Commentationes Mathematicae Universitatis Caroline

Cor P. Baayen; Zdeněk Hedrlín

On the product and sum of a system of transformation semigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 4 (1963), No. 1, 29--42
Persistent URL: http://dml.cz/dmlcz/104926

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1963

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
4,1(1963)
$$

ON THE PRODUCT AND SUM OF A SYSTEM OF TRANSFORMATION SEMI-
GROUPS

P.C. BAAYEN and Z. HEDRLifo, Amsterdam

1. Introduction

If X is a set, then (F; X) will denote a semigroup F of transformations of X into itself. Now if a system of transformation semigroups is given, $\left\{\left(F_{\alpha} ; X_{\alpha}\right): \propto \in A\right\}$, the re are several ways to construct from these a transformation semigroup F operating on the set $X=\bigcup_{\alpha \in A} X_{\alpha}$. We will consider two methods; as they give us essentially the direct product and the direct sum in the case that the X_{∞} are pairwise disjunct, we call the transformation semigroups (F; X) , constructed from the $\left(F_{\alpha} ; X_{\alpha}\right)$ by the methods considered, the product and the sum of the transformation semigroups $\left(F_{\infty} ; X_{\infty}\right)$.

We are mainly interested in the situation when the new transformation group ($F ; X$) turns out to be commutative. In the case of the product, it is sufficient to assume that all factors ($F_{\alpha} ; X_{\alpha}$) are commutative; in the case of the sum, another condition is needed.

In the last section, the theory is applied to obtain an embedding of a given commatative transformation semigroup $(F ; X)$ into a commutative transformation semigroup ($G ; X$) that leaves the same subsets of X invariant as F does, and that is maximal in this respect. The semigroup ($G ; X$)
,
turns out to be uriquely deterrined. Then the previous re sults are epplied to generalise a theorem on the existence of a common fixed point of a conmutative system of mappings. And finally use them to prove that every commutative senigroup is contained in a product of algebraically generated transformation semigroups.

2. Notation

If x is a non-void set, the class of all mappings $f: X \rightarrow X$ will be denoted by X^{X}. This is a serigroup under functional composition 0 :

$$
(f \circ g)(x)=f(g(x))
$$

for $\operatorname{sil} f, g \in X^{X}$ and oll $x \in X$.
If F is a subsemigroup of X^{X}, we will often write (F; X) , to indicate the set transformed by the elements of F.

A system $F \subset X^{X}$ is called commutative if $f \circ g=g \circ f$ for all $f, g \in F$.

A subset Y of X is said to be invariant under $F \in X^{X}$ if $F(Y) \subset Y$. Here $F(Y)=\{f(y): f \in F$ and $y \in Y\}$. If $f \in X^{X}$ and $A \in X$, then $f \mid A$ denotes the restriction of f to A. If $F \subset X^{X}$ and $A \subset X$, then $F \mid A=\{f \mid A: f \in F\}$.

If $F \in X^{X}$ and $X \in X$, then $F(x)$ is called the orbit of x under F; every orbit is an invariant set.

Let y be a family of subsets of a set X. A system $F \subset X^{X}$ is said to be y-invariant if every member of y is an invariant set under F. The system F is called a maximal commutative y-invariant system if it is commutative and y-invariant, and if there is no commutative y-invariant
system GC X^{X} such that $F \in G, F \neq G$. The system F is called a maximal commutative system if it is a maximal commutative $\{\varnothing\}$ - invariant systen. Here \varnothing denotes the empty set.

A maxiral commutative y-invariant system is always a commutative semigroup containing the identity mapping i $: X \rightarrow X$.

The cartesian product of sets F_{α}, $\propto \in A$, is denoted by $\prod_{\propto \in A} F_{\alpha}$. If $f \in \prod_{\alpha \in A} F$, then f_{α} denotes the component of f in F_{∞}, and we will also write $\left(f_{\infty}\right)_{\alpha \in A}$ in stead of f.
3. The product of a system of transformation semigroups

In this section and in the next one we consider a famiIy $\left\{\left(F_{\alpha} ; X_{\alpha}\right): \alpha \in A\right\}$ of transformation semigroups: A is a non-void set of indices, and $F_{\alpha} \in X_{\alpha}^{X}$ for each $\alpha \in A$. The identity map of X_{α} onto itself will be denoted by i_{α}; it is assumed that $i_{\alpha} \in F_{\alpha}$ for each $\alpha \in A$. The union of all sets X_{a} will be denoted by X :

$$
\begin{equation*}
X=\bigcup_{\alpha \in A} X_{\alpha} \tag{3.1}
\end{equation*}
$$

and the identity map of X onto itself will be denoted by i.

