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Comment ntiones Hathematicae Universitatis Carolinze
3, 3 (1962)
ON THE HOLIOLOGY THEORY OF DISCRETE SPACES

Aled PULTR, Preha

In present paper the homology theory from category of
couples of discrete spaces is constructed. It is shown thot
there exist sufficiently different homology theories from
the category of couples of finite discrete spaces, satisfy-
ing all seven Eilenberg-Steenrod axioms. On the other hand,

we get the uniqueness theorem adding another axiom.

§ 1.

1.1. Definition; A topological space X is said to be a
discrete space if leA,_ = lz]Au for arbitrary system {A‘_}
of subsets of X .

l.2. The following stetement is obvious:

Theorem: Let X be a discrete space (discrete 'I:-space,
respectively). Then a function C: X—> L X , defined
by formula CL(x) = (x) , has the following properties:

1) x e U (x)

1) xe L@, ue b= «e ¢ (y)

(t11) e U (y), ye Ue)=2=y , respectivelyl
On the contrary, for every function F:X—> &t X , sstis-
fying the conditions I, II there exists one and only one dis=-
crete topology over the set X such that F(x)= () for e-
very & . If F satisfies the condition 1II, this torclo.
is T, .
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l.3. Let us denote

\ )= (x) -
Stx)={yl x e Cl(1)}, St(A) tL;JASt x
Obviously St (A) is always an open set and it is the least

open set containing A .
1.4. Theorem: Let X, Y be discrete spaces, f: X—> Y

be a mapping. Then f is a continuous mapping iff
FCUeNe U(f(x) for every e X .
Proof: Obviously f is a continuous mepping iff
£(St (x))c SL(f@) for every . Let Yy e F(CL (X)) . Then
there exists a « € CL(x) , guch thet y =7 («) . Because

re Stw) , we have f(x)e St (f(u)) and hence

y=f(ule CL(f(x)), Tne rest of the proof is obvious.

§ 2.
2.1, Definition: A sequence (X,,..., X, ) of elements

of X such that x; ea(ﬂc;,“), £-0,...;n-/1, is said to be an

elementary m -chain over the discrete space X . Let G be
an abelian group; M -chain over X is every formal combina-—
tion of finite number of elementary m ~-chains with coeffici~
ents from G . The set of all m-chains over X with obvi -
ously defined structure of an abelian group is said to be the
group of M =cheins of X (with coefficients from G and
will be denoted C, (X; G ) (or simply C, (X) ), if
there is no duanger of misunderstanding). We define yet
C.LOY=10 .

2.2, Remark: Let us call simple M =-chains such 7.-chains

2.9« % , that at most one 9« 1is non-zero element of & .

It is easy to prove that for every additive function from the
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set of all simple M=-chains into some abelian group there e=-
xists just one homomorphism which is its extension over C,(X).
Therefore it is sufficient to define a homomorphism from G, (X)
in its simple M -chains only,

2.3, Defipition: Let X, Y be diac;rete spaces, f: X—=> Y
be a continuous mapping. Because of 1.4 we can define the ho-
momorphism f_ : C, (X)—> C,_ (YY) by formula

fu (G- (%osrer Xm ) = g - (F(R),e00, F ()
Bomomorphism ol : G (X)— C., (X) is definea by formila

dy, (g (%greery Tn))= ?; (DG (o yeees By yenes By e

2.4. Definition: Let (X,A) be a couple of @iscrete spa-
ces (in the ordinary sense; i.e. _A is a subspace of X ),
Then we define

L. (X,A;6)=C (X;6)/7C.(A; G)
obviously d, (C, (A))c C,._,(A) and therefore we cen define
d_: C. (X,AY— C,.(X,AYby formia d,, ([al)=[d., ()] .
For a mapping f:(X,A)—> (¥Y,B)  we nave f,(C.(A)cC,(B)
and therefore we cen define f,:(, (X,A)—>C.(Y,B) inen
analogous way.

2.5. It is easy to prove

roms: d, ed,=0, G Fh=%

food, =d of..

