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ON PLAIN ABSOLUTE EQUILIBRIUM POINTS
IN GENERAL NON-ORDERED GAMES
WITH PERFECT INFORMATION [I]

JAN HANAK, Brno
(Received April 13, 1973)

An essential generalization of Berge’s variant of the Zermelo—von Neumann theorem (and of
the original result of Zermelo) is proved. Our theorem concerns quite general non-ordered games
with perfect information and with chain-valued pay-off functions, and it admits infinite plays.
Important particular cases are considered. A further generalization (poset-valued pay-offs) is shown.

§0. INTRODUCTION

We shall consider quite general non-ordered games with perfect information, but
without chance moves. (‘““Non-ordered games’ means ‘“‘non-initial games on oriented
graphs”. The considered games may have infinitely many positions or players,
infinite plays are admitted, and the pay-off functions are chain-valued.)

Under our conception, at any moment of every play (of a game with perfect
information) the moving player knows the preceding course (including the momentary
position) of the play. In a contradistinction to the usually investigated games .on
(finite rooted) trees, in the considered games position need not “involve” the preced-
ing course of play; consequently, at defining the general (pure) strategies it is neces-
sary to introduce certain auxiliary notions (“segments” etc., see § 5). Nevertheless,
the case if players use only the knowledge of momentary position is to be considered
as the most important; the strategies corresponding to this case are called plain
(§§ 2.6, 5.6.3, 5.7.6).

The notion of (pure) equilibrium point in a position (of a game with perfect
information) can be introduced in the usual way; a system of strategies which is an
equilibrium point in each position of a game is called an absolute equilibrium point
of the game. An equilibrium point is called plain if it consists only of plain strategies.
(Cf. §§ 2 and 5.)

The basic known result — the so-called Zermelo — von Neumann theorem — concerns
only the games (with perfect information; chance moves are admitted) on finite
rooted trees. This theorem was obtained by H. W. Kuhn ([7], § 4) as a corollary of
his considerations on the decomposition of certain games; of course, it can be proved
directly, by induction (cf., e.g., McKinsey’s book [10], ch. VI, § 2, Th. 6.1). Never-
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theless, the original result of Zermelo (in [14]) concerns (chess and similar) games
which admit also infinite plays.

C. Berge has introduced and investigated (cf. [1], Ch. 1 of [2], and Ch. 6 and
Appendix 1 of [3]) games (with perfect information) which are more natural and
more general than the usually considered games on finite rooted trees, namely non-
-ordered games with perfect information. (Our conception of the latter games is
somewhat more general than that of Berge. Cf. § 2.) The Berge equilibrium point
theorem (it involves — after the elimination of chance moves —the above mentioned
variant of the Zermelo—von Neumann theorem as a special case see [2], Ch. I,
§ 7— the fundamental theorem, and [3], Ch. 6 — the Zermelo — von Neumann theorem)
says that if a Bergean game with perfect information is locally finite (i.e., it has no
_infinite play) and each of its evaluation functions is finite-valued, then the game has
(speaking in the terminology of the present paper) a plain absolute equilibrium point
(but cf. §§ 3.6, 3.5, 2.8 —9!). (Berge considers very special pay-off functions, namely
those corresponding to ‘“‘active” or ‘“‘passive” players. Cf. § 2.4.0.) The proof can
be performed in a natural way, but by means of transfinite induction (starting from
the end-positions).

The original result of Zermelo (see [14]) concerns very special antagonistic (see
§ 2.11) games with perfect information. This result can be generalized in several ways;
1 proved several such theorems even for a somewhat more general kind of non-ordered
antagonistic games (namely antagonistic complete games; the results of this charac-
ter are based mainly on theorems 6.25/1 —3 and 3.11 of [4]; they will be published
in some of the following parts of [4], their preliminary variant is presented in [5]).

The main purpose of this paper is to generalize Berge’s variant of the Zermelo — von
Neumann theorem. Our main theorem gives an essential generalization in four
ways: the notion of plain absolute equilibrium point is “stronger” and more natural
than Berge’s notion of absolute equilibrium point (cf. §§ 3.6, 2.8 —9); the class of
considered game structures (i.e. games without respecting pay-off functions) is some-
what richer (cf. §2); the class of pay-off functions (those satisfying the sufficient
condition of the theorem) is much richer, also after restriction to the locally finite
case; there exist games having infinite plays and satisfying the sufficient eondition
of the theorem. The latter way of generalization is to be considered as the most prin-
cipal, since the usual proof idea is quite inapplicable if infinite plays are possible.
(Cf. § 5.9.) Naturally, that sufficient condition is sizably s{rong (e.g., for each player
of a game, all the infinite plays give the same pay-off) — the existence of a plain absolu-
te equilibrium point is a “very strong property” (cf. § 5.8.1-2).

A certain part of the proof method (for the main theorem) is taken from the proof
of the equilibrium point theorem in [6] (§ 3.13; this theorem concerns a class of
finite complete (two-player) games), but the fact that infinite games are admitted
in the present paper has led to essential complications (connected, among others,
with the necessity of the use of transfinite induction), while the simpler structure of
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games with perfect information (in comparison with complete games) made possible
tQ use some simplifications (cf. § 5.11); there are some other disparities.

Of course, we wish to obtain a theorem which sufficiently utilizes the new proof
idea. This aim has led, especially, to the introduction of two auxiliary *“technical”
conditions ((A) and (B)) in the main theorem. There is a number of various particular
cases (having self-contained meanings) in which the satisfaction of the whole sufficient
condition is to be seen immediately; among others, the Berge theorem and the
original result of Zermelo belong to these particular cases. (Cf. § 3.) 4

In this paper we consider chain-valued pay-off functions. Nevertheless, it is possible
to introduce poset-valued pay-off functions, and to obtain some generalization. of
our results (§ 3) in a simple way; cf. §§ 5.0-5.5.

