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Commentationes Mathematicae Universitatis Carolinae
4, 4 (1963)
REPRESENTATIONS OF GENERALIZED MEASURES BY INTEGRALS
Jif{ FIALA, Prsha

This note contains a generalization of classical Riesz’s
results (cf. 1 Ch.IX. §36) of representation of functions by
indefinite integrals of functions in 1P . We shall prove a
necessary and sufficient condition for a generalized measure
on a certain spéce with measure will be representable by an
integral of a function in Orlicz’s cless L4, .

Let $(u) be an N’;:l\mction. i.e. let

o) = [pat
2

where p(t) is positive for ¢ > O , right continuous for
t 2 0 and nondecreasing function which satisfies the condi-
tions:

p(0) =0, p(+o) = t]il:o p({t) 2 + 00 .

We use these properties of d) (seef[2]):

P (u) is continuous and increases for u >0 , and

- (u)
(1) lim ?—i—
urd0 U

Let (X, S, (W) be a space with fully finite continuous

=+ 0 .

measure. Under the continuity we understand the following:
there exists a decreasing sequence El?.. E22 cee = En 2 oo

of sets with positive measures for which

o0
NE_ = and lim E ) =
neq B g n-)-rao‘u( n °

ir (@ 1is continuous in the sense [2] p.76 (for every set E

there exists a subset with the measure % (u.(E) ), then 1t
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is continuous in the sense above.
We denote Ly (X, S, @) the Orlicz’s class, i.e. the set
of all real functions on X , for which

f@(f(x)) d(a.(x)< + 00 .
X

Next we use the Jensen’s integral inequility: If f e L@ s

then . f
)
5 ({fd(w < Ed)(f au ’
¢ (®) «(E)

The proof in [2] substantially uses the fact that X is a
subset of an n-dimensional euclidean space. Genesrally, let

first f Dbe an elementary function

n n
%) £(x) = %—1“*%5@ (x), =1 5 =% .
We hav n
¢ S1a 2 « @(E N E)
O (Er—) = P (EL )
(q.(E) @ (E)

Plecy) @iBak) ~E/4’(f)d(w
k=1 @ (E) @@

3

by elementary Jensen’s inequality. There exists a sequence
of elementary functions {f } , for arbitrary £ , which con-

verges to |f| . By Beppo-Levi’s theorem, we can write

JStau JS 2 da SPeau SIEIau
dE——)< 1in HE s BT T.E
(R) nyroo @ (B) A+ w(E) @ (B)

Theorem: ixt (%, S,« ) be a space with fully finite conti-
nuous measure (M , Y 2 6-finite generalized measure on S ,
and ¢ ean N-function. % necessary and sufficient condition
for

t3) y(E) = Ef faw , felg ,



is that there exists a constant C such that, for arbitrary

finite decomposition of X

(4) X=B Vv ... U E, (u(Ei))O,
the follow:.ng holds: (Ek)
(5) kz=:1 « (By) $ (?‘-(_E—k;—) < C.
Moreover,
sup Z () §(— k- :‘:E:) y= Jd e

where the supremum is taken over asll decompositions (4).
Proof: First, let (3) . Then in virtue of Jensen’s inte=~
gral inequality we have
’ g i (./' (£ag
Z (E,) ( k)= (8) (=
(“ " é &) (< \Ey ? (50
_/'ltld (£)d
“« JS @

¢ Z L @ E) & k(‘”Ex) ) € kS;'.l(u(nk) z

) <

& (Ep)

{i’ (Plaee .

On the other hand, let (5) be satisfied. Then Vv 1s sbsolu-
tely continuous with respect to (& : If we have ««(E) =0
then, by continuity of w, F, = E,U EJ E , and hence

(w(Fn)J« 0 . By (5), we have
Y(F,.)
@) d (—PR) < c .
M(Fp)

If VY(E)+ 0, then, by (1) we have
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) (Fp)

)
» () b
Un @WF) § (——=2) = lin » (Fy) € n_ e,
n-y o0 & Fn) n- a0 < (Fn)
©~ [in]

By Redon-Nikodym’s theorem there exists a function f£ 8uch
that

N

v (E) = £d

Suppose that 3 is a measure. If {fn} is a sequence of elemen-

tery functions (2), w(Ey) >0, £, T £, then

n < (a(E )
6)C 2?2 = () P (—kC Xk )= (£.)a
=& ? @(Ey) 4§ 'S

and, by Beppo-Levi’s thearem, we conclude that f ¢ Ly - Gene~

rally, let X =AU B be a Hahn’s decomposition (ef. 3 , §29 ),

v %, ¥ the upper and the lower variations of » ,
+ + - -
2@ = /S ta vo® = /S £ .
4 “ % Vond

Evidently, ¥ (9 ~ resp.) satisfies (5) on A ( B resp.). The
assertion can be obtained by means of the following equality

&) /x'qs e = S au + ,é’q;(r“)a(a .

The last equality cen be got from (6), for £ 2 0, and from
(7), for arbitrary f .
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