2.6. Corollary: The system {C, (X,A), c—[...} (if we
detine C, (X,A)=0, &;- 0 for £<0 ) 1s & chain com-
plex in the sense of [E-S, chapter Vi. I£ f: (X,A)—> (Y, B)

is a continuous mapping, the system (F ~} is a mapping of
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{C.(X,A} into {(,(Y,B)} . We define homology groups of
couples of discrete spaces and induced homomorphisms of their
continuous mgppings as homology groups and induced mappings
of corresponding chein complexes and their mappings, respecti=-
vely. We use the denotetions H, (X, A), fxn , end d(n XA
for homology groups, induced homomorphisms and boundary homo-
morphismé, respectively. For groups of cycles and boundaries
we use the denotations Z, (X,A), B, (X,A) , respectively.
In this way we get a homology theory from the category of
couples of discrete spaces which satisfies obviously first
four Eilenberg-Steenrod axioms and, as it 1s easy to see, al-
so the axiom of dimension. In the following paragraph we are
going to prove thet remaining axioms of homotopy and excisg=
ion are satisfied, too (with a ‘slight change in the defini -
tion of homotopy). |

2.7. Remark: If we define (, (X,A; Gl=6G instead of
C,(X,A)=0, d:_, (9 (z,)=¢, f, identical homomorphism of
G, we get (2.4 holds obviously, too) the "reduced homology
theory". All things said about homology theory @efined in 2.6 ,
except of dimension axiom in the ordinsry form,are true for
reduced homology theory, too (the same for homotopy end excis-
sion axiom). ‘

§ 3.
3.1. Definition: Let x € C, (X), =2 a; (@;,,e; Xin)

The set {x;;} is said to be the carrier of & .

3.2. Definition: Let & € (. (X) | 1et R be. its car-
rier. Let @, Y  be mappings from R into ¥ such that
g(x)el (y(x)) for every £ € R . Then we @efine the
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homomorphisms D, : C, (R)=>C.., (Y) as follows:
D.. (a (x,,...,x.,,» =g° ("4)"(9 (x.),-u,g(x,k)) y/ (xb)y"'i Yy (1',,,)) .

3.3. Lemma: d,, 0, (4)=Ya (@)= (%) -D,_, d, @).

3.4l. Definition: Msppings f,g: X —> Y  are said to be
homotopical if there éxists a continuous mapping A:XXI"-)Y
such that '

a) A (x,0)=F(x), AX,1)=9(®) £on eyery x X -

b) The set A((x)XxI) is finite for every x € X -

In the analogous wey the relation of homotopy between two
mappings of couples of discrete spaces is defined.
3.5. Remark: If Y is a star-finite space (i.e. ST (x)

is finite for every a € X ), the condition b) is satisfied
automatically., In general, it is possible to prove that ima-
ge of any compact space in a star-finite space is finite.
3.6. Lemma: Let T be a topological space, X be a
discrete space. Let McT a € M s let f: T—>X be a
continuous mapping. Then there exists an element Y € M such

thet f(a)e L (f(y)).

Proof: Because of continuity of f there exists a neigh-
borhood V of the point a such that f(V)c St (a). aeM _
and therefore VAM®* L | Let us take some Yye VaM | ve
have f(y)e S5t (@)  and nence f(a)e CL(F(y)).

3.7. Lemma: Let X, Y  be discrete spaces, f,g:X—=>Y
be homotopical mappings. Let R be a finite subspace of X .
Then there exists a finite sequence of mappings

hy, Bgseioy Bz R—2Y
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such that A, =fIR, A, =g¢lR and far {=1,..., m  the
following alternative holds '
either 4, (x)e W (A, , (x)
or A, (x)ell(h, (x) for every x e & .