Proposition 1. Let S be the following subset of $\prod_{\propto A} F_{\infty}$: (3.2) $S=\left\{\left(f_{\alpha}\right)_{\alpha \in A} \in \prod_{\alpha \in A} F_{\alpha}:(\forall \propto, \beta \in A)\left(f_{\alpha}\left|X_{\alpha} \cap X_{\beta}=f_{\beta}\right| X_{\alpha} \cap X_{\beta}\right)\right.$ Furthermore, let $F C X^{X}$ be defined in the following manner: (3.3) $\quad F=\left\{f \in X^{X}:(3 \mathrm{~s} \in \mathrm{~S})(\forall \propto \in A)\left(f \mid X_{\alpha}=s_{\alpha}\right)\right\}$. Then F is a semigroup of transformations of X into itself, containing the identity map i. If F_{α} is commutative for every $\alpha \in A$, then F is also commutative.

Proof.
First we show the following: if $s=\left(s_{\alpha}\right)_{\alpha \in A} \in S$ and
$t=\left(t_{\alpha}\right)_{\alpha \in A} \in S$, then also $\left(s_{\alpha} \circ t_{\alpha}\right)_{\alpha \in A} S$.
As the $F_{\text {os }}$ are semigroups, it is clear that
$\left(s_{\alpha} \circ t_{\alpha}\right)_{\alpha \in A} \in \prod_{\alpha \in A} F_{\alpha}$. Now take $\alpha, \beta \in A ;$ we must show that

$$
\begin{equation*}
s_{\alpha} \circ t_{\alpha c}\left|X_{\alpha} \cap X_{\beta}=s_{\beta} \circ t_{\beta}\right| X_{\alpha c} \cap X_{\beta} \tag{3.4}
\end{equation*}
$$

But we know that
$s_{\alpha}\left|X_{\alpha} \cap X_{\beta}=s_{\beta}\right| X_{\alpha} \cap X_{\beta}$,

$$
\begin{equation*}
t_{\alpha}\left|X_{\alpha} \cap X_{\beta}=t_{\beta}\right| X_{\infty} \cap X_{\beta} \tag{3.5}
\end{equation*}
$$

as $s, t \in S$; this implies that $X_{\alpha} \cap X_{A}$ is invariant under $s_{\alpha}, s_{\beta}, t_{\alpha}$ and t_{β}. The assertion (3.4) now follows from (3.5) and (3.6).

We now can prove that F is a semigroup. It is evident that F is non-void, as $\left(i_{\alpha}\right)_{\alpha \in A} \in S$, and hence ieF. Take $f, g \in F$. There exist $s, t \in S$ such that for every $\sigma \in \mathbb{A}$

$$
\begin{equation*}
f\left|X_{\alpha}=s_{\alpha}, \quad g\right| X_{\alpha}=t_{\alpha} . \tag{3.7}
\end{equation*}
$$

It follows that $f\left(X_{\alpha}\right) \subset X_{\alpha}$ and $g\left(X_{\alpha}\right) \subset X_{\alpha}$; hence

$$
\begin{equation*}
f \circ g \mid X_{\alpha}=s_{\alpha} \circ t_{\alpha} \tag{3.8}
\end{equation*}
$$

