Commentationes Mathematicae Universitatis Caroline

Vlastimil Pták
 An extension theorem for separately continuous functions and its application to functional analysis

Commentationes Mathematicae Universitatis Carolinae, Vol. 4 (1963), No. 3, 109--116
Persistent URL: http://dml.cz/dmlcz/104940

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1963

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
4,3(1963)
$$

AN EXTENSION THEOREM FOR SEPARATELY CONTINUOUS FUNCTIONS AND ITS APPLICATION TO FUNCTIONAL ANALYSIS x) Vlastimil PTAK, Praha

1. Let S be a family of continuous functions on a topological space T. Consider the value of an $s \in S$ at the point $t \in T$ as a function $f(s, t)$ of two variables on the Cartesian product $S \times T$. If S is taken in the topology of pointwise convergence, the function f will be separately continuous.
2. Every completely regular topological space P possesses a natural extension, a locally convex topological linear space, constructed in the following menner. Denote by $C_{\beta}(P)$ the Banach space of all bounded continuous functions on P and take the dual space $C_{\beta}(p)^{\prime}$ in the weak-star topology $\sigma\left(C_{\beta}(P)^{\prime}, C_{\beta}(P)\right)$. Then P may be considered as a subset of $C_{\beta}(P)^{\prime}$.
3. The main problem. Consider a bounded separately continuous function $f(s, t)$ on the product $S \times T$ of two completely regular topological spaces. Now, $S \times T$ is imbedded in the linear space $C_{\beta}(S)^{\prime} \times C_{\beta}(T)^{\prime}$. Under what conditions may f be extended to a seperately continuous bilinear form on $C_{\beta}(S)^{\prime} \times C_{\beta}(T)^{\prime} ?$
4. We say that a function f on $S \times T$ satisfies the x) Preliminary report on a paper presented to the Editors of the Czechoslovak Mathematical Journal on August 20, 1963.
double limit condition on $S \times T$ if it is impossible to find two (countable!) sequences $s_{i} \in S$ and $t_{j} \in T$ such that both $\lim _{i} \lim _{j} f\left(s_{i}, t_{j}\right)$ and $\lim _{j} \lim _{i} f\left(s_{i}, t_{j}\right)$ exist and are different from each other.
5. The main theorem. Let _S_ and _T_ be_two_completely regular topological spaces_and_ f _a_bounded_separately conti= nuous function_on _S_xT_•_There_exists a separately_continuous biline ar form on $C_{B}(S)^{\prime} \times C_{B}(T)^{\prime}$ which extends P if and on-

This theorem permits us to obtain statements about the (non metrizable) weak topology of a Banach space from assumptions of a countable character. It contains e.g. the theorems of Krein and Eberlein. A weaker version of this theorem is already contained in [9]. The proof of the main theorem is based on the combinatorial lemma on convex means [8]. The reader is refer ed to [9] for all information and notation connected with this lemma and its application to problems concerning weak compactness.
6. The following lemma will be used in the proof of the main theorem.
$(2,1)$ Iet _X_ and _I_ be_two_completely_regular_topologic al_ spaces_and_ $B(x, y)$ _ a_separately continuous_function on
 a mapping h of X into $C_{\beta}(Y)$ and a mapping k of Y into $C_{A}(X)$ by the relation

$$
\langle h(x), y\rangle=\langle x, k(y)\rangle=B(x, y)
$$

Suppose further that_ B _satisfies_the_double limit condition on $X \times Y$. Let $R \subset X \subset C_{\Omega}\left(X\right.$ and suppose that $r_{0} \in C_{\beta}(X)^{\prime}$
belongs to_the_closure_of _R_-_Let_ $\varepsilon_{-} \geq 0$ - Then_there_exists a convex mean $\sum \lambda(r)$ such that $\quad \mathrm{r} \in \mathbb{R}$
$\left|\left\langle\Sigma \lambda(r) r-r_{0}, k(Y)\right\rangle\right| \leqq \varepsilon$
Proof: Let W be the subset of $R \times Y$ where

$$
\left|\left\langle r-r_{0}, \quad k(y)\right\rangle\right| \geqq \frac{\varepsilon}{4}
$$

and let M be the subset of $R \times Y$ where

$$
\left\lvert\,\left\langle r-r_{0}, \quad k(y)>\right|<\frac{\varepsilon}{8}\right.
$$