§1. ORIENTED GRAPHS. PSEUDOLENGTHS,
SPECIAL PAY-OFF FUNCTIONS

1.0. Preliminaries. We shall use the accepted logical and set theoretical denotations
and notions (7], A, Vv, =; “iff” is to-be read “if and only if”’; @ means the empty set,
X denotes the general cartesian product, etc.). For a set 4, card 4 denotes the cardinal
number of A4, and we write exp A = {B; B = A} (the Boolean of A). Under a binary
relation we mean a set of ordered pairs. Mappings are considered as special binary
relations: /' = {(f(x), x); x e dom f} for any mapping f (where “dom’ is the domain},
and we write f = (f(x); x e dom f), while {f(x); x e domf} = im f. There is exactly
one mapping with empty domain (the empty mapping), namely 8. For a mapping f
and a set 4 < dom f, the restriction of fto A is denoted by f| A (= (f(x); x€ A) =
= (im f x A)nf); of course, if g = f, then g = f| dom g. At mappings denoted by
Greek letters, sometimes we do not write parentheses.

A partially ordered set (poset) is a pair¥" = (V, <), where Vis a set and £ <
€ V x Vis a binary relation which is reflexive (on V), antisymmetric, and transitive;
¥ is said to be a chain (or a totally ordered set, or a linearly ordered set) iff, moreover,
< isfull on V. (Wesay that p = V x Vis full on Viff ¥V x V = p~1u p.) We
shall use the accepted elementary notions, denotations, and conventions for posets;
especially, if we consider several posets or a system of posets, we often use the symbols
<, >, sup, min etc. without index (whenever no misunderstanding can arise by it).

1.1. Chains. Let ¥~ = (¥, £) be a chain. ¥ is said to be complete iff sup A and
inf A exist for any 4 < V (i.e., iff the chain ¥~ is a complete lattice). ¥~ is said to be
well-ordered [inversely well-ordered] iff min 4 [max A] exists for any nonempty.
A < V. It is easy to prove that ¥~ is well-ordered and (at the same time) inversely
well-ordered iff V is finite. - '

1.2. Preference relations. Under a preference relation on a set X we mean a bir‘lary
relation £ < X x X which is reflexive (on X), full (on X), and transitive.
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Let X be a set, ¥ = (V, <) be a set with a preference relation, let f: X — V.
Then the relation f<._(f 5 = {01, x2); x(, x2€ X, f(xy) osf(xz-)} is a preference
relation on X. '

On the other hand, if X is a set and < is a preference relation on X then there exist
a chain¥" = (V, <) and a mapping f: X —».¥ such that < = =(f,,/). [It is suf-
ficient to choose ¥V = X/(£ 'n 2) = {{y; yeX, y<x, x <y}; xeX} (the
decomposition corresponding to the. equivalence. relation £~ 'n ), f= ({y;
yeX,y<x,y < »}; x € X) (the natural surjection of X onto V), and < = {(f(x,),
f(x2)); X1, x, € X, x; £ x,}. We shall denote 7'z =¥ and fz = ffor those¥” and f.]

1.3. Quasiorderings. Under a quasiordering on a set X we mean a binary relation
(in X) which is reflexive (on X) and transitive. It is easy to see that it is admissible
to re-formulate § 1.2 in the following way: “quasiordering” is to be written instead
of “preference relation™, “poset” is to be written instead of ‘“chain”, and “full
(on X), > is to be omitted. A

1.4. Let X be a set, let ¥", = (V;, <,) be chains and f, : X -V, for k=12
We say that f; with¥"; and f, with¥", express the same preference iff < _( v =
= _( f2.92) WE say that f, with¥"y and f, with¥", express antagonistic preferences
i 2 v = (S v

1.5. Definition, remarks. Let < be a preference relation on a set X. We introduce"
binary relations <° (e = +, —) on (exp X)\ {0} in such a way: for 0 # 4, B€ X

A <* B<> for each a € A4 there exists b € B such that'a < b;

A <~ B> for each b € B there exists a € 4 'such that a < b.

These two relations are preference relations on (exp X) \ {0}. [Evidently, they are
reflexive and transitive. If 0 # 4, B< X, 7B g * A, then there exists by € B such
that 7] b, < a for each ae A4, but then a < b, for each ae A4, and, therefore,
A £ *B. The fullness of £~ can be proved analogously.]

In particular, if < = °§( .+ for some complete chain¥” = (¥, <) and a suitable
mapping f: X — V, then (for € = +, —) there holds: <° = °§(fs,,f), where the
mapping f° : (exp X)\ {0} —» V is defined in such a way:

S*(A) = sup {f(a); ae A}, f~(A) = inf {f(a); a€ 4},

where § # A < V, and sup and inf are taken in¥". (The proaf is simple.)

The motivation pf the introduction of <* and <~ is connected with preference
relations and pay-off functions in Bergean games with perfect information. (See
§24.1)

1.6. Graphs. Under an oriented graph (or only: a graph; we shall consider only
oriented graphs) we undersand a mapping I such that

imI’' € expdom "
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(this definition conforms to-Berge’s conception of oriented graphs; we do not denote
a graph by (I', X) with T : X - exp X, as X = dom I is given by I').

1.7. Convention. (Positions.) If a fixed graph I' is considered, we use symbols P,
P,, Z in the.following sense:

P=domT, P,={x;xeP,Tx =0}, Z=P\Py;

the elements of P (i.e., the vertices of the graph I') [P,; Z] will be called positions
[final positions, or terminal positions; nonfinal positions, or nonterminal positions]
(respectively).

1.8 Our interpretation of graphs corresponds to that of Berge: if I' is a graph,
x € P, then y € I'x occurs iff “I" contains an edge which goes from x to p”°; therefore,
a vertex (position) is terminal iff there does not exist an edge going from it. In our
considerations (in the following §§), I’ will usually be the graph of a game, and then
I'x means the set of (all) positions which can follow immediately after x; any play
(cf. § 1.13) of such a game is performed in the following way: at a nonfinal position x,
the moving player chooses an element y € I'x as the next (following) position, while
at any final position the play terminates.