As $\left(s_{\alpha} \circ t_{\alpha}\right)_{\alpha \in \mathbb{A}} \in S$, this shows that $f \circ g \in F$.
Finally, we assume that every F_{α} is commutative. Take again $f, g \in F$ and let $s, t \in S$ such that (3.7) holds. Then it follows from (3.8) that

$$
f \circ g \mid X_{\alpha}=s_{\alpha} \circ t_{\alpha}=t_{\alpha} \circ s_{\alpha}=g \circ f / x_{\alpha}
$$

for every $\alpha \in A$; hence $f \circ g=g \circ f$. Thus F is commutative.
Definition 1. The transformation semigroup $F \subset X^{X}$, defined in proposition I (by (3.2) and (3.3)), is called the product
of the transformation semigroups $\left(F_{\infty} ; X_{\alpha}\right), \alpha \in A$, and is denoted by

It follows from the construction of $F=\underset{\alpha \in A}{ } \mathbb{F}_{\alpha,}$ that every set X_{α} is an invariant subset of X under F. Hence: Proposition 2. The transformation semigroup $\mathbb{P}_{\alpha \in \mathbb{A}} F_{\alpha}$ is $\left\{X_{\alpha}: \alpha \in A\right\}$ - invariant.
Proposition 3. If the sets $X_{\alpha}, \alpha \in A$, are pairwise disjoint, then the abstract semigroup $(\underset{\alpha}{P} \in A F, 0)$ is isomorphic with the (unrestricted) direct product of the abstract semigroups ($F, 0$).
Proof. If S and F are as in (3.2) and (3.3), then, under the assumption that the X_{α} are pairwise disjoint, the set S is equal to the set $\prod_{\alpha \in A} F_{\alpha}$. If we define a multiplication - in S by

$$
s \cdot t=\left(s_{\alpha} \circ t_{\alpha}\right)_{\alpha \in A}
$$

then ($S,$.) is even isomorphic with the direct product of the semigroups ($F_{\propto}, 0$). The proposition now follows from the fact that

$$
\begin{equation*}
f \rightarrow\left(f \mid X_{\alpha}\right)_{\alpha \in \mathbb{A}} \tag{3.9}
\end{equation*}
$$

is an isomorphism of ($F, 0$) onto ($\mathrm{S},$.$) .$
Proposition 4. If $X_{\alpha}=X$, for every $\alpha \in A$, then $\mathcal{P}_{\alpha} \mathrm{F}_{\alpha}=\bigcap_{\propto} \mathrm{F}_{\alpha}$.
Proof. If again S and F are as defined in (3.2) and (3.3), then $\left(f_{\propto}\right)_{\propto \in A} \in S$ implies

$$
f_{\alpha}=f_{\alpha}\left|X=f_{\alpha}\right| X_{\alpha} \cap X_{A}=f_{\beta}\left|X_{\alpha} \cap X_{A}=f_{A}\right| X=f_{\beta}
$$

for all $\alpha, \beta \in A$. Conversely, if $\left(f_{\alpha}\right), \in_{\alpha \in A} \|_{\alpha} F_{\alpha}$, and $f_{\alpha}=f_{\beta}$ for all $\alpha, \beta \in A$, then ($f_{\alpha,}$) $A \in S$: This proves - 33 -
the assertion, as $f_{\alpha}=f_{\beta}$ for all $\alpha, \beta \in A$ implies $f_{\alpha} \in \overparen{\alpha \in A} F_{\alpha}$.

4. The sum of a system of transformation semigroups

 Definition 2. Let $\left\{\left(F_{\alpha} ; X_{\alpha}\right): \alpha \in A\right\}$ be a system of transformation semigroups, and let $X=\bigcup_{\alpha \in A} X_{\alpha}$. The transformotion semigroup $F \subset X^{X}$, generated by the set(4.1) $T=\left\{f \in X^{X}:(\exists \propto \in A)\left(\exists f_{C} \in F_{\alpha}\right)\left(f \mid X_{\alpha}=f_{\alpha}\right.\right.$ and

$$
\left.\left.f\left|X \backslash x_{\alpha}=i\right| X \backslash x_{\alpha}\right)\right\}
$$

is called the sum of the transformation semigroup ($F_{\alpha} ; X_{\alpha}$), and is denoted by

$$
\underset{\alpha \in A}{\sqrt[S]{S}} \mathrm{~F}_{\alpha} \quad \text { or } \leqslant\left\{\mathrm{F}_{\alpha}: \propto \in \mathrm{A}\right\}
$$

It follows from the definition that for every $\propto \in A$ there is an isomorphism of F_{α} into $\underset{\beta \in A}{S} F_{\beta}$.