Let \mathcal{W} be the system of all sets $W(y)$ with $y \in Y$. Let β be such that $|B(x, y)| \equiv \beta$ on $X \times Y$. Suppose that $M\left(R, W, \frac{\varepsilon}{8 \beta}\right.$) is empty; it follows from Theorem (3.1) of [9] that there exist two sequences $r_{n} \in R$ and $y_{n} \in Y$ such that

$$
r_{n} \in M\left(y_{1}\right) \cap \ldots \cap M\left(y_{n-1}\right) \cap W\left(y_{n}\right) \cap w\left(y_{n+1}\right) \cap \ldots
$$

so that the double limit condition is violated on $R \times Y$. There exists, accordingly, a $\lambda \in M\left(R, w, \frac{\varepsilon}{8 \beta}\right)$. We have, for $y \in Y$,
$\left|\left\langle\sum_{r \in R} \lambda(r) r-r_{0}, k(y)\right\rangle\right| \leq \sum_{r \in R} \lambda(r)\left|\left\langle r-r_{0}, k(y)\right\rangle\right|=$ $=\sum_{r \in W(y)}+\sum_{r \in R-W(y)} \leqq \frac{\varepsilon}{8 \beta} 2 \beta+\frac{\varepsilon}{4}=\frac{\varepsilon}{2}$
(2,2) The extension theorem. _Let_ S,_T_ be_twocompletely re= gular topologicsil spaces_and_let_ $B(\underline{s},-t)$ _ be a seperately_ continuous function_on _S_X_T-_Suppose_that _ B_{-}is_bounded and that_it, satisfies the double_limit_condition_on S - \boldsymbol{x}_{-}. Then _B_ may be_extended to_a_separately continuous_bilinear form on $C_{\beta}\left({ }^{(S}\right)^{\prime} \times C_{\beta}(T)^{\prime}$.
roof: I. We define pirst a mapping h of S into $C_{\beta}(T)$
and a mapping I of T into $C_{\beta}(S)$ by the relation
(1) $\langle h(s), t\rangle=\langle s, k(t)\rangle=B(s, t)$

If $p \in C_{\beta}(S)$; define a function $k^{\prime}(p)$ on T by the relotion
(2) $\left\langle k^{\prime}(p), t\right\rangle=\langle p, k(t)\rangle$

Let us show that $k^{\prime}(p)$ is continuous on T. Indeed, suppose that $M \subset T$ and $t_{0} \in T$ belongs to the closure of M and that $1\left\langle k^{\prime}(p), m-t_{0}\right\rangle I \geqq \varepsilon$ for all $m \in M$ and some $\varepsilon>0$. Divide the set M into two parts $M^{(+)}$and $M^{(-)}$according to the sign of $\left\langle k^{\prime}(p), m-t_{0}\right\rangle$. Since t_{0} has to belong to the closure of one of them, we may clearny assume that t_{0} is in the closure of $M^{(+)}$. According to $(2,1)$ there exists a convex mean $\sum_{m \in M} \lambda(m) m$ such that $1\left\langle h(\mathrm{~s}), \quad \Sigma \lambda(\mathrm{m}) \mathrm{m}-\mathrm{t}_{0}\right\rangle \left\lvert\, \leqslant \frac{\varepsilon}{2|\mu|} \quad\right.$ whence $\left.1<S, \sum \lambda(m) k(m)-k\left(t_{0}\right)\right\rangle \leq \frac{\varepsilon}{2|p|}$. It follows that $\left\lvert\,\left\langle\mathrm{p}, \sum \lambda(\mathrm{m}) \mathrm{k}(\mathrm{m})-\mathrm{k}\left(\mathrm{t}_{0}\right)\right\rangle \leqslant \frac{\varepsilon^{2}}{2}\right.$. This is a contradiction since $\left\langle k^{\prime}(\mathrm{p}), \mathrm{m}-\mathrm{t}_{0}\right\rangle \geqslant \varepsilon$ for each $m \in \mathrm{~m}^{(+)}$ whence $\left\langle p, \sum \boldsymbol{\lambda}(\mathrm{~m}) k(\mathrm{~m})-k\left(\mathrm{t}_{0}\right)\right\rangle=$
$=\left\langle k^{\prime}(p), \Sigma \lambda(m)\left(m-t_{0}\right)\right\rangle=\Sigma \lambda(m)\left\langle k^{\prime}(p), m-t_{0}\right\rangle \geqslant \varepsilon$ It follows that k^{\prime} is a mapping of $C_{\beta}(S)$ into $C_{\beta}(T)$. By (2) and (1), we have