Eroof: Let us take a homotopy mspping A XxI-> Y,
h(x,0)= f(x), Alx,1)= 9(-'13). Obviousal y

A(RXI)’xL:’RA((x)XI) and hence finite. Let us define
mappings 'hai R—y by formila }La(x)=»h (x,A) ., Becau-
Se of finiteness & A (RxI) e nave only finite number of

for every X € R ?

i1

different mappings 'h’a . Let I.,,-»-, I,n be equivalence class-

es in I with respect to the equivalence relation defined as
follows:

A equivalent A' iff h, = A,
Let L, be the class containing zero =nd let us define
h,=h, e I¢, . Let us denote a,=sup 1, Then either
a,e Ik‘ or a,¢I, . Inthe first case‘either a,=4 or
a,<4 . 1f a,=1 itis fIR=9gIR 100 <1 there
exists a class Il. such that a, is its condensation point
and that there exists a point in I » lying behind @, . Let
us denote .=, Ael, According to 3.6 we have
A, (x)e Ch, (:r.)) for every 2 e R .
Let a, ¢ I, ; in that case let us denote I,, -the class
containing .a_ and A, 411,” Ae In, . Because of a, € I‘,_
we get immediately that ., (x)e (L (h,(x)) gop everyx € R.
Now let us assume }Ll_,‘ to be found, }L‘_,, = }‘L,. , A€ IA;,,,,;
and denote a, , = supn I, .
Ifa, € I""l-a » we have the two possibilities: either
Q. = 4  and there is no need of further proof, a @, < 1
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In the second case there exists a class I, " such that
a_ € ']; » and I, contains a point vhich lies behind
a

nad

h, (x)eCl(h (x)) forevery xeR ,
Ira ¢y, , iet us denote I,, the cless containing

. We define hy= h, , A el,, and get

a, , - Let us define 'hl'_’ M, , Le I,,_‘ and we get
hy(x)e CL(h, (2)) for every x € R . It is easy to see that
our M, never repeat (because of choice of #A; such that I,.’,
contsins always en element lying behind all elements of l,.',-').
Hence we must, after a finite number of steps, get f_ =g | R.

3.8. Theorem: Let f,9: X ~>Y  be homotopical mapp-
ings. Then fy, = @um for everyn .

Proof: Let us take an [#]e Hn(X),xelx],k€Z, (X) | pret
R be the carrier of &, 4; mappings from the lemna 3.7 . Be-
cause of «x € Z,, (R) we can use the lemma 3.3 2nd we get

either d_ D, &)= (k) (x)=Ch;, ) (%)

or d, D (%)= (b, I (@)= Ch;)m (x) .

Anyway, the cycles (h;), (%) ana (4, ), () eore homological
for every i and we get immediately f,, ([*1)=g,, ([x]).

3.9. Theorem: Let f,g:(X,A)—>(Y,B) be homotopicsl
mappings of couples of discrete spaces. Then 'F,‘,l = QG m for
every n .

Proof: Let us denote f', ¢’ corresponding mappinga X —> Y.
$' ana g' are also homotopical. Further let us denote
i:Xc(X,A), i':Ye(Y,B) . e have (see 3.8 )
f.: (B)- 9; (B)e B, (Y) for every BeZ, (X). i are
epimorphisms and hence
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fen ([%])=Gun ([x))= [ (&)~ Gn (£)] =

=[f, i, (8) = G i, B)] = [if (£! (B)= gl (AV] =
<L) s O )] = [y s, ()] = O

3010, Lempa: Let UcAc X, £: (XU, A-U)c (X,A).

Then f,: (, (X-U,A-U)— C. (X,A) are monomorphiams, If
¢ St(ue A , f

»  &re isomorphisms,.

Proof: Let

[x)e (., (X-U,A-U), =2 a,(x,,,...,2, Ve, (X-U).

We have ‘F;(O(-) =ZQ-‘-' (2, 400y x;,) , where f':X-Uc X R

Let f,([x])=0 , Hence f. (x)e C, (A) and therefo-
Te %;; € A for every < 1vj . Because of o € C, (X-U),
RO X;; 1s an element of U . Hence x,; € A-U and we get

« €Cn (A-U)  ana thererore [a]=0 . Now, let

O St)cA « We are going to praove that f, &are epi-
morphisms. At first we show that every elementary chain con-—
taining some element of U contains elements of A only, Let
in (x,,..., 2, x, el

It i k, ;e U(x)dec U(U)c ULSE(U)CA.

