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ON CONVERGENCE OF SEQUENCES OF FUNCTIONS
, V. 3EDIVE - T.0evE, Preha

X ““‘JL V) are spaces, we can de-
fine on a cartesian pLoduct of scta Q,;v a conver -
gence of sequences by a well known way: For
XX E QX e A 2, ), XV eg-> X Ef and only if
,\"r.. o o R in the space (G‘".x N U.')L) for every
5 /\( X, denotes the A -th coordinate of the point

X ). This convl;rgence dcfines a topology 4L on (b in
the well known way (for A < Gh 4t A consists of all
x & (4 such that x™—-> x for some X" € A , Fol -
lowing J. Novék ['3], we call (G, ) an ¥ -product of
spaces {(Qy , 4, end denote (Q,w)= X, TP
Let us point out that following E. Oech Llj a topology

L+

-~
o
o

i, on the set Gh e defincd as a maopping 44, which to
every M < A assigns a set . M & 0 and satis-~
fies the following exioms: 44 ¢ = . (X} = (x ), (Muh)s

=My U aw My | The condition 4 (<M )= a4t M , call-
ed axiom F by E. 8ech, is not required in general; if
it ia sati‘sfied, then 4 is called an F -topology and
(4, w) an F -space; if it does not hold, then 4L is
called a non - F - topology and (G, +}anon ~ E -spa~
ce. o

For any topology 4 on (3 two further F -topolo-
gies are defined: . , the  -reduction of <« ,which
has an open base consisting of all -4 A, A = @
4, the F -modbfication of 4+ , which is the fi-
nest of all [ -topologics, coarser than . . Clearly
AL = AL, P AL e if and only if <« is an F -to-
pology. h \ :
In this note an % -product of two-point spaces is
studied. The smallest cardinal ‘number »/ 1is found, for
which an 4 -product of ¥ two-point spaces is non -

= -space, event., it 18 not countably compact.
- 3 -—
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‘Tt is shown, that the -product (&,«? of uncountable
number of two-point spaces and (CQ7 1Lﬁuare not regular.
Several:criteria are given, when the space (G,,(f>is
discrete (I. - III.).

| In IV.- VIII. similar questions for subspaces of the
‘space of real-valued functions on some F -3pace are stu=-
died. ’

In the whole note proofs are omitted.

In this note, N denotés the set of all natural num~
bers. If A,B are sets, A® denotes the set of all
mappings of % into A . If = = /;&‘ x € B then
the element, corresponding to X in the mapping . , is
denoted <A () or :ﬂ}¢
If o+ e A", (c B, then «!( denotecs the mapping of

(. into A | for which <t I{ (x) = o (x) for all
x € ( . ¢4 denotecs an arbitrary cardinsl number.

I. Countable ‘compactness.

Definition:

The space (CLVUJ is called countably compact, if e-
very infinite subset of (} has a cluster point.

Theoren Ly Lo _

Let (G .,u} be a space. The following properties
are equivalent:
(1) (& 711 is countably compact.

(2) (%, 47 is countably compact,
Theorem 1,1 does not hold for compactness only.
Definition. |

Let € " be the smallest power of a system J{ of subsets
of N |, which has the following property:

if .. o N ° ig dinfinite, then there exists A € A such
that the sets S0 f ., 5 -A  are infinite.

Theorert 1, 2%

- Let (f§¢/¢j be an X -product. of % two-point spaces.
The following properties are eguivalent:
(1) ’(Ci;bf>is not countably compact.

( 2 ) ’l'{; E:i (\;/‘ i 4 i



11, F'-axiom, order and regularity.

Deflinitions: ,
Let A  be an infinite countable set, K, /3 e N°
We write o (3 if 4 (x) > /3 (x) for 2ll x € A, ex-

cept a finite number. If # > /A does not hold, we write
A NP |

" Yo~ Nt A . . ’\iA .

We say that My <7 is an unbounded system in if
for every 7 ¢ NA there exists some <« € FL such that
b 4!)4” (-f\' .