1.9. Transformations. Let I be a graph. The set
T = U XTIz

YCZzeY

is said to be the set of plain T'-transformations; we shall say “T-transformation”,
too (as the general I'-transformations are not considered in the main parts of this
paper; cf. § 5.6.1). E.g., 4 is a I'-transformation (the empty I'-transformation). ¢ € T(I')
is said to be full iff dom o = Z. T¢(I') will denote the set of full I'-transformations.
Under a conservative I'-transformation we mean ¢ € T(I') such that im ¢ < Py U
U dom o; of course, the empty I'-transformation and also all full I'-transforma-
tions are conservative. Clearly, a subset of a I'-transformation is a I'-trans-
formation, too. '

1.10. Denotation. In the whole paper, we denote

w=1{0,1,2,...} u{wo}
and, for any /€ W,

W= (k;ke W,k <1+ l}(= {g}\%w}’}} i I{:}oo)

14+ o= oo).. w will denote W with the natural ordering.

1.11. Definition. Let /€ W, let y = (y,; k € W) (be a mapping of W)), and let x
be an element. Then we put x @ y = (x,; k € Wi+)), where x, = x and X41 = W
for each k € W,.
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1.12. Definition. Let /e W, let x = (x,; ke W) (be a mapping of W), let me W,.
Then we put x™ = (x,,.; ke W,_,) (00 — m = w0); x is called the mth re-

mainder of x.

1.13. Definitions, remarks. (Plays.) Let I" be a graph. We say that x is a I'-play
(or only “a play”, if I is fixed) iff x = (x,; k € W}) for some / € W and some elements
X, € P such that x,,, e 'x, for each k < I, and x, € P, if ] < oo (cf. § 1.10). X,
(or only X) denotes the set of all T-plays. We say that x = (x; k€ W,) € X starts
from x iff x, = x I'x will denote the set of all plays which start from xe€ P, and I’
is considered as the corresponding mapping, i.e. I' = (I'x; xe P). Clearly, X ="|J I'x,

xeP
and I'cxnTy =90 if x, ye P, x # y; it is easy to see that I'x # ¢ for each x e P.
If x € Py, then I'x contains exactly one element, namely I'x = {(x;; k = 0)}, where
Xo = x; we shall denote this I-play by (x). We say that x = (x;; ke W)e X
passesin Y < Piff {x,; ke W} c Y.

For x = (x,; ke W))e X we denote L(x) = [ (the length of x; x is said to be
infinite iff L(x) = o). L (or L) itself is considered as the corresponding mapping
(Lr=L=(L(x) xeX):X— W), and it is called the (natural) length on T.

T is said to be locally finite (or progressively finite; cf. [2], ch. I, § 7, or [3], ch. 3)
iff L(x) < oo for each x € X (i.e. iff I" has no infinite play). Of course, it may happen
that I is finite (i.e. P is finite) and is not locally finite, or conversely.

Evidently, if x e X and me Wy,,, then x"le X. If x, ye P, ye Ty, then x @
@yeXiff yelx. ‘ :

Supposition. In the remainder of § 1, let " be a fixed graph, X = X;.

1.14. Transformations and plays. Let e T([), x = (x;; ke W)e X. We say
that x complies with o iff

k<l x;edomo = x,,, = 0X;.

It is easy to see that if ¢ is a conservative I'-transformation and x € P, U dom o,
then there exists exactly one x € I'x which complies with ¢ ; this [-play will be denoted
by p(x, o).

Clearly, if xe P, ye'x, ye 'y, 6 € T(I'), and if y complies with o, then x@ y
complies with g iff y = ax.

1.15. Plain sets of plays. Y = X is said to be plain iff there holds: if x = (x;;
keW)eY, y=;;keW)eY,m<r,n<s,x, =y, then X4 = Vps1.

It is easy to see that Y = X is plain iff there exists o € Tg(T") such that any xeY
complies with o.

1.16. Pay-off functions. A (general) pay-off function on T is given by a chain
v = (V, £) and a mapping f: X — V (but usually f is called “pay-off function”,
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while ¥~ is to be given separately); the pay-off function is said to be real-valued iff
the chain of real numbers may be taken as that¥".

1.17. Pseudolengths. A pseudolength on I is given by a chain w'* = (W*, £¥)
having the greatest element (the latter will be denoted by oco*) and by a mapping
L* : X - W* such that the following conditions are satisfied (for any x € X, x € P):

D(1) L(x) = oo = L*(x) = co*

D(2) yelx,y,,y,ely, L¥y,) £*L¥y)=>L*&x @y, £*L*x D Y2)
D3) yelx,yely, L¥(x @ y) <*o*=L*x @ y) >*L*(y);

of course, in such a case there holds

D'(2) yelx,y;,Y2ely, L¥y) = LXy) = L*x @ y,) = L*(x @ v2)
D'3) yelx,yely=L*x®y)2*LXy).

E.g., L (with #°) is a pseudolength. Further, the constant mapping of X into {co}
(with the one-element chain containing o) is a pseudolength; it will be called the
trivial pseudolength. (We have not said “...onto {00}”, as it may happen I' = 4,
then X = @, and the trivial pseudolength is the empty mapping.)

1.18. Qualitative pay-off functions. Let L* with a chain #°* be a pseudolength on T.
Under an L*-qualitative (or, more exactly speaking, (L*, # *)-qualitative) pay-off
Sfunction (on T') we mean a real-valued pay-off function f* on I' such that the follow-

ing conditions are satisfied (for any x € X):

D(o) » Frx)e{=1,0, +1}
D(i) L(x) = 0 = f*(x) =0
Dyii) A f¥(x) = 0= L*(x) = oo*
D(iii) 0 < L(x) = f*(x) = f*(x(1});

of course, in such a case there holds (for x = (x; k € W)))
D'(iii) L(x) < 00 = f*(x) = f*((xpex) (= £4(xH),

i.e., the pay-off for a finite play is determined by the terminal position of the play,
while (cf. D(i)) any infinite play gives O as the pay-off.
E.g., the constant mapping of X into {0} is an L*-qualitative pay-off function.