It i2 R, x,eSx)c StWUcU SE(UIcA.

Now let us take an « = z a; (x,-‘o,...;x‘-_n) and decgimpose :
e n
Lt ind'+a”, a'=3q) @ s ;) a"=3 ot (5,,..., 22,),

where (x;_,..., X;.) _are a11 elementary chains of o« which

do not contain any element of U s (2,500, 25.)  are re-

meining ones. Hence ot e (,, (A) and therefore [ot']= [ax]

L 4

Let us denote B the chein «' as an element of C, (X-U) .,

We have f, ()= &' ema therefare f, ([81)=[#. (8)]=[x]= [ .
3.11. Theorem: Let
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(LSt e AcX, f: (X-UA-U)c(X,A).

Then f., are isomorphisms.

Proof':

Eroof: f, .,

Let £, ([«l)=0,kelx]e Ho(X-U,A-U) & e Z, (X-U,A-U),

are monomorphisms:

i.e. £, (Ve B, (X, A) | Hence there exists an element
/3'e Couy (X,A) such that -l",,,,(a(,)----cz,M (R) . Hence
£ @=d, f, B =1t d,,, (] 8)
end therefore « = d,, (f5,, BN, [x]= 0 -
‘F“. are epimorphisms: |
Let [yleH,(X,A), yeZ.(X,A), yelyl . Let us deno~
te o« = £ (y) . Ttis weGX-UA-U) £ @)=y,
Because of f,_, d, @)= d.f,@)=d,(y)=0 ; we have
*x eZ (X-U, A-U) and therefove f,, ([cl=[f, @)]=Ly].
3.12, Remark: We see that we got the "excission axiom®
in a slightly stronger form. We can define excission as an im~
bedding f: (X-U,A-U)c (X,A) | ynere U SE(U)CA ,
though in formal translation of Eilenberg-Steenrod excission a=

xiom we get the assumption U open and St L (U)C A .

§ 4. .

4.1. Definition: Let X be a discrete space. The space
€(X) is the set of all rinite subsets {x,} of sets of ty-
pe (L(y), yeX, vi th topology defined by inclusion
(ieee e ULPBle&rach ). '

Tet fF: X— Y be a continuous mapping. We define the
mapping €(f): €(X)—=>%¢(Y) by formla C(f)({x, })={fCx;)} -
(It is correct, because if o, € ¢ (y) , T(x;)e CL(f(y))
according to tie continuity of f .)
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It Ac X we have obviously €(A)c €(X) and we can
define € (X,A)=(€(X), €(A)) . Let f:(X,A)—> (Y, B)
be a continuous mapping. Then we have € (f')(€(A)c €(B),
where f' is the corresponding mapping X—>VY &and we cen
define () in the natural way.

4.2, Theorem: € 4s a covariant A-functor from the ca-

teszory of couples of finite discrete spaces into itself.

nuous) is obvious. The same for the facts about € being &
covariant functor preserving pairs of mappings of a type
jiA cX, i:Xc(X,A) ma preserving one-point spaces. It
remains to prove the homotopy and excission preserving.
Homotopy: Let f,9:X —> VY be homotopical mappings. Be-
cause of 3.7 we can assume without loss of generality

(1) fx)e LG x) for every % € X -
We define A :CX)xI— €CY) by formlae

A ({2 3),0) = {f(x)}

Az 1),1) = {g (x)}

A (({x, }>,t)={ffx¢)}u{9(x¢)} for O0< £t < 1.

({flx}u{g (x;)} is an element of ¥€(Y) , for accor-
aing to (1), {f(x,)}u{g (x}c CL (g (y)) , where Y
is such a point of X , that {a;} c CL(y) ), The con-
tinuity of £ is obvious.