$$
\left\langle k^{\prime}(s), t\right\rangle=\langle s, k(t)\rangle=\langle h(s), t\rangle
$$

so that K^{\prime} is an extension of h.
II. In the same manner we obtain a mapping h^{\prime} of $C_{\beta}(T)^{\prime}$ into $C_{\beta}(S)$ defined by
(3) $\left\langle\mathrm{s}, \mathrm{h}^{\prime}(\mathrm{q})\right\rangle=\langle\mathrm{h}(\mathrm{s}), \mathrm{q}\rangle$
III. Now let $p \in C_{\beta}(S)^{\prime}, q \in C_{\beta}(T)^{\prime}$. Since $h^{\prime}(q) \in$ $\epsilon C_{\beta}(S)$, the expression $\left\langle p, h^{\prime}(q)\right\rangle$ has a meaning; similarly, $\left\langle k^{\prime}(p), q\right\rangle$ also may be defined. If we show that (4) $\left\langle k^{\prime}(p), q\right\rangle=\left\langle p, h^{\prime}(q)\right\rangle$
it will be sufficient to put $B^{*}(p, q)=\left\langle k^{\prime}(p), q\right\rangle$ to have the desired extension. Indeed, $B^{*}(s, t)=\left\langle k^{\prime}(s), t\right\rangle=$ $=\langle s, k(t)\rangle=B(s, t)$ by (2) and (1). If p is fixed, we have $k^{\prime}(p) \in C_{\beta}(T)$ so that $k^{\prime}(p)$ is continuous on $C_{\beta}(T)^{\prime}$. If q is fixed, we have $h^{\prime}(q) \in C_{\beta}(s)$ so that $h^{\prime}(q)$ is continuous on $C_{\beta}(s)^{\prime}$.
IV. To prove (4), suppose that $|p| \leq 1,|q| \leq I$ and
let $\varepsilon>0$ be given. Let V be the set of all linear combinations $\sum \omega_{i} s_{i}$ with $\sum\left|\omega_{i}\right| \leq 1$ so that V is dense in the unit ball of $C_{\beta}(S)^{\prime}$. Let R be the set of those $\nabla \in \mathrm{V}$ for which
(5)

$$
\mid\left\langle\nabla-p, \quad h^{\prime}(q)\right\rangle \leqslant \varepsilon
$$

so that p belongs to the closure of R. Let us show now that it is sufficient to find a $\nabla \in R$ such that
(6) $|\langle\nabla-p, k(T)\rangle| \leqslant \varepsilon$

Indeed, we have by (2) and (6)

$$
\left|\left\langle k^{\prime}(p), t\right\rangle-\left\langle k^{\prime}(\nabla), t\right\rangle\right|=|\langle p-\nabla, \quad k(t)\rangle| \leq \varepsilon
$$

for all $t \in T$ whence
(7) $\quad\left|\left\langle k^{\prime}(p), q\right\rangle-\left\langle k^{\prime}(v), q\right\rangle\right| \leqq \varepsilon$

Since $v \in V$ ad k is on extension of h, we have further

$$
\left\langle k^{\prime}(v), q\right\rangle=\langle h(v), q\rangle=\left\langle v, h^{\prime}(q)\right\rangle
$$

which, together vith (7), yields
(8) $\left|\left\langle k^{\prime}(p), q\right\rangle-\left\langle v, n^{\prime}(q)\right\rangle\right| \leq \varepsilon$

On the other hand, $\nabla \in R$ so that, by (5)

$$
\left|\left\langle\nabla, h^{\prime}(q)\right\rangle-\left\langle p, h^{\prime}(q)\right\rangle\right| \leqslant \varepsilon
$$

and this, combined with (8) gives

$$
\left|\left\langle k^{\prime}(p), q\right\rangle-\left\langle p, h^{\prime}(q)\right\rangle\right| \leq 2 \varepsilon
$$

V. The proof will be complete if we show that there exists a $\nabla \in R$ such that

$$
|\langle\nabla-p, \quad k(T)\rangle| \leqslant \varepsilon
$$

Since p delongs to the closure of R, it follows from $(2,1)$ that there exists a convex mean $\sum_{r \in R} \lambda(r) r$ with $\left|\left\langle\sum \lambda(r) r-p, k(T)\right\rangle\right| \equiv \varepsilon \quad$ or there exist two sequences r_{i}, t_{j} with

$$
\begin{equation*}
r_{n} \in M\left(t_{1}\right) \cap \ldots M\left(t_{n-1}\right) \cap W\left(t_{n}\right) \cap W\left(t_{n+1}\right) \cap \ldots \tag{9}
\end{equation*}
$$

where M and W are the subsets of $R \times I$ where $\mid<\ell-p ; k(t)>1$

$$
\text { is respectively }<\frac{1}{2} \varepsilon \text { and } \varepsilon \text {. }
$$