1.19. Quasiqualitative pay-off functions. Let L* with a chain # * be a pseudolength
on T, let f* be an L*-qualitative pay-off function. Let f with a chain¥" be a pay-off
function on I'. We say that fis an L*-quasiqualitative pay-off function complying
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with f* iff the following conditions are satisfied (for any X, ¥, Y1, Y2 € X, x e P; cf.
§ 1.0):

D(1) yelx,y,,y, eIy, f(y) S f(y) =fx@®y,) SfxDY2)
D(2) [*) < fX(y) = f(x) = f(y)

o6 rrw=rm={1h  rw<rmn=rw{Eo.
D(4) SX) = f*(y) 2 0, L*(x) = co* = L¥(y) = f(x) = f(y);
of course, D(4) can be expressed equivalently in such a way:

D(El) f*(x) = f*(y) = 1, L¥x) = oo* = L¥(y) = f(x) = f(y),
D(4.2) FXx) = f*(y) = 0= f(x) = f(y)

(cf. D(0), D(ii)). ‘
E.g., the function f* itself (with the chain of real numbers) is an L*-quasiqualitative
pay-off function complying with f* (namely, then D(1) follows from D(iii)).

1.20. The interpretation (cf. §§ 1.17—19). Let L* with a chain #"* be a pseudo-
length, let f* be an L*-qualitative pay-off function, let f be an L*-quasiqualitative
pay-off function complying with f*.

L* can be interpreted as a certain criterion of the continuance of plays; oo* means
the ‘“‘very long” continuance. The conditions D(1)—D(3) are natural and their
meanings are clear.

+1 [0; —1] means (as a value of f*) “win” [“draw”; “loss”]; therefore, any
infinite play is drawn (under f*, see D(ii)), and the “qualitative result” of any finite
play x is equal to the natural evaluation f*((x)) of its terminal position x (cf. Di(iii)).
The condition D(ii) has a special character; only “very long” plays may be drawn.

Note that the important condition (of a certain monotony at one-move extensions
of plays) expressed by D(2) for L* and by D(1) for fis not so strong as could be
expected; cf. § 1.25.1. '

The meanings of the other conditions are clear: D(2) expresses the compliance of f
with f*; D(3) says that “more rapidly” (in the sense given by L*) won [lost] T-plays
are (nonstrongly) better [worse]: D(4.1) says that all “very long” won plays have the
same value (under f); similarly, D(4.2) says that all drawn plays (they are ““very long”,
see D(ii)) have the same value.

1.21. Lemma. Let T be locally finite. Let f with a chain¥” be a pay-off function on T.
Then the following statements are equivalent:

‘(A) There exists a pseudolength L* (on T') with a chain W* and an L*-qualitative
pay-off function f* (on T') such that f is an L*-quasiqualitative pay-off function com-
plying with f*.
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(B) f is an LC-quasiqualitative pay-off function complying with f° where L° is the
trivial pseudolength on T, and (the L°-qualitative pay-off function) f° is the mapping
of X into {—1}.

(C) f satisfies the condition D(1):

Proof. Evidently, f© is an L°-qualitative pay-off function. Of course, (B) = (A),
and (A) = (C). If (C) is satisfied, then D(o)—(iii) and D(2)—(4) with L* = L°,
f* = fO are satisfied in a trivial way, while D(1) is satisfied by the supposition; hence,
(B) holds. Therefore, (C) = (B).

1.22. Lemma. Let f be a real-valued pay-off function onT'. Let the following conditions
be satisfied (for any x € X, x € P);

(@) L(x) = o0 = f(x) = 0
() yelx,y,y:eln [ fy) | S 1) | = 1fG®Y) | S fx DY)l
@) L(x) >0, f(x[“){ i}" =f(xf“){§}f(x){ i}o

Let w* = (W*, <*) be the chain with W* = [0, 0] x [0, 0] and with the lexico-
graphic ordering as <*, let 0* = (00, ) (the greatest element of W *).
Let mappings f* and L* of X be defined in the following way:

F4(x) = {:)gn f(xL01 } i L(x){:} o,

w0 - (T @)y re0{*}o.

0¥

(for any x € X), where sgna =1 [0: —1] ifa > 0[a =0:a < 0].

Then L* with W'* is a pseudolength (on I'), f* is an L*-qualitative pay-off function,
and f is an L*-quasiqualitative pay-off function complying with f*.

Proof. There holds;

B) [veTxyi,y.ely,f(y)) Sfy) =fx @y, = f(x @ y)] (=D(D))

0" L) > 0= |f(x") | 2 | f(x) |

[L(x)]
o) I {EFE e oS,
6 720 = sen )

[see: (8) and (3); (); (v') and (®); (3) and (a) (respectively)]-
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The satisfaction of DD(0), (i), (iii), (4) follows from th_e definitions given by the
lemma. The satisfaction of DD(1), (2), (3), (ii), (1), (2), (3) follows from: (x); B);
™); @) (B); (@™); (¥") (respectively). Thus, the lemma is proved.

1.23. Lemma. Let 0 # T < [0, ), let ¢ : T x {0,1,2,...} - [0, 00) be such that
forany t,t,,t,€T, 1;,1,€{0,1,2,...} there holds;

@a.1) L <t=0(,) <o)
(a.2) L<bh=oetl)zoel)
(b) ot, 1)) = ot I + 1)= o, 1)) = o, 1) foreachl, > 1,.

Let h be a (real-valued) function on P, such that
{lh(x)|; xe Py} = T.

Let f be the real-valued pay-off function (on T') such that for an arbitrary x =
= (x4; k € W)) € X there holds

F(x) = {g(l h(x)1,1). sgn h(xt)} i ,{<} .

Then the conditions (), (B), (y) (§ 1.22) are satisfied (by this f).

