM I [<P(r)+Y(*)Tm' „\l)+"M + 
v~i p 7-=o \ C*n>v — Y)' J 

+ I eM E K . I <piv)+y(t) — — . 
v=l fi**l \ y=-0 (Mr Y N'J 

Here n(t) represents the periodic function of period p: 

g imv—1 \ « 

I ( I v*)+rV{9)+r(t))+ E***w. 
r - . j \ y - o / e+i 

where vx*(t) for v = Q + 1, . . . , s are unique periodic functions of period 
p (see [3], theorem 5). 

I t is possible that some constants vdft vanish. For this purpose, we 
introduce the index Iv with the following property: In the sequence 
vd\, vd2i . . . , vdmv let vdiv be the first non-vanishing constant. Setting 
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(16) cov = mv —lVi m = max (mv), 
( r - l f . . . , o ) 

we obtain for x(t) the following representation 

(
a 1 tmv \ 

Y. —a[v](p[v](t)—: + smaller powers) + (I) 
v-i p mv\ J 

(mv«-.m) 

( v-» tmv \ 

YJ vdiv(p(v)(t) — : + smaller powers) + (II) 
vmma+i cov\ J 

( * pop \ 

2] e^vdtp<p(p)(t)—- + smaller powers). (Ill) 
V=*Q+1 COpl I 

(In the case, that all constants vd\y
 vd2, . . . , vdmv vanish for an index 

v > a, we put vd\v = 0). The corresponding terms for v = 1, . . . , o are 
not needed to be written, since they are included in the l8t bracket 
in (17) under the "smaller powers". 

Consider now the 3 r d bracket (III) in (17), which includes exponential 
functions. Here the summations with negative R(<xv) can remain out of 
consideration, since they tend to zero as t —> oo. Set 

a„ = fip + iyv 

and let f}v (for v = Q + 1, . . . , s ) form a decreasing sequence 

(18) pei > fa > ... > fa = 0. 
Let us subdivide (III) in partial sums according to equal exponents of /?„. 
Then we obtain 
(19) (iii) =- (iii)ei + ( i n \ + . . . + (iii)et + (iii)-, 
where (III)_ denotes the terms with negative (}v. 

On the power order of every partial sum (III)CA in (19) (for X = 
= 1, 2, . . . , k — 1), we state the following: 

Theorem 2: Every partial sum (III)CA in (19) (for A = 1, 2, . . . , k — 1) 

either takes values of the power order e Q*'t P°^ with co(X) from (25) 
or it vanishes identically. 

Proof : Referring to (15), (17), (19), it can be easily obtained for 
(III)CA (X = 1, 2, . . . , k) the convenient representation 

mv—1 J mv—1 ,m i__ r_~ \ 

(20)(HI)eA = e V E e ^ Z K + 1 I *,(,)+r(0 — ' — _ _ ) . 
(v) /<.0 \ r-0 CMp— I — r — U)\I 

</Ww> 
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If the constants vdu+i vanish for all /u = 0, 1, . . ., mv — 1 and all v 
for which /?v = f} then (IH)eA vanishes certainly. If all the constants 
vdfi+i do not vanish, then it will be proved that (III)eA (for X = 1, 2, . . . , 
h — 1) takes values of the power order e ^ twiX). Here we define for 
every index v an index Jl = ]2(v), such that in the sequence of constants 

(21) vdl9"d2, ...,vdmv 

vd'n is the first constant, which is different from zero. Then wre can start 
the sum over it in (III)eA with JU = Jl(v). When all the constants in the 
sequence (21) are equal to zero, then the sum over fi in (20) (for JU = 
= 0, 1, . . . , mv — 1) is certainly empty. Now in the sum over r with 

fmv—/i—1 

fixed a and v, the term w(v)- —- is the only one which has 
w (mv — JU — 1)! 

the highest power factor. Therefore there exists exactly one term with 
the highest power factor tmv~fi—1 in the sum over /i for Ji(v), ..., mv — 1 
with fixed v. Putting 
(22) o£ = w , _ £ ( , ) _ ! , 

we get for the sum over /u in (20) the following representation 
mv~X [ mv~1

 tmv—l-r—p \ 
(23) I hdun £ W)+r-( ; r, = 

/«-j5(»)\ r-o (mp — l—r — /jt)lj 
tWv 

= vdji—* <f(V) + smaller powers. 

Hence we obtain for (HI)ex the representation 

(24) (III)ffA = e\'t £ e*<^ \vd^ ^ - q>{v) + smaller powers} . 
(*) \ «V I 

(*,->«) 
If all the constants in (24) vanish, then (III)eA will vanish identically. 

If not, we can arrange the occuring powers tmt in (24) in decreasing 
exponents and sum up the terms having the same maximal exponents 
(25) CD(A) = m a x (m*). 

(*0 
(vd-*0) 

Then (III)M takes the form 

(
/0)(A) 

r—x-] Z efr-1 vdmv) + smaller powers] . 