We are mainly interested in the case that $\mathcal{S C A}^{\mathbb{A}} \mathrm{F}_{\alpha}$ is a commutative semigroup. By the above remark, every F_{∞} then has to be commutative. But this is not sufficient; egg. if $X_{1}=X_{2}=\{0, I\}$, and if F_{1} consists only of i and the map f_{1} such that $f_{1}(0)=f_{1}(1)=0$, while F_{2} consists of i and the map f_{2} such that $f_{2}(0)=f_{2}(1)=1$, then $\left(F_{1} ; X_{1}\right)$ and $\left(F_{2} ; X_{2}\right)$ are commutative, but $\left.S_{\left\{F_{1}\right.}, F_{2}\right\}$ is not commutative.

The following condition on the family $\left\{\left(F_{\infty} ; X_{C}\right): \propto \in A\right\}$ will turn out to be sufficient, together with the commutativity of all F_{α}, in order to ensure that $\mathcal{S}_{\alpha \in A} F_{\alpha}$ is commatative:
(c) for all $\alpha, \beta \in A$, the sets $X_{\alpha} \cap X_{\beta}$ and $X_{\alpha} \backslash X_{\beta}$ are invariant subsets of X_{∞} under F_{α}, and if $f_{x} \in F_{\alpha}$ and $P_{\beta} \in P_{\beta}$, then $f_{\alpha} \mid X_{\alpha} \cap X_{\beta}$ and $f_{\beta} \mid X_{\alpha} \cap X_{\beta}$ commute.

Proposition 5. Let $\left\{\left(F_{\infty} ; X_{C}\right): \alpha \in \mathbb{A}\right\}$ be a family of commum tative transformation semigroups, each contatining the identity mapping $i_{\alpha}: X \rightarrow X_{\alpha}$, and let condition (C) be satisfied. Then $\underset{\alpha \in A}{\$} F_{\alpha}$ is a commutative transformation semigroup containing the identity map.

Proof. Let T be as in (4.1), and let F be the subsemigroup of X^{X} generated by T. As it is evident that ie F we have only to show that T is commatative. Let $f, g \in T$ Then there are $\alpha, \beta \in A$ and $f_{\alpha} \in F_{\alpha}, f_{s} \in F_{\beta}$ such that

$$
\begin{aligned}
& f\left|X_{\alpha}=f_{\alpha} ; \quad g\right| X_{\beta}=f_{\beta} ; \\
& f\left|X \backslash X_{\alpha}=1\right| X \backslash X_{\alpha} ; \\
& g\left|X \backslash X_{A}=1\right| X \backslash X_{A}
\end{aligned}
$$

As condition (C) is assumed to be satisfied, $f\left(X_{\alpha} \cap X_{\beta}\right.$ and $g \mid X_{\alpha} \cap X_{\beta}$ commate. Furthermore, $f\left(X \backslash\left(X_{\alpha} \cap X_{\beta}\right)=\right.$ $=g\left|X \backslash\left(X_{\alpha} \cup X_{\beta}\right)=1\right| X \backslash\left(X_{\alpha} \cup X_{\beta}\right)$. Hence we need only check what happens with points in $X_{\alpha} \backslash X_{\beta}$ or in $X_{\beta} \backslash X_{\alpha}$. Because of the symmetry of the situation, we may restrict our attention to points in $X_{\alpha} \backslash X_{\beta}$.

Let $x \in X_{\alpha} \backslash X_{\beta}$. Then

$$
(f \circ g)(x)=f(g(x))=f(x)=f_{\alpha}(x) ;
$$

as $X_{\alpha} \backslash X_{A}$ is supposed to be invariant under F_{α}, $f_{\alpha}(x) \in X_{\alpha} \backslash X_{\beta} ;$ hence

$$
f_{\alpha}(x)=g\left(f_{\alpha}(x)\right)=g(f(x))=(g \circ f)(x)
$$

This finishes the proof.
Proposition 6. If the sets $X_{c c}$, $\alpha \in A$, "are pairwise disjoint, then the abstract semigroup $\left(\mathbb{X}_{\in} F_{\infty}, 0\right)$ is isomorphic to the direct sum (restricted direct product) of the abstract semigroups ($F_{a}, 0$), $\alpha \in \mathbb{A}$.