Excission: Let L St (U)c AcX . Ve are going to prove

that then CL St (€(U)) ¢ € (AY | 1.4 VTN
' Hence there is{%;};.,...,m € ymen,
{x; }i:d,..-,n € ULSL(€(U)LV Hence at first there oxists

some element y € X ,x; € L (y) for every ¢ =4,..., m . Be-

cause of {%;}.., ... € SL(C)) s there exists an
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i, 5. x; € U . Hence {x;}, , . .cC(y) end

yeSt(x;, )cA and therefore {«;};.4,..,mn€ CC(A).
4.3+ Corollary: We can define new homology theory from

the category of couples of finite discrete spaces by form-

lae

HL(K A s G) = Hy (20X, €CAY; 6), fun= (EEDen
3 (m. X, A) = 3(n, TIX), €CA))

4.4, Theorem: There exist non-isomorphical homology the-
ories from the category of couples of finite discrete apaces
satisfying all seven Eilenberg-Steenrod axioms and having the
same coefficient group.
defined in 4.3 satisfy Eilenberg-Steenrod axioms. Let us
construct the space X , consisting of four points a, &, ¢
and d with the topology defined as follows:

((a)={a,e,d}, L&)={be,d}, Lic)=(e), C£(d)= (d).
It is only a matter of counting to prove that
H, (X; G~ G, H,(X;6)= G, H,(X;G)>G, but H, (X,G)=0.

4.5. Remark: In the following parsesgraphs we shall prove

further important property of the homology theory from 2.6 .
We shall prove that the theorem of uniqueness for homology
theories, satisfying Eilenberg~-Steenrod axioms and having
this property, does hold for the category of couples of fi-
nite discrete spaces.

§ 5.

5.1, Definition: Let X be a discrete spece. In the set
of all finite sequences of elements of X of a type
(2¢,,..., ) wth ;€U (x,, ), x,¥x,,,, we define
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» topology by inclusion. Let us denote JB(X) the space ob-
tnined this way. Let us define a mapping 2 : B(X)=> X (more

precisely %, ) by formula € ((x,,..., 2, N= x, -

. 5.2, Lemma: 2€- is a continuous mepping onto.

- e o o

$(X) contains the sequences consisting of one element, to0.
Continuity: Let §= (Xo,..r Xn)e€ BX) | Let freCLCf)
Hence f' = (024% peeer %a, ), ’kg £ N and therefore
w(f')=x, e (x,)= CL (22 (§£))

5.3. Definition: Let f: X — Y be a continuous mapp-
ing. Let us define B (f): BX) > B(Y) vy formule
B (gperer E) = (FL0)eees £ (20 )) ( (g, eees Yn )
means the maximal strictly monotone subsequence of (Yo,-:-s Yn);
according to the continuity of f , (f(%,),-++s T(Xn)) is
mally sn element of HB(Y) ), 12 Ac X , we have
B(A) e 55(X) ang therefore we can define
BX,A) = (RX), B(A)) | The mepping

®, 4t PX,AY = (X,A) 15 defined in the ob
vious way. If +: (X,A)-—f (Y, B) is a continuous mepping
of couples of discrete spaces, we have B (f) (B (ANc B(B)

and therefore we can define $(f) for such mappings in the
natural way. |
5.4. Theorem: $3 is & covariant functor from the catego-
ry of couples of discrete spaces into itself. The system
{%(X,A)} is a transformation of functor B into identical

functor of our category.
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Proof: Continuity of 3 (f) for continuous f and fune-
topial properties of 5 are obvious. It remains to prove the
commutativity of diagrams of a type

ax.A) 2ELL acy, )

% A) l %(y,8)
(X,A) —Et—» (Y,8B)

Let us take a fx(x,,,...,x,,ﬂ e B(X) . We have
‘fae(xm (f)=f(xm.);

%, 5y B (FI(E) = 2y g, (F O, )yeees )= £ (2,)  quends
5.5 It is very easy to prove
Lemma: o, : C, (B(X,AV)—>C(,(X,A) is an epimorph-
ism for every m o

5.6. Lemma: Let us define a homomorphism
b, i Co (BXN—C, (BX))

by formula
b (G (§ayoevy £ 0) = g (B (£, (e §,), 36 (£,))',-005 (3 (F, ). 26 £, )Y)
Then Ker 4, = Ker o€, -