If we show that (9) is impossible it will be sufficient to take $\nabla=\boldsymbol{\Sigma} \boldsymbol{\lambda}(\mathrm{r}) \mathrm{r}$.
Now let t_{j}^{*} be a subsequence of t_{j}, and $t_{0} \in C_{\beta}(T)^{\prime}$ on accumulation point of the sequence t_{j}^{*} such that

$$
\begin{equation*}
\lim \left\langle h\left(r_{i}\right), t_{j}^{*}\right\rangle=\left\langle h\left(r_{i}\right), t_{0}\right\rangle \text { for each } i \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
1\left\langle k^{\prime}(p), t_{j}^{*}-t_{0}\right\rangle \left\lvert\, \leq \frac{1}{8} \varepsilon \quad\right. \text { for each } j \tag{11}
\end{equation*}
$$

By $(2,1)$ there exists a convex mean $\sum \lambda_{j} t_{j}^{*}$ such that
(22) $\quad\left|\left\langle h(s), \sum \lambda_{j} t_{j}^{*}-t_{0}\right\rangle\right| \leqslant \frac{1}{8} \varepsilon$

Let i be given. It follows from (9) that, for lange j,

$$
1<r_{i}-p, \quad k\left(t_{j}\right)>1 \leqq \varepsilon
$$

or, which is the same

$$
\left|\left\langle h\left(r_{i}\right), t_{j}\right\rangle-\left\langle k^{\prime}(p), t_{j}\right\rangle\right| \geqq \varepsilon ;
$$

this, together with (10) and (11), yields
(13) $\left|\left\langle h\left(r_{i}\right), t_{0}\right\rangle-\left\langle k^{\prime}(p), t_{0}\right\rangle\right| \geqq \frac{7}{8} \varepsilon$

Now let i be greater than any of the indices of the t_{s} which occur in the expression $\sum \lambda_{j} t_{j}^{*}$. It follows from (9) that, for $1>\mathrm{s}$,

$$
\left|\left\langle r_{i}-p, k\left(t_{s}\right)\right\rangle\right|<\frac{1}{2} \varepsilon
$$

or

$$
\left|\left\langle h\left(r_{i}\right), t_{s}\right\rangle-\left\langle k^{\prime}(p), t_{s}\right\rangle\right| \leqslant \frac{1}{2} \varepsilon ;
$$

together with (11), we have

$$
\left|\left\langle h\left(r_{i}\right), t_{s}\right\rangle-\left\langle k^{\prime}(p), t_{0}\right\rangle\right| \equiv \frac{5}{8} \varepsilon
$$

so that it follows from (12)

$$
\left|\left\langle h\left(r_{i}\right), t_{0}\right\rangle-\left\langle k^{\prime}(p), t_{0}\right\rangle\right| \leq \frac{6}{8} \varepsilon
$$

which is a contradiction with (13). The proof is complete.
To conclude, let us point out some questions arising in connection with the present remark. A systematic study of the convex extension of a given topological space seems to be indicated. Also, it would be interesting to obtain more information about the inductive wopology of the cartesian product $S \times T$, i.e. the topology which yields as continuousfexactions the system of all separately continuous functions.
[1] S. BANACH, Théorie des operations linéaires, Monogram fie Mathematyczne 1 , (1932)
[2] W.F. EBERLEIN, Weak compactness in Benach spaces, Proc. Nat. Ac. of Sci. USA 33 (1947), pp. 51 - 53
[5] A. GTOTHENDIECK, Critères de compacité dans les espaces functionnels généraux, Amer..J. Math. 74 (1952), 168-186
[6] G. KÖTHE, Topologische Line are Räume, Berlin (1960)
[7] V. PTAK, Weak compactness in convex topological vector spaces, Czech. Math.J. 79 (1954), 175-186
[8] V. PTAK, A combinatorisl lemma on systems of inequalities and its application to analysis, Czech. Math. J. 84 (1959), 629-630
$[c] \quad V, F A K$, A combinatorial lemma on the existence of convex means and its application to weak compoctness, Amer. Moth. Soc., Proceedings of the Symposia on Pure Mathemetics, 7 (1963), 437-450

