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ON THE SPACE OF IRRATIONAL NUMBERS
Miroslav KATETOV, Prsha

In the present note, a problem stated in the author’s
article " Remarks on characters and pseudocharacters "
( abbrevisted “ Characters " in the sequel }, these Commenta-
tiones, vol. 1, fasc. 1, pp. 20 = 25, is solved j it is shown
that the external character ( " Characters ", 1.5 ) of the space
} of irrational numbers is equal to /6’ ( the least cardi-
nal of a cofinal set.in NN ).

The terminmollogy of J. Kelley,' General Topology, 1955, is -
used ( with slight differences ), as well as some r_xotions and
symbols introduced in * Characters ",

1.
We shall need some notions and lemmas concerning ordered
sets. If ordered sets X , Y ere isomorphic, XY
is written,

1.1, Definitiom, Let {Xq }xeA be a ( non-void ) indexed
system of ordered sets., We denote g‘ X“ the cartesian
product defined as usually. If every X « has a least.
element %g  , then p: X , called the restricted
product, is the ( crdered ) subset of n‘ X « consisting
of ¥ = {"‘\’a{ } such that X = W« Ffor elmost all X
( iceo aI1 &« € A - B with B finite ),

1.2, Space always means a cmﬂpl etely regular topological
space. If P 1is a space, SCP , then 9 (S,P) denotes
the family, ordered by inverse inclusien, of sll open HC P
containing S o - '

1.3, Let B{ , X EA . be di s joint spaces. Then ,,‘{ p°<
denotes, as usually, the set P = g P:x with the topology
such that G CP  is open if and only if every G Px is
so ( iIn Px Y 3 c(‘/* Px denotes P augmented by
a point f with definimg neighberhoods of the form

(_f) V) “LéBP«, s B C'.A s A -B finite,

- . = )
If So‘ < ?o( ¢ then g 'Sd - denotes, of course,



¢ S u*p
the subspace (;) v U & of ¥ X o
l.4, Let spaces P : @l,éA be disjoint,

K P meafl§ (S R)= G $,08),
A;(Saup) 9(U*&r U* )

lo50 Let X be an additive family of sets ordered by
inclusien, If X = g Xo( s and every X« contains the
void set,; then X is an image of Z?* X (% under an
isotone ( i.e. order - preserving ) mapping.

¥
Proof, If X = {Xu} G,U,‘ X«. Cput P& =
= U X« s then YP(X¥) e X since Y 1is sddi-
tive and almost all N  are void., Clearly, (/ is

isotone, g/(p*xo() X

1.6, We shall denote the class of all ordered sets

X such that for some countsble metrizable P and some

S C P there existsan isotone mapping of 9 S, P)
.onte- X o

l.7o Lemmmo. If X € d) 9 Y is an ordered set and
there is an isotone mapping of X onto ) , then Y € 4)’ °

1t Xy €P, m=4,2,... ,then DX, €
P € & Pl

Proof. The first assertion is clear. If Xmn € 4’

nw = 4,2, ; let Bw ~be disjoint. countable
metrizable spaces , S, C Py, , and let % be, for
n v 4,2,¢ 4 an isotone mappingof Y =£(SM[£“}
onto Xm, » Clearly, ,27 ~ ( respectively, B *X av )

is an isotone image of M Vi respectwely, p Yau o
PutP"UPﬂV Sa- Usm,, P¥ = UP,W,
Ss* = S o Then P* are countable metrizable
ond, by o4, ,vmy o g(s p) A g;/s* P*)
which impliespx € ¢ , p* /r“ € ¢

1.8, Lemma. Let X ~ be an additive family of sets ordered .
by incIusiono Suppose: that = X x 3 A countable,

end every X o. contains the void aeto If )(“ €. 4) for
every K , then X € 4) °



=40=

This follows directly frem 1,5, lo7o

1.9, Lemma, The cofinality character of an ordered set
X € (b does not exceed "‘ o

Froof. Let P be a countsble metrizable space, $c p .
Y  ean isotone mapping of g (S ) P) onto X . By " Cha-
racters ", 2.2, there exists g cofinal set [ € g (S, P)
with cara ¥ § & o Clearly, & ( YJ is cofinal

in X .

