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Commentationes Mathematicae Universitatis Carclinse
6,2 (1965)

PROJECTIVELY GENERATED CONTINUITY STRUCTURES: A CORRECTION,
M. XATETOV, Prahe

The suthor wishes to state that an error occurs in his note
"On certain projectively generated continuity structures”, Ce-
lebrazioni archimedee del secolo XX, Simposio di topologis,
1964; pp. 47-50 (referred to as [PG] in what follows). This
error affects the validity of assertions concerning "Case (1)",
i.e., the case where a compact topological space X and the
module, denoted by ¢ , of all continuous functions on X
are considered,

In [PG], the following A -structure (4 o0 X hss been
introduced (by definition, a /A ~structure on a set X is a
locally convex topology on the module A X of all finite for-
mal linear combinstions 2 .ki x; of elements x;e X )5‘ (“¢
is the finest locally convex topology on A X for which every
continuous linear form coincides with the linear extension
A £ of some continuous function f on X . Now, gssertions
made about (4 1in [PG] should refer to another structure ),
described below; the cutline of a proof of an assertion on “e
given in [PG] concerns, in fact, the structure » instead of
“¢ - _

- We sre now going to stete end prove propositions concerning
Y. 4
Proposition. et X be a completely roé:le separated
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topological spece, Consider the topology »» on A X generated
by all mappings AT : AX — B , where T is a continuous map-
ping of X into a locally convex topological linear (abbrevia-
ted l.c.t.1l.) space E and AT is the limear extension of T .,
Then » 1is the finest locally convex topology on A X under
which the natural embedding (assigning 1 . x € AX to xe€ X )
of X into A X is contimious. If F is a continuous mapping
of X into a l.c.t.l. space E , then ite linear extension
AF : (AX,»Y)— E is also contimious; if this condition
tolds for a l.c.t.l. space ( A X, ') &end the naturel embedding
of X into AX is contimuous, then ' = Y .

Definitjion. The epace (AX,y) (or any space isomorphic
to it) is said to be freely generated by the topolcgical spece X .

Proof of Proposition. It is clear that ¥ is a locally con-
vex topology and that the natural embedding ¢ : X — A X is
continucus (in fact, a homecmorphism), If (A X, v‘) is a
l.c.t.l. space and € 1is continuous, then ANE : AX > A X 1is
one of sthe mappings AT involved in the definition of ) ;
thus, 3 is finer than V' . The second assertion is obvious,
for AF is one of the meppings generating » . Let now the
condition in question hold for ( AX,¥') . Since € :X —
~—> (A X,y ) 1is continuous, so is AE: ( A X, ') —
— (AX,¥ ) ; hence y' is finer than ») end, similarly,
¥ is finer then » ' ..

Conventions. If X 1s a l.c.t.l. space, we denote by m X
its completion. - If X ie @ compact topological space, and f
ie a contintous function on X , then we denote by ¥ the con-
tinuous linesr extension of £ to N (AX,¥ ).
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Theorem. Let X be a compact topological space. There
exists exactly one bijective linear mapping of Jr (AX,y) ,
the completion of the linesr space freely generated bty X ,
onto C(X)° such thet, denoting by § the element of C(X)’
assigned to f , we have ¥ §) = 5{ (f£) for any
ge:rr(/\x,v) and sny f € C(X) .

Proof. I. Let § € ar( A X, ) ; denote by Gf the
mapping which assigns f(f ) to fe C(X) . We are going to
show that 6% : C(X) - R 1is contimuous. Suppose the contra-
ry; then there exist f,€C(X) , n =1,2,..., such that
iz, I — o0, t:':(g) =1 . For every x ¢ X , we have
{f, (x)} € (c,) ; denote by F the mapping of X into (c,)
assigning {f, (x)} to x . It is easy to see that F 1is con-
tinuous linear. Denote bty G the cont inuous linear extension
of F to a mappingof I (AX,3) into (c,) . Then G,
restricted to A X , is one of the mappings genersting ¥ ;
therefore, for any he (c,)°, he G 1s a contimious linear
formon T (A X,V ) .Let h, € (c,)° sssign «, to

{a’.&} € (c) . Then, clearly, h, (G(x)) =?:n(x) for
every z € A X ., From this it follows, by continuity, that
b (G (§)) = f,‘(f) . Since ¥ (f) =1, we obtain
h, (G (f V=1, n=1,2,..., which is impossible, for
G (f)e(c,) «.This contradiction proves thet 6'; is a conti-
nuous linear form on C(X) , that is, 6’f e ¢(x) .,

II, Clearly, every continuocus linear form g on
r(AX,») 1s eqal to some f with f e C(X) . Thus, if

ferr(Ax,v) y § % 0, then ?(;)4.0 for some
£ € C(X) . Thie proves that the mapping which assigns 6,

f

to
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g is one-to-one, - III, It remeins to prove thst, given an
element T € C(X)’ , there exists a § € sr(A X, v ) with
6, = T . Let T denote the messure on X corresponding to
¥ (that te,wehave / £4 T = T (£) for every fe
€ C(X) ) . Well known properties of integrals imply that if
¥ 4is a continuous mepping of X 4into a Banach space E ,
then, for every € > 0, there exists s point z € N\ X ,
t= 3 A x; ,suchthet |/Fa T - ZAKx)l<E.
For any cort inuous mapping F of X into a Banach space and
any € > 0O, let now UF, € denote the set of those
points 2= Z A, x; €AX forwhich |fFa% -

-2 A; Mx)l < € &

Since UF, € are non-void, it is clear that UF. g form
a base of a filter o . As it is essy to see, the mappings

F of the just described kind generate the structure » .The-
refore, the filter ¢ 1s a Cauchy filter. Let § be its
limit point. It is easy to prove that 6’§ = 7.

Remark. It is evident that the original topology of X
is induced by > ., As for the structure 1 ¢ =cx),
introduced in [PG], the situation is quite different, as shown

“%y simple well-known examples. Let, e.g., H be the Hilbert
space of sequences { £, %, =1§.12 < oo . Let
Hy» denote the same space endowed with the weak topology,
and let Xc H_, consist of O and the points ¢,={d, & },
where d;_"-l fo k=n, o:&-O for k # n . Then,
clearly, x,— 0 and x_ are isolated in X . Consider the
identity mapping J : X—? H ., It is essy to see that the line-
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ar extension of J to J: (A X,(u,d’) —> H 1is continuous;
thus (a,¢ induces the discrete topology on X ,

The structure “s 3 ¢ = C(X) , seems to possess so-
me interesting properties. We intend to return to these else-

where.
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