Proof. (x) follows immediately from the definition of f, (y) is to be derived by
means of (a.2). Letxe Z,x,ye I'x, x = (x,; ke W),y = (k; ke W), (f(x“])l <
S 1AM ). If 1 = oo, then | f(x)| =0 £ |f(y)|. If [, = oo, then L(y'")) = oo,
fO) | S 1Y) | 2 1A | = O(see (), (), ie. | f(x)] =0 =|f(y)|. Let!; < o0,
Il <oo. We put ry = | h(x;,) |, ry = | h(y,) |- Thus, |f() | = @(ry, 1), [f(y)| =
= @(ry, 1), @(ry, 1, — 1) = [fOO" ] < | f(y") | = @(r2, [, = 1). Hence, r; <r,
(see (a.1)). If ry < r,, then (cf. above and again (a.1)) | f(x)| < [f(y)|. Let r, =
=r=r Il 2 1, then |f(x)| = o(r, 1}) < o(r, L) = 1f(y)| (see (2.2)). Now,
letl, <l,.Thenl, —1 <, £, — l,and o(r,I; — 1) 2 @(r, 1)) = o(r, 1, — 1) =
2 o(r,l; — 1) (cf. above and (a.2)), hence o(r,/; — 1) = o(r,1,), thus (cf. (b))
|f(x) | = o(r, ;) = ¢(r, 1) = | f(y) |. We have proved that | f(x)| < | f(y) | in any
case. Consequently, there holds even ~

®) x5 %, €T, | f(x{) | < 1A | = [ fixy) | £ 10x2) |,
which, of course, implies (B).
1.24. Important particular cases of the situations considered in §§ 1.22-1.23,
1.24.1. (Cf. § 1.21.) Let T be locally finite. Let¥" = (V, £) be a chain, let
F:{(x,y,v);xeP,yelx,veV} >V,
let (for any (x, y, vy), (x, y, v,) € dom F)
*) v S o= FO ) S FG ).
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Let
hy:Py— V.

It is easy to prove (by induction) that there exists exactly one mapping f: X - V
(it, together with ¥, will be considered as a pay-off function on I') such that

S((x)) = ho(x) if  xeP,,
f(x®@y) = F(x,, F(y)) if xeP,yelx,yely.

Evidently, f satisfies the condition D(1).

In particular, if o is a binary operation on ¥ such that (V, o, <) is a linearly
ordered abelian semigroup (hence, if v,, v,, v;, v,€V, then v, S v; A v3 S v,
implies v, 0 v3 £ v,00,), and h : P - V (the so-called evaluation function), then,
if we choose F and Ay such that

F(x,y,v) = h(x)ovforany xe Z,yeI'x,ve V,
hy = h| Py,

we have a particular case of the above introduced situation, and
J(x) = h(xg) o h(x)) o ...0 h(x)

for any x = (x,; ke W)) e X. E.g., it is possible to choose the set of real numbers
as V, the natural ordering as <, and © = max or o = min (where “max” and “min”’
are considered as binary operations) oro = + ; clearly, the case © = max [0 = min]
gives exactly the “active” [“passive’”] pay-off functions (on the locally finite graph I')
in the sense introduced by Berge (cf., e.g., [2], ch. 1. § 2).

It is easy to generalize somewhat the case with (“‘vertex-’) evaluation, e.g. by
introducing some “mixed” evaluation (given by some end-vertex evaluation hy : Py —
— V and an “edge evaluation” hg : {(x, y); xe P, yeT'x} - V).

1.24.2. (Cf. § 1.23.) Let g be a real-valued pay-off function on I', let g(x) = 0
if L(x) = o0, let g(x) depend only on the terminal position of x if L(x) < co0. Choosing
T = [0, ), and (see § 1.23) (t, r) = tforeach te T, r = 0, 1, 2, ..., h(x) = g((x))
for each x € P,, we see that g = f where fis given by § 1.23 to the above described
T, @, h.

1.24.3. (Cf. § 1.23.) A real-valued pay-off function f* is said to be qualitative
iff it satisfies the conditions DD(o) (i), (iii); the interpretation is the same as that (of
f*) mentioned in § 1.20. If we wish to express such an interest under which (at a given
qualitative pay-off function f*) more rapidly won [lost] plays are considered as

L eT,r=0,1,2,..)

14+
h(x) = f*((x)) (see § 1.23), and then the pay-off function f given by § 1.23 expresses
the above mentioned interest. ' " ‘

better [worse], we can choose, e.g., T = {0, 1}, o(t,r) =
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1.25. D(1), D(4), and some stronger conditions. Let f with a chain ¥ = (V, £)
be a pay-off function on TI.

1.25.1. We introduce condition

D(*) yeeTx, yye Tylk = 1,2,), f(y;) S fly) > f(x @ y1) S f(x D y2),

which is, evidently, stronger than D(1)."
E.g., the pay-off functions fin the special case in § 1.24.1 (that in which fis given
by A, at (V, 0, <)) and in §§ 1.24.2-3 satisfy even D(1 ).

1.25.2. Further, we introduce condition
D@*) S¥(x) = f*(y), L*(x) = o0* = L¥y) = f(x) = f(y),

which is, evidenty stronger than D(4).

E.g., the pay-off function f considered in § 1.22 (which, of course, involves the
cases considered in §§ 1.23, 1.24.2-3), with L* and f* introduced there, satisfies D(4*)
(as, even, L*(x) = oco* implies f(x) = 0, in § 1.22).

1.26. On the linear transformations at real-valued pay-off functions.

Let f be a real-valued pay-off function on I', let A # 0 and ¢ be real numbers,
let g = ¢ + M(= (¢ + M(x); x e X)). There is a number of trivial but very useful
auxiliary propositions on transfering the properties of f to g; we shall need the
following ones:

a) If 1 >0 [A < 0], then f and g express the same preference [antagonistic
preferences].

b) If f satisfies (), (8), () (§ 1.22) and ¢ = 0, then g satisfies (a), (B), (7). If fis
given by some ¢ and # in the sense described in § 1.23, then g is given by ¢ and 4 .
.sgn 4.