20
2.1, " Derivatives " of a set O ( in a space P ) are
defined in the well known way : ST = § ; for an ordinal
aA> 0 , S  isthe set of Y€ P  such that,
for sny neighborheod /74 of ¥ , all Un S(ﬂ) s
B < X s are infinite. '

2,2, If P is a space, K C S is compact and dis-
persed. ( i.e. contains neo dense-in-itself subset ), let
A(K) denote the least ordimal /8 such that
is finite. For any ordinal & , let A& (¢ J P) denote
the family of all compact dispersed subspsces K €P such
thet A (K) <X ,andlet F(B, %, P) , Bc?P
finite, denote the family of those compaet dispersed K CP
for which K™ CB <€ K holds. If P 1s the space R
of rational numbers, R (X) , &£(F,%) is written
instead of & (%, P) | A (B,x,P) -

2,3, For any ordina! o« , & (X+7) = é”ﬁ(g’ x)’

£ running over all finite subsets of R ; for any limit
ordina} X , & (x) --.-ﬂ‘;!“f(ﬂ) .

K (R)

* 2.4, lemma, If B C R is finite nen-void, Ogo(jwvr
thm é (8’ «)_KXM where XM- ( ]
= 1/ Z, s .

Proof, Choose HnCR , Mm=42,.,. , so that
H'! = R 9 /7,4» J H’;k-f-q Q': Hm * H')lfey

re closed and open - and eve
HWBA P gmoql'/w “'B o o1 v



neightorhood of B contains some Ha 5 put M,,.f‘-
= Hp = Hongg oIt KER(B,x) , ice. if
KDOCB ¢ K ot $K) = (M, n K}, i

then, clearly, Mo fr/( € A = o@‘(o(,/‘?“) ¥ is
an isotone mepping of £ (B,% ) inte 27 Ao . 11
K€ R(B,x) , LeRB(8,x) , w(k) -,-fgau.)
then clearly K -8 = L -8B ,heice K = [k
thue ¥ 1is one=to-one.
Ir Kun € Xm., n=72,., i.e. Kns are _compact,
K,ﬁf) are finite, K, < M, , put K= (m,ql(m) vB;

it is easy to see that K € 05(81“).9 Jp/k)':(’(m};
thus ¥ maps R (8 P &) onto D X 4 . This proves the
lemma since every M, 1is homecmorphic with R and there-

fore Xm = 45(“)

2.5, Lemma. For sny ordinal ol ;, O <& < @, k(a)
belongs to the class ¢ o
R ]

Proof. This is clear for & = -/ gince &(’/} congista
exactly of all finite subsets of R . Suppose that 7<X< &
andkl(ﬂ)éd) for O < <x ,If = 1is o Iimit
number , then & (x) € ¢ . by 2.3 and 1.8, If & =

g+ A , then, for any finite non-void B C'R ,

s (8,r) € (]5 by 2.4 and 1.7, and moreover,

R (2,4) ~Z(y)e P 5 hence, by 2.3 and 1.8,
R (x) = /é(o‘*M) P -

2.6, Theorem, The external character of the space of irra-
tional numbers and the # -character of the space. of rational
numbers are both equal to 4 , the cofinality character of

N" .

Proof, By 2.5 and 1.9, the cofinality character o K ( °‘) »
0< & < @y , does not exceed 6 , For O <X < &y
let Mo € R (X) be cofinal in R (x)
card 9t = 4 . Then /2 = ““‘,m« ' is & A -bese

( see " Characters ", 1.1 ) of R« .s‘ince every compact



a4 2=

K< R belongs to some R (X} , o« < 23, ),
Slesrly, card I = 6, hence %/((RJ < b
Cn the other hand, by " Charscters ", &03,/{(}, £)> 6
and therefore 8/{' (07) z b o This proven the theore:
ror { * Cheracters ", 1.5 ) R , J are associated,

£y (R) = ef(j)
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