Proof: We must at firstv prove that the definition of 4,
is correct,, i.e. to prove the fact that
(2¢ (g ) JRARN “(f& N e BX) . let us teke a non-nega-
tive integer 1 < m . (§.;-~-; fw) is an elementary chain,
hence ?& € Ce(ft,ﬂ) y iees € §;.4 ad therefore
s (f)e U Ge(f DN
It holds:

(1) ee, (g (§ forenrfn V)= 0n (G (Moyeeey N )

- 35 =



ife (2) A, (g (f,,...,;,, W= b (@ (RoyecesMm))
(beceuse both (1) and (2) are equivalent with the assertion
% (§,)=2(7:) for €= O0yeeem ),

We have to prove the equivalence:

W) sy (E gulfis, i fen V=0,
ire (2°) A, (‘f G (figroeesfin =10 .

In the set {1,..., m}  let us define the equivalence rela-
tion by formula
(3) 1 ~r j  iff there exists a ¢ ¥ such that

%, G, - £, = 2.(g (Fjo1w0s fn?)
Let us denote I,,..., Lg the equivalence classes. The sa-
me equivalence classes will be obteained if we subsatitute 2e,
by 4, in (3) (see (1) and (2) ).
ﬁ’ow, both (1°) end (2°) are equivalent with the assertion

. a’. = D .
‘;%a_ 3 for every 2 o
5.7+ Lemma: Let (f,,---, fn ) be an elementary chain.

Let us define f; = (2 (f, ).y (f, ). Then 5. e (fh)
for every R and oe (f) = 9e(f,) -
Proof: I. For k=0 , (2t ff,)) is obviously a subset
of [:‘, . .
II. Let f,,¢ f4., « Hence §, c §,  and the
refore f, = (f ,%(f N 'cf, (because of oe (§ )€ fe )e

5.8. Lemma: Let us preserve the denotsation of preceding

lemma, According to this lemma we can define a homomorphism
D,,_ : C,,‘, (35 (X)H)— c,,_,,, (B (x) by formula

Do (g (f e £ 0 = 3 GO QUL oy §ry fu s ) -

+80
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Then we have
dq D° (L) = K= 4 (£),

D (&)=t =~ (&)= Dp_ @) (n21),

dm.&A fad
and e, D, ,d, (&)= =y, 2, Do) (n 2 1).

Proof: Is a matter of counting.

5¢9. Theorem: €y, * H.. (B (X,A»"H”(x:'?z%e isomorphiszs.,

Eroof: I.2¢xxn 1is a monomorphism:
In this proof let us denote 2¢ = (x,A) 2 %'s %, 9" = €, .
Let €y, ([a])=0 , i.e. 2¢, @)e B, (X,A).
Hence there exists a & e C,,, (X,A) , & =[B] such th-t
dvs (B)= %0 @) | aeZ (BX,AN ; 1et a=[x];
hence we have [d,,, (8))=[ee, ()]  ama hence
d,. (B)-2, (@)=7¢€C, (A).
% .. is an epimorphism md hence there exisfs a

b'e C (B (X WA, A=[R'] such that &=2e,,, (&) nd hence

[/$J = [“:»H (3] and therefore
&Y d'aw-i OC,:‘;M (/3')—0&'» ()~ dmm (T')—T =0.

'ae",ﬂ, is an epimorphism smd therefore there exists a e C.(BA))
such that d,.,,(y')-7'=2. () =2, () , e get the for-
mule (1) in the form

%, (d,,, (B)V-a& -0 =0
end therefore A = d,,, (B3)-&-d e Kex o, = Kex 4, , nence wve ;

have
(1) if m=0:
d, D, (A)=A and hence '
d, (LD, () =[Al= d,([R1) - [«] ([df1=0)-
Hence a=d, (&-[D, (N)])-
- 37 -



