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Ceaaantatlonee Matheaaticae Univaraitatia Carolinaa 

6,2 (1965) 

PROJECTIV.BLT GENERATED CONTINUITY STROCTURES: A CORRECTION, 

M. KAT.5T0V, Praha 

The author wiahee to at ate that en error occura in hie note 
M0n certain projectivaly generated continuity etructurea'VCe-

lebrasioni arehimadec del aecolo XX, Simpoeio di topologia, 

1964; pp« 47-50 (referred to aa [PO] in what followa). This 

error affacta the validity of aeaertiona concerning *Caae (1)", 

i.e., the caae where a eoapact topological apace X and the 

module, denoted by $ , of all continuoua functions on X 

are considered• 

In [PG], the following A -etructure KC. on X haa been 

Introduced (by definition, a A -structure on a set X la a 

locally convex topology on the module A X of all finite for­

mal linear combinations Z! X- x^ of eleaenta x^e X ): (U-^ 

la the finest locally convex topology on A X for which every 

continuoua linear form coincidea with the linear extension 

A f of aoae continuoua function f on X • Now, ejeeertione 

aada about ttu in iPQl ahould refer to another structure v>̂  

described below; the outline of a proof of an aeeertlon on AJL± 

given in [POJ concerns, in fact, the atrueture T> instead of 

< * • • 
We mre now going to atate and prove propoaitions concerning 

>> • 

Proposition, Let X be a coapletely regular aeparated 
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topological space. Consider the topology y> on A X generated 

by a l l stoppings A T : A X —̂  E , where T i s a continuous map­

ping of X into a locally convex topologies! linear (abbrevia­

ted l . c . t . l . ) space S and A T i s the linear extension of T . 

Then \> i s the finest locally convex topology on AX under 

which the natural embedding (assigning 1 . x € AX to x € X ) 

of X into A X i s continuous. If F i s a continuous mapping 

of X into a l . c . t . l . space E , then i t s linear extension 

A F : ( A X f > > } — > E i s also continuous , i f this condition 

holds for a l . c . t . l . space ( A X, y ' } and the natural embedding 

of X into AX i s continuousf then i>' - \> -

Definition. The space (AX,))) (or any space isomorphic 

to i t ) i s said to be freely generated by the topological space X 

firoof of Proposition* It i s clear that \> i s a locally con­

vex topology and that the natural embedding £ : X —> A X i s 

continuous (in fact , a hoaeoa-orphissi). I f ( A X , y ' ) i s a 

l . c . t . l . space and 6 i s continuous, then A S : A X —> A X i» 

one of the mappings AT Involved in the definition of \> \ 

thuaf V i s finer then \>' . The eecond aasertion i s obvious, 

for A F i s one of the Mappings generating \> . Let now the 

condition in question held for ( A X , v ' ) • Since £ : X —> 

—» ( A Xf y> } i s continuous, so i s AE : ( A X , \>§) —> 

—¥ ( AX, \> ) ; hence y>* i s finer then y> and, similarly, 

y> i s finer then \>' . 

Conventions. I f X ±m a l . c . t . l . spacef we denote by srX 

i t s completion. - I f X i s a compact topological space, and f 

i s a continuous .function on X , then we denote by ¥ the con* 

tinuous linear extension of f to Sf ( A X f \> ) . 
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Theorem. Let X be a compact topological space. There 

exists exactly one bijective linear napping of sr iAX9y)) , 

the completion of the linear space freely generated by X , 

onto C(X)' such that, denoting by & the element of C(X) * 

assigned to £ , we have ?( £ ) s 5* (f) for any 

| €. STC A Xf V ) and any f e C(X) . 

Proof. I. Let f e STi A X, y) ) > denote by CL the 

mapping which assigns f( f ) to f e C(X) . We are going to 

show that 61 : C(X) ~* R is continuous. Suppose the contra­

ry; then there exist f^cC(X) f n » 1,2,..., such that 

I f^ I —* 0 , f( ̂  ) =- 1 . For every x € X f we have 

(f^ (x) } e (c^) ; denote by F the mapping of X into (c0) 

assigning i f^ (x)} to x . It is easy to see that F is con-

tinuous linear. Denote by G the continuous linear extension 

of F to a mapping of fr ( A X, %> ) into (c0) . Then G , 

restricted to A X , is one of the mappings generating y> , 

thereforef for any h € (c%)' , h • G is a continuous linear 

form on JT ( A X f v> ) . Let h^ 6 (e0 ) * assign at^ to 

{ oC^} € (c^) . Then, clearly, h^(G(x)) - ^ ( x ) for 

every z e A X • From this it follows, by continuity, that 

h^(G (f )) = f^ ( f ) . Since 2^ (f ) » 1 , we obtain 

h^(G ( p ) « 1 , n = 1,2,..., which la impossible, for 

G (£ )c(c0) .^This contradiction proves that & la a conti­

nuous linear form on C(X) , that is, tf e C(X)' . 

II. Clearly, every continuous linear form g on 

3T ( A Xf y> ) is e<pal to some f with f € C(X) . Thus, if 

f t XT < A X, V ) « f * 0 , then ? ( p * 0 for some 

f € C(X) . This proves that the mapping which assigns 61 to 
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£ ia one-to-one. -Ill, It remaihe to prove that, given an 

element X € C(X)' , there exiata a f c jr( A X, >) ) with 

t a t , Let X denote the meeeure on X correaponding to 

X (that ia, we have f f d x * X (f) for every f c 

e C(X) ) • Well known pro per tie a of integral8 imply that if 

F ia a continuoua mapping of X into a Banach apace E f 

then, for every E > 0 f there exiat8 8 point z € A X f 

B • Z A. xt , auch that I fF d x - 5" A i F(xt) I < E . 

For any continuoua mapping F of X into a Banach apace and 

any £ > 0 f let now Up - denote the aet of thoae 

pointa a * Z A^ xi f A X for which I f F d x -

• Z a^ F(XI) i < e • 
Since U p - are non-void, it ia clear that U p g form 

a baae of a filter a/**. Aa it ia easy to see, the mappinga 

F of the Juet deecribed kind generate the structure i> .The­

refore, the filter e^ ia a Cauchy filter. Let f be ita 

limit point. It ia eaey to prove that 6L * X . 

Remark. It ia evident that the original topology of X 

la induced by -v> , Aa for the atructure XL. ; $ * C(X) f 

introduced in [PQJ, the aituation ia quite different, aa shown 

"by almple well-known examples. Let, e.g., H be the Hilbmrt 

apace of sequencee { f . n } . » 2E I £„, I2 < 00 . Let 

H ^ denote the same apace endowed with the weak topology, 

and lat X c H ^ consist of 0 and the pointa 4** *<&$*, }> 

where <T ± • 1 fcr k * nf c f ^ » 0 for k 4- n . Then, 

clearly, x^—y 0 and x^ are iaolated in X • Consider the 

identity mapping J : X —* H . It is easy to aee that the line-
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ar extension of J to J : ( A X, AJU.) —-> H is continuous! 

thus /tc^ induces the discrete topology on X • 

The structure AJL. * <f> * C(X) , seems to possess so­

me interesting properties. We intend to r eturn to these else­

where* 
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