¢) Let L* (with some #°*) be a pseudolength (on I'), let f* be an L*-qualitative
pay-off function. Let g* = f* . sgn A. Then g* is an L*-qualitative pay-off function.
If fis an L*-quasiqualitative pay-off function complying with f*, and if

either A > 0, ~
or 2 < 0 and f satisfies D(4™),

then g is an L*-quasiqualitative pay-off function complying with g*.
Note that linear transformations can be applied also in such a way: real numbers
A # 0, ¢(k = 1, 2) are given, and pay-off functions f, = ¢, + A, f are considered;

of course, then f,_; = (c,-,, - c,‘;;,_,) + '1;"" fifork =1,2.
k k

f
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§2. GAMES WITH PERFECT INFORMATION

2.1. Partitions. We say that (P(j); j € J) is a partition of a set Piff (Jis a set, P(j)
are sets, and) |J P(j) = P.
jeJ
Convention. If a partition (P(j); j€ J) of a set P is given, we denote, for each
x € P, by j(x) that element of J for which

Y € P(j(x))

(of course, there exists exactly one such j(x)).

2.2. Definition. Under a game with perfect information (we write only g. p. i., too)
we mean a 4-tuple

G =, (PG)je) V=V £)ijed),(f;5/€d)

such that T is an oriented graph, (P(j); j€ J) is a partition of P = dom T, ¥7; is
a chain, and f; : Xp = V; (i.e., f; with¥7; is a pay-off function on I') for each je J.
% is said to have a property introduced for graphs (cf. § 1.13) iff T has this property.

2.3. Definition; remarks on the interpretation. Let
G =(T,(P(j); jed), (¥ j=(V;, ) je ), (fj;je )

be a g.p.i. I is said to be the graph of %, (T, (P(j); j € J)) is called the game structure
given by ¢4, and
(T, (PG); Je ) (Sgvps JED)

is called the preference form of 4.

The interpretation of T', P, P,, Z, X = X (cf. convention 1.7) is given by § 1.8.
J is the set of players (if J = 0, then necessarily P = 9). f; with¥"(je J) is the pay-off
function of player j . P(j) is the set of all the positions at which it is the player j’s turn
to move (of course, actually j moves only at the positions from Z n P(j)). A play
(starting from some position x, € P) is performed in the natural way (cf. § 1.8);
if x is a momentary nonfinal position of the play, then the moving (i.e. the choice
of an element of I'x (as the next position) performing) player is j(x).

The preference form of a g.p.i. is nat so natural as the formally defined g.p.i.
(§ 2.2) itself, but, on the other hand, all the notions and properties introduced in this
paper for games with perfect information could be formulated in terms of the preference
Sforms [see, in particular, § 2.10; of course, some notions (e.g., plain strategy) can
be introduced in terms of game structures or even in terms of graphs (e.g. plays)].

Note that any triple ‘

(T, (PG je ), (£5;/€ )
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where T is an oriented graph, (P(j); j€ J)is a partition of P = dom T, and °§j(je J)
are preference relations on X — such an object will be called a g.p.i. in preference
form—is the preference form of a suitable g.p.i. (e.g., of

(O, (PG TN, (F 2,5 je ), (fz, i€ D)

cf. § 1.2). Therefore, for the aims of this work the concept of g.p.i. in preference form
could be given as the basic notion, instead of the notion of g.p.i.

Note that also the notion of g.p.i. in preference form is somewhat redundant from
the formal point of view (as the graph I' can be omitted; namely, if J = 0, then
P =0 =T,if J # 0, then any °§j determines X and, hence, I' uniquely).

2.4. Bergean games with perfect information.

2.4.0. Any Bergean game with perfect information (that introduced by his general
definition in [2], Ch. I, § 2) can be defined formally as

@, Py, P (24, ..., S NT,ND)

where I is a graph, # is a positive integer, N* UN™ = {l,...,n} (= N,N* AN~ =
=0, (P;; je J) is a partition of P = dom I', and < j(j€ J) are preference relations
on P; moreover, Berge supposes that P(j(x)) n I'x = @ for each x e P. Here N is the
set of players (or of the numbers of players), elements of N*[N ] are called active
. [passive] players. For any j€ N, there exists exactly one &€ {+, —} such that
Jj € N*; we shall denote this ¢ by &(j).

2.4.1. It is easy to see that the adequate description of the interests of the players
in a Bergean g.p.i. (in the sense of § 2.4.0) can be given, in terms of preference rela-
tions on X, in the following way: if je€ N, then the player j’s preference relation
on X = X. equals °§w,¢?l_) where g = ({x; ke W;}; (x; ke W)e X) (: X >
— (exp P\ {0})), and ¥; = (X, £59) (§ 1.5). In such a way we have transformed
any Bergean g.p.i. to a g.p.i. in preference form, and the latter could be “naturally
represented” by a g.p.i. (cf. §2.3). In this sense and from our point of view (see
§ 2.3), Bergean gs. p.i. may be considered as a particular case of gs. p.i. introduced

in §2.2.
~ 2.4.2. In the most usual case, the preference relations < jon P of a Bergean g.p.i.
(§ 2.4.0) are given by real-valued “evaluation functions” f; on P, ie. <; = ;(h.m
(cf. § 1.2) where £ is the chain of real numbers. It is easy to see“that in this case the
natural pay-off function f; = 57 . g [where f57 is defined by § 1.4 to V" = * =
= ([— o0, +o], £) (£ is the natural ordering), X = X, and f = f;] with #*
gives exactly the player j’s preference relation (on X) described in § 2.4.1, ie.,
Sen = Synan-

2.5. Of course, also the usually considered games with perfect information, with
real-valued pay-off functions, and without chance moves on trees are involved in
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our definition (§2.2); the most usual case (the tree is finite, and the pay-offs are
determined by the terminal positions) can be considered as a special case of Bergean
games with perfect information (each player may be considered as active or as passive,
and then his evaluation of nonfinal positions is less than or greater than (respectively)
any evaluation of final positions). (Here we consider trees as special oriented graphs,
and then the root of any tree is determined by the tree itself; thus, the initial position
of a game of the mentioned kind need not be presented in the formal definition of the
game.) .