B) Iff m>0: v
d , D,A)=A=~Dn_sdn(A)  ma hence
d_, (ID,(AD=[A1-[D, , . A)] =
=[d,,, 81-[*)~[D, (d,, (B -&-d)N]=
-d. () -a-[D,., &d, @-d, ()]. ,
Because of a € Z,.(B(X,A)) , we have d, (x)e C,_, (B(A);
obviously d, (deC, ,(B(A)) , too; Becaise ,
D(C(B(ANe Cy, (BCA))  , we have a =d (&-[D.(A)])
and hence [al=0 .
I1) '3@,,.,. is an epimorphism:
Let [4]eH,(X,A), &#eZ, (X,A), LelL].
%€, is an epimorphism and hence there is am  ‘a € Cw(B(X’A))
such that &, (@)= & Let n=10 ‘
C.(B(X,AN=Z,(B(X,A)) and hence

[ale H, (B(X,A)), oe,,([al=[oe,(a)]=[4] .

Let n > 0" a.=[°CJ ? ‘&"‘[ﬂ.’ . We have J”(,&)z 0, 1,5;
d. (BreC, _, (A,

[We have "'.ae,,_,?d,,_(a))a-a-t;oeﬁ(ah 0 =d hence 'ae,',_, d. (el (A).

e Then

Because: ae,',",q_ is an epimorphism, there exists a
g€l (BAN  sich thet ‘
d, (X)-7e Kevoe, ,=Kex »,_, -
Hence we have for m =4
d, D, (d, (x)-%)=d, (&) -4  ma therefore
d, (LD, (d, (&) -=y)) = d,(a) . Let us denote
a'=a-[0,d -9 .1tis d (a)=0 , i.e.
deZ, (B(X,A)) , and 3¢, (a')=2e,(a)-[ee, D,d, x)] =

af-[d, s, D, (oC)]'-,b'-J; (Toe, D, ()]} ana nence ve,, ([a'])=[4].
'y
itn>41 , whave d, (D..,(d, @) -2)) =
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=d ()-¢-D 0, (d, @)-3))=d, (@)~F+Dn-s @, (¥)).

On the other hend we have y €(,_,(B(A)) | nenced, (yle( ,(BA)
and hence [}, J,,_,, (rle (.., (B(A)) . We get

al._,, (CD,.,(d, (Y= ¥)])= d, (a) and hence (because of

D, (PeCu(BA ) d (a-[D,  (d, @))=10.

Now let us denote a'= a~[D,  (d,®)] ed ve get easily
%8y, ([a'D=[L]. ‘

5.10. Remark: Because of 5;4 we can formulate the prece-—
ding result in the follow:l.ng‘ way: For every 7. , the system
{(oe x Ay ) n? is a natural isomorphism between the func-
tors H_o ﬁ and H, -

5.11. Theorem: For every couple (X,A) of discrete spucss

the commutativity holds in the diagram

H, (B(X,A) Zestrln, b (x,A)
lacsecx,m,m la(x A,mn)

)
H, (B(A) Salaty 1 (4)

Broof: It is an easy consequence o commtativity of the

diagrams
e AN By ¢ mon) LB Zxdmy ¢ (x)
(2¢, ), d. d.
l(acA.., l X and l l
LA = L @oN &S ¢ x0

(vhere j: A c X ), ond the definition o 8 (see, for ox-
ample [E=s]).
5.12. Remark: Let us sgree to-call, for further purposss,
"the property (B) " the xroperty of homology theory {H,,,,*,a},
formulated in 5.10 and 5.11 .
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§ 6.
6.1. Definition: Let X be 2 triangulable spnce, T

some trisngulstion of X . Let us denote &7 (X) the set of
all simplexes of this triangulntion with the topology defined
by formula:

s'e L (8) iff 4 is a face of 4 -
Let A be a subspace of X trimngulnted by T . Then
DT(A)Yc DT (X) and hence we can define
FTX,A) = (DT(X), DT (A)) .Let f: X—>Y be asin
plicial mapping with respect to the triangulations T, U of
X, Y respectively. We define DTY(E): DTX) > DY (Y)
by formla DTU(F)(s) = f(s) (the image of the set). Ob-
viously, Qr'u(f) is & continuous mapping. D ™Y (f) for a
mapping f of couples of triangulated spaces is defined in
the obvious way.