\"'\) ' 
("<V°) 
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We want to sum up the terms with the same exponents iyv in the existing 
sum in (26). Let yl9 y2, ..., fq be the pairwise distinct exponents y, 
then we obtain the sum over v in the abbreviated form 

<i 

(27) X &7vt{vdjt<P{v) + smaller powers) = £ tfrv-t r]v(t). 
(")* 0 - 1 

( ' d ^ O ) 

Here rjv(t) are certain linear combinations of the functions cp(v)(t) with 
indices v for which /?„ = /?CA and "d^ ^ 0. But from (1), the functions 
(f(V)(t) are identic with the corresponding with p periodic linear inde
pendent solutions y(V)(t) of the homogeneous differential equation (b). 
Consequently the functions r\v(t) are also non-trivial with p periodic 
solutions of (b). Further the numbers e^vP (for v = 1, 2, . . ., q) are 
pairwise distinct because of the normalization of the eigen values a„ 
in (2). Applying theorem 1, it follows that the modulus of the sum (27) 
takes values greater than a certain positive constant K0. Thus each sum 
(III)eA (A = 1, 2, . . . , k—• 1) either takes values of the power order 

e ^ ' * P(A), or it vanishes identically. 

§ 5. THE POWER ORDER OF ANY ARBITRARY SOLUTION OF 
THE DIFFERENTIAL EQUATION (a) 

We are going to prove the following: 

Theorem 3: In the resonance case any arbitrary solution x(t) of the 
differential equation (a) takes—independent of the initial conditions— 
values of the minimal power orders tm, with 

(28) m = max (mv). 
(»=-l,...a) 

Proof: Any arbitrary solution x(t) of (a) can be written in the form 
(17). Here we must distinguish between two cases: 

Case a: vdh = 0 in (17) for v = Q + 1, . . . , s. 

Then the 3 r d bracket in (17) will vanish identically. 
If it happens at the same time, that the 2n d bracket also vanishes, 

when vdiv = 0 f o r ? = < r + l , . . . , £ (consequently there will not be 
smaller powers in it), then the solution x(t) will be reduced only to the 
1 s t bracket (I) in (17), which is the particular solution x*(t) of (a) (see 
(14)). 
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We shall prove that the factor of the highest power tm is a non-identic 
vanishing periodic function of period p. Evidently the power tm can 
be multiplied only by linear combinations of the periodic functions 
<P(\), <p(i), • • •> <p(o)- Thus we need only to show, that no linear combi-

a 

nation of the form ]T Xv<p(V)(t) can be identic zero. Otherwise the cor-
v=-l 

a 

responding linear combination £ hy<*)(t) will be identic zero, because 
v**l 

the functions <p(v){t) (for v = 1, . . . , a) are coincident with the functions 
y(V)(t) (see (1)). Since the functions y^, y(2), . . . , t/<a) are linear inde
pendent solutions of (b), then all the constants Ai, A2, . . . , A<- must 
be equal to zero, which is impossible for (see (9)) 

pmv 
. - «[,] 7-= 0 (for v = 1, ...,oг). 

Thus #(£) takes values of the power order tm. 
Now it can be assumed that for y = o r + l , . . . , g a t least one of the 

constants vdiv (in (II) (see (17)) is different from zero. Let 

(29) con = max (o)v). 
( r = - o r + l , . . . , e ) 

Then the 2nd bracket (II) in (17) can be written in the form 

(30) (II) = : 2. vdiv<p(v) + smaller powers, 
0)lVv~a + l 

(wv = om) 

where all the constants vdiv do not vanish simultaneously. 
Referring to (17), (30), we have three subcases: 

a (1): If con < m, then the 2n d bracket (II) in (17) will be included 
under the "smaller powers" in the bracket (I). 

a (2): If con > m, then the 1st bracket (I) will be included under the 
"smaller powers" in the bracket (II). Since the linear combination . 

t vdiv<P(V){t) = t vdivy{v)^ri*{t) 

V=-<7 + l V*=Q+1 
((ov*=*mi) («v-=ton) 

represents a non-trivial with p periodic solution of (b), then the sum (II) 
or (I) + (II), i.e. x(t) takes values of the power order £«>", thus at least 
values of the power order tm. 
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a (3): If con = m, then we sum up the principal parts in both brackets 
(I) and (II) in the form 

tm / -A I -A \ tm 

na\ k Jai'mr) + Si^'H^^.v**{t)' 
(mv*=*m) 

where t)**(t) represents again a non-trivial with p periodic solution of 
(b). (Notice that the functions <piv)(t) = y{v) (*) for v == 1 , . . . , cr and v=o+l> 
. . . , Q are linear independent) 

In all cases, we get for the union of (I) and (II) in (17) a representation 
of the form 

(31) x(t) = -— rj(t) + smaller powers, 

where 
(32) M = max (m, con) ^ w> 

and rj(t) is a non-trivial with p periodic solution of (b) and M > m. 
Thus the theorem is proved in this case. 