Froof. Let T be defined by (4.1). Let φ be the mapping (3.9). Then maps $T 1.1$ onto the subset of $\prod_{\in A} F_{\alpha,}$, consisting of all $\left(f_{\alpha}\right)_{\alpha \in A}$ such that $f_{\alpha} \neq i_{\alpha}$ for at most one $\alpha \in A$; and φ maps $F \cdot 1.1$ onto the subset of $\prod_{\sim} \underset{A}{ } F_{a c}$ such that $f_{\alpha} \neq i_{\alpha}$ for only finitely many $a \in \mathbb{A}$. It is immediately seen that $\varphi \mid F$ is a homomorphism of ($F, 0$) into the direct product of the ($F_{\alpha,}, 0$) ; hence φ / F is an isomorphism, and $\varphi(F)$ is exactly the direct sum of the $\left(F_{\alpha}, 0\right)$.
Proposition 7. Assume $X_{\alpha}=X$, for every $x \in A$. Then condition (C) is satisfied if and only if $\quad U_{\propto \in A} F_{\infty}$ is commatative, and $\mathscr{S}_{\alpha \in A} F_{\propto}$ is the subsemigroup of X^{X} generated by $\bigcup_{\sim \in A} F_{\alpha}$.
Proof: evident.
5. Commutative semigroups that are maximal with respect to their system of invariant sets

In this section, ($F ; X$) is a commutative transformation semigroup, containing the identity transformation, and y will always denote a family of subsets of X that are invariant under F.

If y is such a family, then $\cup y$ will denote the set $U\{A: A \in \mathcal{A}\}$, and $\mathbb{P}(y)$ will denote the semigroup

$$
P(y)=\mathbb{P}\{F \mid A: A \in \mathcal{A}\}
$$

The following lemma is almost obvious:
Lemma I. $f \in \mathbb{P}(y) \Leftrightarrow f|A \in F| A \quad$ for all $A \in J$.
From this lemma, the following propositions follow with out difficulty:
Proposition 8. If $\cup y=X$, then $F \subset \mathbb{P}(y) \subset x^{X}$. sists of mappings of. UV into itself.)
Proposition 2. Let both y_{1} and y_{2} consist of subsets of x that are invariant under F. If $U y_{1}=U y_{2}$, then $y_{1} \subset y_{2}$ implies $\mathbb{P}\left(y_{1}\right) \supset \mathbb{P}\left(\dot{y}_{2}\right)$.

If y_{1} and y_{2} are both families of subsets of a set X , we will say that y_{1} is a refinement of y_{2}, and write $y_{1} \leqq y_{2}$,
if for every $A_{1} \in \mathcal{X}_{1}$ there is an $A_{2} \in \mathcal{X}_{2}$ such that $\mathrm{A}_{1} \subset \mathrm{~A}_{2}$.
Proposition 10. Let both y_{1} and y_{2} consist of subsets of x that are invariant under F. If $U y_{1}=U y_{2}$ and $y_{1} \leq y_{2}$, then $\mathbb{P}\left(y_{1} \cup y_{2}\right)=\mathbb{P}\left(y_{2}\right)$.

Proof. By proposition $9, \mathbb{P}\left(y_{1} \cup y_{2}\right) \subset \mathbb{P}\left(y_{2}\right)$ on the other. hand,
$f \in \mathbb{P}\left(y_{2}\right) \Longrightarrow\left(\forall A \in y_{2}\right)(f \mid A \in F(A)) \Rightarrow\left(\forall A \in y_{1} \cup y_{2}\right) \quad(f|A \in F| A)$

$$
f \in \mathbb{P}\left(y_{1} \cup y_{2}\right)
$$

Example. If $x \in \mathcal{J}$, then $\mathbb{P}(y)=F$.
Remark. If A is not an invariant subset of X, then $F 1 A$ is not a semigroup. However, if we define $F \| A=\{f \mid A: f \in F$ and $f(A) \subset A\}$ then $F \| A$ is a semigroup under composition. It is seen at once that

$$
* \mathbb{P}\{(F ; X),(F \| A ; A)\}=\{f \in F: f A \subset A\} ;
$$

hence if A is not invariant, $F \notin \mathbb{P}(F, F \| A)$, al though of course $X \cup A=X$.