& s ) A ( o~ N N . .

We say that JfL = , e |- is a hereditary unboun-

ded system, if the system '{OC‘X {A)‘ is unbounded in NA
for every infinite AclV,

We say that a set A < N™ 38 a chain, if it is linear-
ly ordered by the relation &~ . , )

An unbounded system, which is also a chain, is called an
unbounded chain. The existence of an unbounded chain fol-
lows from Zorn’ s lemma.

Def}nitmon: .

Let T, be the smallest power of unbounded chain.
Let 7, be the smallest power of hereditary unbounded
system, _ ‘ | ‘
It is clear that . % T, & T, £2 %

Theorem 2,1: ,

Let (él,kb) be an % -product of {4 two-point
spaces. The following propertics are equivalent:

(1) (A, «) is a non - |- -gpace,

(2) v =1, |
Let (4, 4.) be a space, Ac@ . We put « A= A , and
for ordinal number % 4 9A = . (ﬂgj‘u«ﬂ/%>. ‘

Theorem 2,2: ,
Let an ¥ -product 0&,«U'3 of two-point spaces

be a non - I Lspace and not countably compact. Then

v P

there éxists A <= U such that w*A 4 7" A
for all countable ordinal numbers <t .
Definition: St

We call a space (6%94L\ countably regular at a

AR
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point x , if x is an ¥ -point of every subspace
5 L ef ((,w) such that F= 7 A LX), xd& T, A
is countable.

We call a space (A -,,.“J countably regular, if it is
countably rcgular at each of its points.

Theorem 2,3xx

Let (G{,uﬂ be an X -product of ¥\ two-point spa-
ces, ™ 2 T, . Then (G, ) anda (@, %) are not
countably regular. ‘

Theorem 2,4:

. Let (G.», (t“) be an L -product of % two-point
spaces. The following properties are equivalent:
(1) For every x ={. there exists a closed set T <
such that x & T, ¢oocl T = 8, and if 1. is a neighbor-
hood of T in  (fi,4) , then x ¢ w U,

(2) (G,4) is not regular.
(3) (0 2£7) is not regular.
(4) ¥ = 7., -

!

Problem: I do not know if 71T, is the smallest cardinal

number, satisfying the Theorem 2, 3.

I

III. F - reduction.

. Definition:
Let (O, A) be a space, ™ a cardinal number.
We denote by a symbol of (%, 447 every collection

‘>‘ L relN, e N of olements of '« such that
(l) canel, o= v | .

(2) There exists a point x & O, such that X, i X
for every A ¢ /A . ;
D 3 {mfe W e Ay rer iy,
then Xy / x . :

\i,/u

x) X is an K -point of a space ({ /), if for every
neighborhood U of X there exists its neighborhood "
such that 4. V<o U, /

xx) cf |6], Theerem 1,1.

.| H
-




Theorem 3,1: . Y]
Let (%, 4 bec an  ~f -prqduct of ™ two-point

spaces. Then { (i, &) is a discrete space if and only if
there exists some (7, (0, .’

Thaorcm B4

Let A) bf an  Z -product of r% two-point
spaces. Let Tkl = S (1},1&) eanrd, N\ R, cdi (-Il SRS
and every contaln at least two points.

o r o~y . . . A -~ . .
If Hi;lu,> is a discrete space, ¢ i) is also a dis=-

crete space.

Theorem: 3, 3:

TLet 7f4,44) be an & -product of ~, two-point
spaces. The following propcrties are cquivalent:
(1) (0. 4) is discrete.

(2) e T
%
Theorem 3,4 )
. ¢ (E wd = el ¥ & A
LLt { ) , ‘1 )‘: .’,(,;_t,. L ";‘ 7 4, CaTc k. A =3 he g
cvery V. contain at least two points. Then (?;}f i is
a disc¢rete space.
IV. The space of continuous functions.
] o T .
Now we consider an ;f-product Cis,44) and its
subspaces, where (ﬁ,;/c>",l%1, oy o 4,0 and all
(5., , 4, ) are the spaces of rcal numbers [, (with

a usual topology). We suppose that ¥ is also a topo~
logical space and consider the spacc of real continuous
functions on, K ! .