Supposition. In the remainder of § 2, let
9=, (P(j)ijed), (V;=(V;, Sp;je ) fjsje )
be a game with perfect information. (Cf. §§ 1.0, 1.7, 2.1.)

2.6. Convention, definition. p will have the meaning introduced in § 1.14. We shall
write
Z(j) = Zn P(j),
S()= X Tz §=X3().
zeZ(Jj) jeJ
Elements of S(/) are called the plain strategies of j (in %). Elements of S are said to
be the plain strategic situations.

2.7. Remark. There exists a natural bijection of S onto Te(I'), namely (o;; je J)|—
I— U o, (for each (s;; je J)eS). (If J=0,then P=0, T =0, § = {#} = T(I).)

jed *

2.8. In accordance to the well-known fundamental definitions (cf., e.g., [10],
Ch. VL. 2), the definition of equilibrium point consisting (only) of plain strategies
(or, as we say, of plain equilibrium point) in some x° € P (this position is considerzd as
an initial position) is to be formulated in such a way: ¢ = (0;; je J)e Sisa plain
equilibrium point (of ¢) in x° iff for each j, € J and each x € I'x° complying with
o; for any je J\ {Jo} there holds f; (x) <, f,(y) where y is that element of I'x°
which complies with ¢; for each j e J; note that it may happen that that x does not
comply with any plain strategy of the player j.

Using the 1-1 correspondence among the elements of § and those of T(I') (§ 2.7),
we can give the direct definition of plain absolute equilibrium point (cf. § 0) in terms
of full I'-transformations:

2.9. Definition. Under a plain absolute equilibrium point of % we mean o € Tg(I')
such that for each xe P, je J, and for any x € I'x complying with ¢ | (Z\ Z(}))
there holds

Jix) = fi(p(x, 0)).
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2.10. Remark. Of course, in the situation from §2.9 fi(x) <; fi(p(x, 0)) if and
only if x £, 1,9 P(x, 0); therefore, the notion of plain absolute equilibrium point
could be formulated in terms of preference forms of gs. p.i.

2.11. Definition, remark. The game ¥ is called antagonistic iff card J = 2 and,
for {j;, j»} = J, the pay-off functions f; , f;, (with ¥7;,, ¥7;,) express antagonistic
preferences. '

E.g., if J = {ji, 2}, 1 # j2, and if there exist a real-valued pay-off function f
(on T') and real numbers 4,, c,(k = 1, 2) such that f; = ¢, + 4 f(k = 1, 2) and
AA, < 0, then ¥ is antagonistic. (Cf. § 1.2.6.)

If ¢ is antagonistic, then we also say ““... saddle point™ instead of *“... equilibrium
point*.

§3. THE MAIN THEOREM. PARTICULAR CASES

(See the conventions in §§ 1.0, 1.7, 2.1, 2.6.)
3.0. The main theorem. Le?
G = [, (P, jeD),(¥V;=(V;, £));j€J), (f;sje]))
be a game with perfect information.
Let there exist a pseudolength L* (on T) with a chain W* = (W*, £%), and, for
each j € J, an L*-qualitative pay-off function f f such that the following statements (0),
(A), (B) are satisfied:

(0) For each je J, f; (with¥";) is an L*-quasiqualitative pay-off function complying
with f f

(A):
(A.1) {L*((x)); x € Py} is well-ordered (in W' *).
(A2) Let V£ Z, (¥(2); zeV)e X (Tz\V), (y(z); zeV)e X T'y(z); let set

. Zey ZE€y
{y(2); ze V} be plain, and let each y(z) (z € V) pass in P\ V. Then {L*(z @ y(2));
z € V} is well-ordered (in W' *).

(B) Let ze Z, (y(2); yeT'z) e X Iy, and let set {y(y); y € 'z} be plain. Then

yerz

(B/1) {fi)\z ® y(»)); y € Tz} is inversely well-ordered in ¥, ;
(B)2) if {fiy(y(»)); y € Tz} {3} {—1}, then set {L*(z ® y(»)); ye Tz}
. {muersely well-ordered} (in W'¥).

well-ordered
Then the game % has a plain absolute equilibrium point.

3.1. Remark. The proof is presented in § 4. The idea of the construction of a plain
absolute equilibrium point of the game % is based mainly on the condition (0);
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each of the conditions DD (1) — (3), (0) — (iii), (1) — (4) is used essentially in the
proof. The realization of this idea necessitates certain auxiliary ‘‘technical” conditions;
we have chosen the conditions (A) and (B). This choice seems to be the most useful;
our aim is not the full utilization of such conditions, we only wish to obtain immedi-
ately a number of important particular cases from a common result, and the theorem
serves well for this aim, as we show in the following.

3.2. Theorem. Let

=@, (PG Je), (V; =V, £p)5jed)(f;;je )
be a game with perfect information. K
Let L* be a pseudolength (on I') with a chain W' * = (W* <*), and, for each je J,
let f% ; be an L*-qualitative pay-off function such that f; (with ¥"}) is an L*-quasiquali-
tative pay-off function complying with f ’f ‘
Let there occur at least one of the following three cases:

(I) P is finite.
(I1) im L* is well-ordered (in W *), and T'x is finite for each x € P.
(ILT) im L* is finite, im f; is inversely well-ordered for each je J.

Then the conditions (A) and (B) from the main theorem are satisfied, and (therefore)
the game % has a plain absolute equilibrium point.

(The proof is trivial.)

