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Comiuentationes Mathematicae Universitatis Carolinae 

4, 4 (1963) 

CONCERNING REPRESENTATIONS OF SMALL CATEGORIES 

Karel DRBOHLAV, Praha 

The existence of non-concrete categories was proved by 

J.R. Isbell in [2]. On the other hand the well-known theorem 

of S. Eilenberg and S. Mac Lane (see e.g. [l] or [3] ) 

states that every small category (the category the objects 

of which form a set) is concrete. The proof of this fact 

assigns to every object a the set A consisting exactly 

of all morphisms cC which end in a and it may be used 

without any change for proving our theorems 1 and 2 . 

In what follows we use the following notation. *€ is 

any small category, *{* • is the set of all objects of € 9 

H(s, b) is the set of all morphisms of t7 from the 'object 

a into the object b . For aC e H(a, b) and /i e H(b, c) 

the product of <?C and fl , which lies in H(a, c), is 

written as <&/5 . In relation to this, for any mapping F 

from some set A into some set B and for any a e A the 

image of a will be denoted by aF , whereas AP means 

the set of all aF for all a e A . MU is any infinite 

cardinality and ty^ is ^he category of all sets X with 

card X < AH** and of all mappings. 

Theorem 1. Let card *€*<• AH- and let card H(a, b).^ 

4 /**K for all objects a, b e *t* and for some fixed 

cardinality /Ŵ ^ < Mi- . Then *£ is isomorphic to some sub

category of It^ . 

Theorem 2. Let card ^£* ̂ c Mi* and let card H(a, b ) ^ ^ 
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for a l l objects a, b m *£* • I f 4H> i s regular then t i s 

isomorphic to some subcategory of 'W^ , • 

For the f i r s t i r regular cardinal i ty W^j the following 

i s time., 

Theorem 3« There exists, a small category *£ with the 

following propert ies: 1) card Y* * K* 2) card H(a, b) «=-

-< &^ for a l l objects a, b e *t° 3) *€ i s isomorphic to no 

subcategory of M*g m 

Before proving i t we formulate our l a s t theorem* 

Theorem 4» For any inf ini te Cardinality "f*i- there exis ts 

always a small category *€ with the following propert ies: 1) 

card t° =* /*«• 2j card H(a, b) -= K* > f a r a i i objects a, 

b €" k€° . 3) *€ i s isomorphic to no sub$ateg$3py of #£** • 

Proof of the theorem 3» Let Mp be any inf in i te cardina

l i t y and le t W be a well-ordered set with card W * <**# • 

Consider a category i*^ consisting of three objects a, b , 

c , of identity-morphisms, of some morphisms <&i , Ai $ *#% 

( i e W ) and of t he i r products so that the following i s t rue : 

1) H(a, b) i s the system {<*-}-£ mW 2^ H^D* c^ ^8 * h e 

union of disjoint systems {/3j}j£w
 a n ^ ^Tj}j ^W 3) 

H(a, c) i s formed by a l l products <*.£ /3j and <Xt- tfj under 

the assumption tha t , by defini t ion, 

(1) <%% . ^ 3 J 

holds if and only if i < j . 

Let us suppose that F is any embedding-functor from %MQ 

into the category 'XL of all sets and of all mappings. Let 

A -» F(a), B a F(b) . For every i € W define B± by the for

mula B i =- - ^ A F(aok) so that B± c B . It is clear that 

B i c Bi holds for i < £ (i, le W ). We shall prove that 
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i < Z implies 3^4- Bg • R e a l l y , we have <K%A^ + ^ ££ 

( s e e ( l ) ) and consequently -KoC^ A ) + **(<*£ 0£ •* • Hence t h e r e 

e x i s t s an element x , £.' A such t h a t x / F(o^> F(/3* ) +* 

+ Xg F(oCj ) P (3 j ) . P u t t i n g y- » x* F ( o O v« have y,'«£ By 

and 

(2) y^ F ^ J + ty F ( 3 j ) 