Tn the following theorems (V) denotes the set of
all real continuous functions on P y ior the set of
2ll real continuous and bounded functions on P g 5O
the set of all mappings of i into < @, 4 > ; D(F)
denotes sny system of real functions on -, 1 deno-

tes a topology on C/¥) (event. [ (¥F) ) such that
(GoPyy a) (event., (D(P), 44 ) is a subgpace of a

given . -product.

-7 -



Theorem 4,1:

Let 7. be a cardinal number. Let cawl fOP) &
for every f & £ (P) . Then cexxet FOF) & vy for
every continuous mapping ¢ of P into any separable me-
tric space.

This Theorem implies casily:

Theorem 4,2:

Let a set f (©) be countable for every fe C(P).
Then (C(P), &) is an F -space.

Proposition II,3 in [6j implics easily the following Theo-
rem:

Thecorenm 4, 3: ’ ‘

Let L{V) satisfy the following conditions: .

1) If g e C(E) e DR , then 2 o e D(F)

(3 ¢t denotes the composition of t+  and 4 D)

2) Therc exists a function f & 0(+) such that +(P) con-
tains a closed subset which is dense-in-itself and non-meca-
ger. Then (D (P), 4 7. is a non - F -space.

This Theorem implies casily: ’

Theorem 4,4:

Let V ~be a compact space, containing an infinite
discrete normally imbedded x) suts ets Then ¢ (), 1.)is a

non - I ~spacc.

V. F =reduction of a-space of continuous functions.

Definition:
’

y let » be a
cardinal number. The symbol 7, (ii(P)} denotes cvery
‘collection {*»;Mb;geeijfn.q o of elements of ©{P)
such that ' '
1) e T K.
2) Sl T 1 for all - & 2

Let D (F) be a system of real functions on !’ k£ F)
the system of all rcal fucctions on ¥

Y

x) A set K is said to be normally imbedded in a space ',

if oL P and cvery bounded continuous function on &)
can be extended contimuously to + . By discrete subset we

mean simply & subset which, as & subspace, contains isola-
ted points only. - 8 - : :



3 j S O Oe e ). mmem Y - G
3) 4f {ae, Le D Jg e OROFNT, {1 e =T, &, F ¢
{ o X 2 )

for + % 5, then .y -»’w_.;‘_ |

Theorem 5,1: o

Let (& ¢+, %7 be discretc, cahd (TCF) = b
Then there exists 7 (i 73 . Ta®k £ contaln @ &

subset A ’ fj,(fl,-‘Lc.ﬁi,, )< R , and let %H ‘./", (P/ ) cxist th@—A
rc, Then (C (P}, *) 1ig discrete.

; ) . Let Ui F) sgtisfy
a) f o DCF) ==) e @ DLF)

b) if e CLE 53 , ¢ has 2ll derivations, § /M= 0y
3 (4)= 41 ,and e DCP) | then ¢ o0f e DIP).
Then the following propositions are equivelent:

(1) therc exists 7/, (D (¥ b

(2) there exists g, (uP) ).

1 o
Theorems 5,1 and 5,2 imply c¢esily the Thcorem II, 1 in [é].
Theorem 5, 3:
Let F ve a spacec, containing a dense countable me-
trisable subset. Let eVery ncighborhood of every point
= & P contain a neighborhood of X , which is a dense-
-in-itself non~-meagcr normal space.
Let UL (P> < T0#) such that:

1) 4 [(PY= 7P} (i,e.: for every f e ( (P) there

exist ‘f € r)&:‘/, 1 -2 /?':_ < Loes e such that fn,"’"/{-f”¥ *}:).
2) if A <P  is closed, 7y £ A , then there is a
function -+ ¥ & L (¥F) with f0y) =0 f ()= "]

for all X & A.
3) if f, g & [ OF) , then f . 7 & DOP).