3.3. Remark. Of course, at applying the theorem, further trivial or simple pro-
positions could be used (X is finite = P is finite; # * is finite = im L* is finite,
etc.; see §1.1). The case (II) is involved, e.g., in the following case (II'*), and
the latter is sufficient (in the situation from § 3.2) for the satisfaction of (A) and (B),
too:

(1) im L* is well-ordered (in W'*), and for each z € Z there exists a set Y < I'z
such that sets {f;,(z @ y):ye Y,yely}and {L*(z® y); ye Y, ye 'y} are inversely
well-ordered (inV" j,, and W*, respectively), and T'z\ Y is finite.

(Namely, {L*(z @ y); y€ Y, ye 'y} is finite if it is inversely-well ordered, as im L*
is well-ordered (cf. § 1.1); the case (II) occurs if the choice Y = § is admissible for
eachze Z)

3.4. Theorem. Let
9=, (PG)jed),(¥;=;, ), jed)(f;sjed))

be a game with perfect information.

If % is locally finite and, for each je J, f; satisfies the condition D(1) and im S
is inversely well-ordered (in¥";), then % has a plain absoluté equilibrium point.
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(This follows immediately from §§ 1.21 (cf. (C) = (B)) and 3.2 (cf. case (II); namely,
imL° < {o0})))

3.5. Remark. Important corollaries of § 3.4 can be obtained by means of § 1.24.1,
which presents a general construction of pay-off functions (on locally finite graphs)
satisfying D(1). In particular, there holds:

The Berge variant of the Zermelo — von Neumann theorem (cf. §§ 0, 3.6). Any
locally finite Bergean game with perfect information and finite-valued evaluation fun-
ctions (§§ 2.4.2, 2.4.0) has a plain absolute equilibrium point.

[Namely, in the considered case plain absolute equilibrium points can be defined
in terms of the natural pay-off functions (cf. §§ 2.10, 2.4.1, 2.4.2), but, evidently,
the latter can be expressed in the way mentioned in § 2.4.1 (and, hence, they satisfy
D(1)), and they are finite-valued. Thus, the proposition follows from § 3.4.]

3.6. Remark, definition. Under a weak plain absolute equilibrium point of a
game

9=, (P(j)jed),(¥V; = (V. £));je ) (fj5/€T))
with perfect information we mean o € Tg(I') such that for any je J and ¢’ € T(I')

o' [(Z'\ Z(j)) = o | (Z\ Z(j)) = fi(p(x, 0")) <; fi(p(x, 0)).

It is clear that if ¢ is a plain absolute equilibrium point of 4, then ¢ is a weak plain
absolute equilibrium point of ¢. On the other hand, if I" contains no cyclic path
(under a cyclic path of I" we mean a finite sequence xg, ..., x,, € P(m = 0) such that
xjel'x;_, forj=1,...,m, and x, € I'x,,), then any weak plain absolute equilibrium
point of ¢ is a plain absolute equilibrium point of ¢ [namely, if ¢ e T, je J,
and if x € X complies with o | (Z\ Z(j)), then there exists ¢’ € Tg(I') such that
x = p(x, ') (etc., cf. § 2.9)]. Clearly, if " is locally finite, then it contains no cyclic
path. ‘

The notion of weak plain absolute equilibrium point expresses, in terms of this
paper (and for the games considered here), the original Berge’s notion of *“(absolute)
equilibrium point™ (see [2], Ch. I, §§ 7 and 3). The preceding remarks show that
the formulation of the Berge theorem used in § 3.5 is equivalent to the original Berge’s
formulation (in [2], Ch. 1, § 7), although the latter concerns weak plain absolute
equilibrium points. '

3.7. Theorem. Let
$ = (L,(PU)sje ), (V= (V;, S psje ) (fisie )
be a two-player game with perfect information, let J = {Jx v Ja}-
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Let there exist real numbers ., ¢k =1, 2) and a real-valued pay-off function f
(on T) such that the conditions (), (B), (v) (§ 1.22) are satisfied, and

fi=a+hf (k=1,2),
Ay .43 <0,

Let there occur at least one of the following two cases:

(I’) P is finite.
(1) {lf(x) |; x € X} is inversely well-ordered, and Tx is finite for each x € P.

Then 9 has a plain absolute saddle point.

Proof. Let #'*, f*, L* be the same as in § 1.22, let fJ: = f*. sgn ALk = 1, 2).
By means of §§ 1.22, 1.25.2, 1.26 (especially, cf. part c)) we conclude that L* with
W#* is a pseudolength (on I') and, for each je J, f;‘ is an L*-qualitative pay-off
function such that f; is an L*-quasiqualitative pay-off function complying with
f’;. Evidently, if {| f(x) |; x € X} is inversely well-ordered, then (cf. § 1.22) im L*
is well-ordered. Consequently, if (K") holds for K = I or K = II, then we have the
case (K) from § 3.2; therefore (see §§ 1.26, 2.11) ¥ has a plain absolute saddle point.

3.8. Remark. Of course, it would be possible to derive a certain corollary of the
main theorem for the antagonistic case (by means of a suitable re-formulation of the
“technical conditions” (A), (B) (§ 3.0) to pay-off functions constructed by means
of §§ 1.22 and 1.26, etc.), but we take interest in (immediately applicable) important
particular cases (cf. § 3.1); thus, we have based the antagonistic-case result (§ 3.7)
directly on § 3.2. (Note that the case (III) in § 3.2 is not useful here, as it would
lead to
1) {1f0)1; xe X} and {L(x); xe X} are finite,

but this gives only a very special case of the situation considered in § 3.4.)

3.9. Remark. Important corollaries of § 3.7 can be obtained by means of § 1.23,
which presents a general construction of (some) functions f (§ 1.22), and by means
of the special cases considered in §§ 1.24.2—3. Especially, the result obtained by
means of §§ 3.7 and 1.24.3 [it is easy to see how the direct expression of the notion
of plain absolute saddle point is to be formulated (cf. [6], § 3.16, too); note that
it is sufficient to take the case

(I1) I'x is finite for each x € P,
cf. §§ 1.24.3, 1.22] involves the original result of Zermelo (proved for chess in [14]);
cf. § 0. ,

(To be continued)
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