Lemma 2. Let J_{1} be the class of all subsets of X that are invariant under P, and let y_{2} be the class of all orbits under F, and let $F \subset G \subset X^{X}$.

Then G is a commutative y_{1}-invariant system if and only if G is a commatative y_{2}-invariant system. Proof. As $y_{2} \subset y_{1}$, every y_{1}-invariant system is y_{2} invariant. On the other hand, if $A \in \mathcal{J}_{1}$, then

$$
A=F(A)=U\{F(x): x \in A\}=U\left\{B \in \mathcal{D}_{2}: B \subset A\right\} .
$$

Hence every y_{2}-invariant system is y_{1}-invariant.
Lemma 3. Let $G \in X^{X}$ be commutative. If there exista an $e \in X$ such that $G(e)=X$, then G is a maximal commutative semigroup.
Proof. Let $f \in X^{X}$ such that f commates with every $g \in G$. We will show that $f \in G$. As $G(e)=X$, there exists a $\dot{g}_{0} \in G$ such that $f(e)=g_{0}(e)$. Let x be an arbitrary element of X; then there is a $g \in \mathbb{G}$ such that $g(e)=X$, and it follows that

$$
\begin{aligned}
& f(x)=f \circ g(e)=g \circ f(e)=g \circ g_{0}(e)=g_{0} \circ g(e)= \\
& =g_{0}(x):
\end{aligned}
$$

Hence $f=g_{0} \in G$.
In particular, we have the following:
Lemma 4. If $\mathrm{Fc} \mathrm{X}^{\mathrm{X}}$ is a commutative semigroup, containing the identity map, then for every orbit $F(x)$ under $F, F \mid F(x)$ is a maximal commutative semigroup of mappings $F(x) \rightarrow F(x)$. Theorem 1. Let FcX X^{X} be a commutative semigroup, containing the identity map. Let g be the class of all subsets of X that are invariant under F. Then there exists one and only one maximal commutative y-invariant semigroup $G \subset X^{X}$ containing F; and

$$
G=\mathbb{P}\{F \mid F(x): x \in \mathbb{X}\}
$$

Proof. Let g be any mapping $X \rightarrow X$ that commutes with every $f \in F$ and that maps every $A \in \mathcal{Y}$ intoitself. We will show
that $g \in G$.
Take any $x \in X$. Then $g / F(x)$ maps $F(x)$ into itself, as $P(x) \in \mathcal{y}$, and $g \mid F(x)$ commutes with every mapping in $F \mid F(x)$ - But by lemma $4, F / F(x)$ is a maximal commutative semigroup; hence $g(F(x)$ e $F \mid F(x)$. It now follows from lemma 1 that $g \in G$.

An immediate consequence is that $F \subset G$ (this also folIows from proposition 8). So it remains only to be proved that G is y-invariant. But by proposition $2, G$ is y_{2}-invariant, where $y_{2}=\{P(x): x \in X\}$; now apply lema 2 .
Corollary: If $F \subset X^{X}$ is a maximal commutative transformation semigroup, then

$$
F=\mathbb{P}\left\{F \mid F(x): x \in X^{X}\right\}
$$

A family of orbits $\{F(x): x \subset Y\}$, where Y is a subset of X, is called an F-orbit cover, or shortly an F-coVer of X, if $F(Y)=X$.

From proposition 10 and theorem 1 we deduce at once: Theorem 2. If $\{F(x): x \in I\}$ is an F-cover of X, then $\mathbb{P}\{F \mid F(x): x \in \mathbb{Y}\}$ is the maximal commatative y-invariant semigroup containing F (where y is the family of all subseta of X that are invariant under F).

