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ALGEBRAIC DEPENDENCE STRUCTURES
(Preliminary communicatiom)
Vlastimil DLAB, Praha

The present results - representing a generalization of some:
ideas of the papers [1] and (5] - were, together with several a-
pplications to (non-commtative) groups, lattices and modules, a
subj ct of the author’s lecture read in the Conference on Gene-
ral Algebra in Warsaw, September 7-11, 1964.

Let S be agiven set, £ S its powevset, F ¢ IS the
subfamily of all its finite subsets, x and X denote always am
element and a subset € S , respectively.

By a relation ¢ on S we understamd a sutset @ of the

eartesian product S x p S . For a relation @ on S , define
the subfamily %b € £ S of @-independent subsets by

(;o-y();,) Ied,,e—-) VxixeI— [x,IN(x)]¢p).
Further, define two mappings % and ﬁs: of S into f£S by
(;’q,) x:@,,,(x)e-) [x,X]ep

and

(3;) Xe.‘D;(x)HBI(IEXAIe.%'.A xéI A

Alx, IJep).
Two relations ﬁ and 502 on S are said to be associated or
8imilar if

y$°1 = ‘7?2
x¢X = (x,X]ep ¢ [xX]ep ),

Tespectively.
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A relatiom P on S satisfying the following twe condi-
tions
(P} [x, X]epe¢r» 3P (P XAPecFA [x, Plep ),
(®.) Icvp'\ (x4 g palx, Iu(xzucp -

- ["2’ b 7] (x,,)]cp ’

is said to be an A-dependence relation on S . It is said to e
proper, or regular if, moreocver,
(1} xeX — [x,X]ep
or
(R) x#lA[x,tJep—yBI(IEXAIe%,,\ [x, Jep)
is satisfied, respectively.

If © 1is an A-dep. relation on S ’ Icﬂ"o and x¢ I,
thei

[x, X]Jep ¢ Iy (x)¢ % .
For a mapping C of &£ S into # S , define the subfa-
wily J £ &S of C-independent subsets by
(c-»‘:fc) IGJCHVX(XEIAISC(K)ﬁ X=1I).
If the conditions

(/) c(x) 'ng c(F) ,

FeS
(Ex] Ted, Ax €CIulxI\CI— x €CIvulx)),
(¢) xs c(x) ,

are fulfilled, then C 4is called an A-dependence closure opera-
tiom in S . For such a closure ope ratiom

c(I) = U I oux}

Iu(x)43,

holds fer every I € dc .
A subfamily J o @£ S satisfying the conditicm
(t/m) Ie YDV FP(FPEIAFa & > e )

is said to be an g-indeperience net of S
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The following theorem describes the relation between any two
of the following concepts of an A-dependence structure (S, ) ,
(S, C) and (s, T ) ,where p ,C and Y sare A-dep. relation
on S, A-dep. closure operation. in S and A-imdep. net of S ,
respectively.

Theorem. To amy A-dep. relation p on S there corres-
ponds & well-defined A-indep. net .?o o S . On the other
hand, to any A-indep. net of S there corresponds a set of (as-
sociated) A-dep. relations on S which form, under the natural ‘
operations of Jjoin and meet, a lattice L with infinite joins
and O , The lattice J, spIits into convex sublattices of simi-
lar relations, the greatest element of each of these sublattices
being the corresponding proper relation. The corresponderce im
which every element of such sublattice is mapped into the corres-
ponding greatest element is a Tattice-homomorphism of L onte
the sublattice 'LP of all proper relations with the ideal of
all regular relations. Denoting by 1, 01, and @ the grea-
test element of L. , the least element of sz and L , res-
pect., we have

Dyx) =P vtgs~N vy,
@0P(x) =2"x) 0 ¥ (x),
D, (x) = 2* ),
where ¢ (x)} is the subfamily of all subsets X such that
xeX.
As a consequence, far any A-indep, net S , there is a
uniquely determined proper regular A-dep. relation en S .
To sny A-dep. closure operation C in S there corresponds
& well-defined A-indep. net Clc of S . On the other hand, teo
any A-indep., net of S there corresponds a lattice of A-dep.
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closure operations in S which is isomorphic to the correspon-
ding Iattice J, of all proper A-dep. relations. The least ele-
ment of this lattice is the corresponding Schmidt ‘s “mehrstufi-
ge Austauschstrukture" (see [5]).

In what follows we consider a (fixed) A-indep. net J eof

S (with the closure operation C : C(I) = Iu(x)).

Iu(ij)¢3
Fo the purpose of establishing an invariant (rank or dimension)
of certain A-dep. structures, let us introduce the following

concept of a canonic subset af S . The family ¢ = J of all

canonic subsets is defined by

(€) Te€EIeIJAVX[Xed AXeClI)A IccCX)>
— C(I) £ c(x)].

Also, define the family J* of all maximl subsets of S by

(%) ITeJ*e>Ied ACI)=S,
and the family J§ of all bases of S by
() & =€nY* .

A GA-indep. net of S 4s an A-indep. net Y of S such
that % £ ¢ end
Le LaL, e ¥ >Iet .
If, moreover, & = Y*, J is called a Li-indep. net of S .
Through the following generalizatiom of the Steinitz’s Ex~
change Theorem
Xed A Ie¥€ A XeC(I)AIsCX) —>
> VxxeX I JL(B+I &INXAX\(x)ul, e T A
ATSCcX\N(xJul) ,
one can prove the fundamental
Theorem, XeJ A IefA X& C(I) —» card (X) & card (I) .
Then, the implicatiom
XeJ*A I e A I, e & — card(X) £ card (1) = card (I,)
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is a simple corollary enabling us to define the rank of any GA=-
dependence structure (i.e. any str’uct\;re with a GA-indep.net).
The following theorem shows the relation with the results of
(2], [3],[4]) and [6]:
Theorem, For a given A-indep. net J , the following condi-
tions are equivalent:
Fe) JInFes;
ey J =%
(FN) IeTAF A Iux)gT A Iuy)¢T A Xy >
> VazeI > INRIuKxIu(y)ed )
(M) TeT AIux)gI ATU(YI¢ET A xhy =¥
=2 Va(ze I INCRIux)u(y)g T ) ;
(Fuw) 116.7an LeJnF A card (I;) < card (I,)—>
—)Bx(erz A x¢I1A I1u(x)eJ);
N TeJ Aljed acard (I)) < card (I, ) =
= Ix(xeI, A x¢I; A Lulx)eJ);
(5B) LeEInFALeINFALSCI,) A LeC(I, ) —>
—> Vx[xe 11\Iz—>3 y (¥ €I,_\I1/\ I~ (x)ulyle J1];
(B) LeJ ALeIAI £CL)ALSCI) —>
> Vx[xe€ 11\11—-)3 vy (y GIZ\],‘A 11\ (x)uly)e
€eJ 1.
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