Then for any = ({7 = (O there exists o set
\ . U i 1%,

b D () such that an M, = COF)~ (F) X).

If more

4) there exists a function 4. & C(F) such that v #+ (1,
and Ao -fe (P) Tor 211 fs D(P),
x) The closure :{,.5"4{ of Hy we certainly consider in

the space (£ (F), At ) only. Some non=-continuous functions.
are the limits of sequences of points of Hf , too.
- -9 -



then there exists H, = D(P) such that

i M by — (0.
"This Theorem may be applied, for example, for the set of
all real functions of real variasbles, having all deriva-
tions.

VI. Some results about the space (( (P)) AL )
Theorem 6,1: ‘

If a normel space [’ contains a locally finite dis-

joint system, the power of which is %, (event. T, , e~
“vent. oo Ty %\fthen. (CCFY), an) and (C(¥?), ™)
) A LR
are not regulear (event. (¢ (F), A and {0 (¥ <)

are not countably regular, event. (¢ (v3, i) contains
a set M such that ac®id 4+ .o TH for all countab-
le ordinal numbers ).

Theorem 6,2: _

Let = be the smallest ordinal number, the power of
which is a regular cardlnal numbcr A . Let every subspa-
ce of some space (G, w) contain a dense gubset, the
power of which is < i . |
Then there cxists an ordinal number . for every F = (&

such that . < (o  and 7R = 4«7 Tk
‘ Thcorem 6,3:
Let ' be a union of the countable numbcr of com -
pact metric spaces. Then every subspace of (L (F2, i)

contains & dense countable subset.
_ Theorecm 6,4 which is a strengthening of Theorem 1,2
in {27, follows immediately from the Theorems 6,2 and 6,3:
Theoren 6,4.
Let I be a ﬁnion of the countable number of compact
metric spaces. e
Then, for every I . CIP) PR FIP VA S for some

?
countable & .y, S +f-
L' and consisting from opcn scts,y

(

VII. Countable compactness of (C P2, ar )
C N dcnotcs the set of all contlnuous meppings of

into <€ .71 > in this section. gt
G T e

L2
L.



Theorem 7,1:

Let a space ¥ contain & normally imbadded dis -
crete set of the power ¢ . Then ( ¢ (P4 ) is not coun-
tably compact.

Theorem 7,2:

Let a normal. space ' contain a closed T.. sub-
sct which is not opcn. Then (e CFJy ) is not countably
compact.

Thecorem 7,3:

Let @& = -~
a) If ¥ is a perfectly normal space, then (0 (V) /) is
_countably compact only for a countablc discrete i .

b) If ¥ is a normal space and (C{P), <) is a non - I =
-space, then ((?“P);AL> is not countably compact.

VIITI. Borel functions.

Let ¥ be a perfectly normel spnce. (V) denotes
the set of all real Borel functions on ¢ , or the sect
of all real bounded Borcl functions (or bounded by o corm
tain constant), or the set of all characteristic functions
of Borel subsets of ! . A definition of the topology -«
on B (¥} is evident.

Theorem 8,1:

Let us suppose that a perfectly normal space ' con-
tains a normally imbedded discrete subsct, tho powecr of
which is v, = 5 %e , let <ret P % 27
Then 7 & {(¥) AL ] is a discretc sprce.

Theorem 8,2:

If = perfectly normal space | contnins a Borel
subset, which may be mapped continuously on a topologlcul

product of 4 two-point spaces, wavsl 7% L7 then
P ~ N ‘
(i (P), 444 dis a discretc space. . s

It is cleor that the Theorewms 6,1; 6,3; 6,4; 7,1 hold also
for (6 (15, 4w ).

The problem, raised by J. Novdk, whether (& (F_ : /... is
regular,. remains unsolved. It may be shown only, thut therc

N I
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exists a subspace of 51 such that (B (F’Lz<§, and

P A

Cr(P), ) are not regular (neither are they countab-
ly regular).
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