6.2. Theorem: Let {H, ., 0} be some homology theory
from the category of couples of finite discrete spaces, satis~
fying all Eilenberg-Steenrod axioms and having the property
Then there exists a homology theory {H,L , w1 3'} from the
category of triangulable couples which agree with {H,. ,«, 9},
i.e. for every triangulable couple (X,A) and for ita every
triangulation T there can be defined isomorphisms

L(X,A; T;n): Hy (X,A) = H,. (DT (X,A))
such that the system {i(X,A;T ,n)} hes the following pro-
perties:

(1) For every (X,A), T +the commutativity holds in the

rectangle
1 (X,A; T)

HL, (X, A) > H. (DT (X,A)
Es 12
o (A —2 BT WL @7 (A)



2) For every f:(X,A)— (Y,B) simplicial with res-

pect to triangulations T , U the commutativity holds in

the rectangle

Hox,A) XA @7 (x, A

[fan | @

HL(Y.B) 1(Y,B,; U)_> H,‘, (EU(Y,B)
Proof: Let us construet the fech homology theory from

the category of triangulable couples in the way that we use

our homology thedry for nerves (of finite coverings) taken

as discrete spaces. It 1s'easy to show that the nerve of co~-
vering of (X, A) by stars of edges in the triangulation T
is homeomorphic with DT (X,A) . Further, it is easy to
show that we have D“ (X, A) nomeomorphic with BITX,A)
it U 1is the barycentrical subdivision of T , and that the
corresponding projection, induced by pro.jection of nerves, is
homotopinal to the mapping 2¢ from § 5 . Finally, it is ob~
vious that the system of coverings by stars of edges in bary-
centrical subdivisions of a given triangulation is confinal
in the directed set of all coverings. For wanted isomorphism
1 we can take the projection from the limit-group in the
construction to the group of covering by stars of edges. The
commitativity relations are not difficult to prove.

6.3. Theorem: For every two homology theories {H,_,x, 9},
{gn,* ,—3-} from the category of couples of finite discrete
spaces, satisfying all Eilenberg-Steenrod axioms and having
the property (B) , and for every homomorphism ‘
h,: H (P)— I:L (P) (where P is a one-point spnce) hhe-—
re exista a system of homomorphisms
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b(n; X,A): Ho (X, A) — Hw (X,A)

such that:

(1) A (0,P) = A,

(2) For every continuous mapping + : (X,A)—> (Y, B)
the commutetivity holds in the rectangle

H. (x,A) mXAL B ox, A)

| fen | fon

£
H, (y,8) Y8 F (v, B)

(3) For every couple (X,A) the commutativity holds

in the rectangle

H. (X,A) A@uXA)y g x, A)

2 12

Ho., (A) 2oL A H ()
If A, is an isomorphism, so is every A (n,X,A) ,
let us take some trisngulated couple X (X,A) with trian-
gulstion T such that DT (X (X,A)) is homoemorphi-
cal with B(X,A) . (suech a X (X, A) obviously e~
xists, moreover, for every continuous mapping {f +the mapping
B () can be represented as a simplicial mepping of corres-
ponding triangulated pairs.)
Now, let us construct for {H,,x, 8} , {H,.,#% , 9_} the
homology theories { H' , ., 0}, {Hnm,w, 9-'} (see 6.2 )
from the category of triangulable coupigs agreeing with the
given ones. According to the theorem 10.1 from [E-S, chapter
III] there exists a system of homomorphisms {A'(n,X,A)}

=42 -



for AL =08 0 (C(R; 0N, (L (P,;0)) 2, (1,17
are the isomorphisms from 6.2 ), having corresponding proper=-

ties.

If we take now »
hn,X,A)=(2¢, A,),,,,Z(fC(X,A),n)(A'(J‘((X,A),n))(i(7{(X,A),n)

all assertions can be easily verified.
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