Case b : vdiv -^ 0 in (17) for at least one index v, Q + 1 S v < $. 
Consider now the total sum (III) in (19). 

If all the elements of the sequence 

(33) (HI)ei, (III)f2 ( I I I ) V i 

are not identic zero, then by means of theorem 2, the sum (III) takes 
with increasing t, values of the power order e^ . tm with f} > 0 and 
co ^ 0. Hence x(t) takes at least values of the power order tm and the 
theorem is proved. 

But if all the elements in (33) are identic zeros, we sum up (III)efc, 
(I), (II), and we prove analogously, that x(t) takes at least values of 
the power order tm. Here it can be assumed that (HI)6k is not identic 
zero, otherwise the problem is reduced immediately to case a. Consi
dering (IIl)Qk only, we obtain by virtue of theorem 2, a power order 

H*) e ' V ' but with #>* = 0. 

Here we have three subcases: 

b (1): In the case, that co(k) > M with M from (32), x(t) takes values 
of the power order P(*) with co(k) > M. 

b (2): In the case, that co(k) < M, we can negelect the values of (III) 
w.r.t. the value of (I) and (II), since (I) + (II) takes in all cases values 
of the power order tM. 

h (3): Only in the case that co(k) = M, a particular consideration is 
necessary. 
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We sum up aU like terms from (I), (II) and (III) with the same power 
tM then we obtain for x(t) a representation of the form 

tM iv=* ._ \ 
x(t) = ~JTFT\ -S vi7vtr)v(t) + smaller powers), 

where the exponents yv are pair wise distinct. Particularly f0 is equal 
to zero (this corresponds to a = 0 in (I) and (II)). The periodic functions 
??i(0> ??2(0> • • •> Vqtf) a r e defined similarly as in (27). r)o(t) is also a non-
identic with p periodic function, since in (I) there is at least one term 
whose factor is the power tm. Thus in the union of (I) and (II), there is 
a term whose factor is the power tM with M ^ m. Further the highest 
power factors are always multiplied by the functions q)(V)(t) = y(V)(t). 
Using lemma 1, it follows also in this case, that, x(t) takes at least values 
of the power order tm. Thus the theorem is completely proved. 

§ 6. THE POWER ORDER OF THE DERIVATIVES OF ANY 
ARBITRARY SOLUTION OF (a) 

In this paragraph, we study the power order of the first (n — 1) 
derivatives of any arbitrary solution of (a) under the essential condition 
(12). 

Theorem 4: The derivatives x(f)(t) (r = 1, 2, ...,n— 1) of any 
arbitrary solution x(t) of (a) take under the condition (12), the same 
power order as weU as x(t). 

Proof: We consider the previous two cases, which are stated in 
theorem 3. 

In case 1, we differentiate (31) successively: 

tM 

x'(t) = — - . rj'(t) + smaUer powers 

tM 

x"(t) = — - , rj"(t) + smaller powers 

tM 

x(r) (t) = — - . rfr)(t) + smaller powers 11 ^ r ^ n -— 1) 

tM 

#0*--)(£) == ~-~ . rfn~l)(t) + smaUer powers. 

Then all derivatives rfr)(t) (1 ^ r ^ n — 1) must be non-identic vanish
ing with p periodic functions. Otherwise r\(t) will be a polynomial in t 
of degree r — 1. But since the solutions y(v)(t) of (b) are periodic functions 
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of period p, then r)(t) is reduced to a constant, which leads to a contra
diction with the condition (12). Hence all derivatives a£r)(t) (1 <J r g 
S n — 1) take values of the power order tM. 

In case 2, differentiating (26), we obtain for X = 1, 2, . . . , k the fol
lowing formulas successively (notice also (27)): 

(III). = - - £ e(^A+*y->-'. Y)VH) + smaller powers, 

fW(A) q 

(III)^A = r-77^ 1 ^l7v)t • (D + P* + *W *W + 
{CD(A))\VSS1 

+ smaller powers, 
/fu(/) ? .__ 

(III)* = 7-7^ I&ex+t7v)t •(i> + A* + l ^ 2 IM + 
+ smaller powers, 

fco(k) q ._ 
(ni)ST1> =

 7-^TV; I e eA •(I> + fo + * M - V ) + 
+ smaller powers. 

By virtue of (2), it follows from lemma 2, that the differential expression 
(D + ßQX + * yv)r Yjv(t) is not identic zero for every r = 1, 2, .. ,,n — 1 
and every v = 1, 2, . . . , q. Then the first (n — 1) dervatives of (III)CA 

have the same power order as (III)^. Analogously, it can be shown by 
using lemma 1, as in theorem 3, that all derivatives x'(t), x"(t), . . . , 
atn~*)(t) take the same power order as well as x(t). 
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