In [I] the following theorem was proved ([I], Theorem I):
"Let F be a maximal commutative semigroup of mappings of a set X into itself, and let $r(F) \neq 0$. If each f e F has a fixed point, then all mappings in F have precisely one common fixed point."

$$
\text { Here } r(F)=\left\{f \in F:\left(\forall f_{1} \in F\right)\left(\exists f_{2} \in F\right)\left(f=f_{1} \circ f_{2}\right)\right\}
$$

is the set of all mappings $f \in F$ that are common multiples
of all mappings in F.
Using the concepts developed in this paper, we may generalise this theorem as follows:

Theorem 3. Let $F \in X^{X}$ be a maximal commutative y-invariant transformation semigroup (where y again is the family of all subsets of X that are invariant under F). If $r(F) \neq \varnothing$ and if each $f \in F$ has a fixed point, then all mappings in F have a common fixed point.

The proof is exactly the same as the first part of the proof of [1], Theorem 1. It is easily seen that the mapping g, constructed in [1], leaves all sets of y invariant; hence the weaker assumption that F is maximally \mathcal{I}-invariant suffices in order to conclude that $g \in F$.

Finally we will give one more application of the above product construction. In order to do so, however, we need the concept of an algebraically generated transformation samigroup.

Take an abstract semigroup ($\mathrm{X} ;$.) and consider all left multiplications in X, i.e. all mappings f_{a}, a \mathcal{X}, defined by

$$
\begin{equation*}
f_{a}(x)=a_{0} x \tag{5.1}
\end{equation*}
$$

These mappings constitute a semigroup $F \subset X^{X}$. IP X has an identity element, it is even true that the abstract semigroup ($\mathrm{F} ; \mathrm{O}$) is isomorphic with ($\mathrm{X} ;.$). (In fact, in that case the correspondence $a \rightarrow f_{a}$ is an isomorphism of (X;) onto (F; O).) Now transformation semigroups of this kind will be called algebraically generated. More explicitly:
Definition 3. A transformation semigroup $F \subset X^{X}$ is called algebraically generated if there exists a binary operation . on X such that
(i) (X; .) is a semigroup with unit;
(ii) $F=\left\{f_{a}: a \in X\right\}$, where f_{a} is às defined in (5.1).

Using lemma 3 , ityis easy to give a complete characterisation of all commatative transformation semigroups that are algebraically generated.
Lemma 5. A commutative transformation semigroup $F \subset X^{X}$ is algebraically generated if and only if there exists an $e \in X$ such that $P(e)=X$.
proof.
Firgt assume F to be algebraically generated, say by the semigroup structure (x; .) . Then if e is the unit element of (X; .), it is immediate that $F(e)=X$.

Conversely, assume $F(e)=X$, for some $e \in X$. From the proof of lemma 3: it follows at once that the mapping $\varphi: F \rightarrow X$, defined by

$$
\varphi(f)=f(e)
$$

is a l-l-mapping of F onto X. Define a binary operation - in X by

$$
x, y=\varphi\left(\bar{g}^{-1}(x) \circ \quad-\frac{1}{\varphi}(y)\right) .
$$

Then (X ; .) is a commutative semigroup, with e as unit element and $F=\left\{f_{a}: a \in X\right\}$, as $f_{a}(x)=a_{0} x=\varphi\left(\frac{-1}{\varphi}(a) \circ \bar{\varphi}^{-1}(x)\right)=\left(\bar{\varphi}^{-1}(a) \circ \bar{\varphi}^{-1}(x)\right)(e)=$ $=\varphi^{-1}(a)(x)$.

We now prove the following theorem, which states in effect that every commutative transformation semigroup can be built up, using the product construction of section 3 , from algebraically generated semigroups:

Theorem 4. Let $F \subset X^{X}$ be a commutative transformation - 41 -
semigroup, and let m be the cardinal number of an F-cover of X. Then F is a subsemigroup of a productrf m algebraically generated commutative semigroups.

Proof.
Theorem 2 assers that F is a subsemigroup of a product of m semigroups $F \mid F(x)$, and lemma 5 shows that all the se semigroups are algebraically generated (as (FlF(x)) (x)= $=F(x))$.

References:

[1]. Z. HEDRLiN, Two theorems concerning common fixed points of commatative mappings, CMUC, 3,2 (1962).