Assume now that y, € B^ holds f o r some i < £ • Then 

i t i s poss ib le t o f ind k ^ i and x-̂  e A 3uch t h a t y* -

= x-^ F(oc^ )9 But ]& < £ and t h u s , by ( 1 ) , i t i s -X̂ . fi^ * - ^ #£ * 

Hence y> ^ A ^ * ^ ^ 3 / '' i n c o n t r a d i c t i o n t o (2) . Hence 

y . £ s i • - ^ e -napping / —•> v* i s an i n j e c t i o n from iff 

i n t o B , hence card B & Aty » 

This r e s u l t gives us the p o s s i b i l i t y of cons t ruc t i ng a* 

small category *€ which s a t i s f i e s cond i t ions of our theorem 

3 • Consider ca tegor i e s ^M f o r a l l i n f i n i t e c a r d i n a l i 

t i e s A4Q < K^> . .Let the ob jec t s of * £ ^ be denoted by 
&*n > ^ * °*p • Now* ^ i d e n t i f y a l l ob jec t s b ^ by 

p u t t i n g b^, =* b and by cons ider ing s e t s E(& , c ^ ) 

f o r y(pi 4* ^2 a s ^eing --"armed by a l l formal products £ ^ 

wi th t e H ( a ^ , .b ) . and *£€ HCb, e ^ )• In t h i s way 

we get a new* category *£ which s a t i s f i e s a l l cond i t ions of 

theorem'3 * Espec i a l l y , f o r any embedding-functor F from v 

*-£ i n to 01 we have card F(b) 2* <**$ fo r any «-*£? <* K ^ hen

ce card F(b) ^ / f 0 . 

Remarks A s l i g h t modif icat ion of t h i s proof g ives us an 

example of a category *€ which, l i k e t h a t of I s b e l l [2 J , i s 

not concre te . We have only t o fo rce card F(b) -> <*#> f o r spy 

c a r d i n a l i t y stip what may be done by talcing ca t ego r i e s f̂̂ -, 

' fo r a l l c a r d i n a l i t i e s Afp and by i d e n t i f y i n g t h e i r f , Eiddl^" 
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object* b ^ in a way similar to that described above* 

Proof of theorem 4* Let <*#• be any inf ini te cardinality 

and l e t W be a well-ordered set with card W - AH- . Let the 

objects of t> be any symbols a i ( i e w), b, c* ( j e W) so 

that card *£° -AH- » Assume that each H(a i f b) consists of 

exactly two morphisms <fl*. and fi^ whereas each H(b, C-) con

t a ins exactly one morphism 3^ . T h e se t s Hfa^, C*) consist 

of products cC- n an<i fii 2j an< i w V^% by definition, 

(3) ^n mfi*ij 

i f and only i f i < j » 

No other morphisms are in *€ besides identity-morphisms, of 

course. 

Let P be any embedding-functor from *€ into the cate

gory Ql of a l l s e t s . We define to every i e W a binary r e 

l a t ion S.̂  on F(b) by putting y S ^ i f and only if there 

exist some k ^ i and some x^ e ^(sjj.) such that y * 

= x k FG*^) and z = xk P(/3k ) • I t i s clear" that S^c S^ 

holds for i < Z ( i , £ £ W )• We shal l prove that i •< £ 

implies S i + Sj • By (3) we have CL» 9£ +• $C tf£ &&& conse

quently F(oCg rp ^ + pfy% 35 ' • ^ e n c e there exists an element 

x* € F(a/ ) such that 

(4) x^ P(o^) ? ( # ) + x^ F(/3g) F ( ^ ) 

Putt ing y - X£ F(oCg) and z = x* F(/S^) we have y S^ z * 

Assume that y S^ z i s true for some i < £ . Then i t i s 

y * x^ F(<*k ) and z * x^ F(/?k ) for some k ^ i and for 

some x ^ e F(afc ) • But k -c Z implies <&k $} ** A& 72 a n ^ 

xk PCoĉ  ) « # ) • « x k F ^ ) nr£ ) • Hence y F ( ^ ) » 8 F(?2 ) 

in contradiction to (4)* I t follows Mi* * card f ^ card (F(b)>< 

;* F(b)) = card F(b) * the category *€ s a t i s f i e s a l l conditions 
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of theorem 4 * 
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