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OPEN MAPPING THEOREM AND SOLUTION OP NONLINEAR EQUATIONS IN 

LINEAR NOREED SPACES 

(Preliminary communication) 

Josef KOLOMf , Praha 

In this note some theorems about the solution of non

linear functional equations in linear normed spaces are given. 

These theorems are based on local approximation of nonlinear 

mappings by linear continuous mappings and on some open map

ping theorems. Proofs are omitted and they will be published 

with 3ome further theorems in Cas.pSst.mat. 

First of all we introduce some well-known notation and 

definitions. Let X, Y be linear normed spaces and let 

f : X —* Y , where f : X —> X denote a mapping f from X in

to Y • We define m(f) on V c X as the infimum, and 

M(fJ as the supremum, of Rf(u-J) - f(u1)ll / l ^ - u^B taken 

over all u. , u.e 7 with u. 4» u2 . We shall say that Y 

is complete for f if, for each C3uchy sequence { u \ € X , 

the sequence tftu^H has a limit in Y . 

Definition. We shall say that the mapping of : X —> X. , 

where X, X,j are linear normed spaces, is open, if <-/> (G) 

is o£en in Cf (X) for cnch open set G c X * 

Lemma 1. Let X,X^ be linear normed spaces. Let 

(J : X —> X. be a linear mapping. Then Cf is open if and 

only if there exists a positive constant M with the fol

lowing property: If y 6 y (X) , then there exist x e X 
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such that Cf (*- ) -» y and 1 x II ^ K By II. 

Lqmma 2. (Open Mapping Theorem.) Let X,fy be l inear 

normed spaces , X complete. Let Cf : X —» X̂  be a l inear 

continuous mapping. Let cf (X) be a se t of the second cate 

gory in X^ . Then Cf i s open and Cf (X) =- X^ . 

Let us consider the equation 

(1) F(x) =- 0 . 

Theorem 1* Let F be a mapping of X into Y , where 

X,Y are l inear normed spaces. Let 2 be a Banach space and 

f ,g mappings such that f : Y —> Z , g : Z —¥ X • Let <f 

be a l inear continuous mapping of Z onto Z' and E a c l o 

sed subset of Z . Furthermore, l e t the following conditions 

be f u l f i l l e d : l ) For every z^ ,z^ e E the inequality 

(2) | f F(g( 2 / J)) - f F(gCz2)) - <f(z/J - z2)ll *otUi - z£* 

holds , where the mappings F,f are such that m(F) = b > 0 

on g(E) C X and ra(f) » a > 0 on F(g(E)) c Y , f ( o ) -

- 0 . 2 ) The closed ba l l D = f z e Z ; I z - z,, H £ r J , i s 

contained in E , where z^ i s defined by the equal i ty 

y0 * Cf (z* - zQ) , z 0 being an arbitrary element of E , 

y0 being defined by y0 » f F ( g ( z 0 ) ) , r £ jh ( l - /I ) " ' . 

| x - xfl I , / 3 s o c M < l ( M being a constant from 

lemma l ) . Then the equation ( l ) has a unique so lut ion x**" 

in g(D) c X . The sequence { x ^ J defined by x ^ = B^^} t 

converges in the norm topology of X to x* and 

(3) ii x * - x „ j * /T-aicM • * ) rabd ~/3)r1iiz1 -zo//. 
Theorem 2 . Let X, X, Z be l inear normed spaces , 

p : x - » Y , f : Y —•» Z , g : Z —» X . Let Cf be a l i 

near continuous mapping of Z" into fc having a continuous 
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inverse cj~ . Let zQ e Z be such that (2) holds for 

every z^ %zz e D , where D a { z e 2 ;lz - z^l i r/, 

r £ (1 - /S r ^ y " f | || y0 | f /3 - *C llcp̂ ll < 1 , y0 * 

* f F(g(z0)) , m(F) a b > 0 on g(D) c X and m(f) » 

= a > 0 on the set F(j(D)) <= Y , f(o) a 0 . If either 

a) Z is complete, or b) X is complete for g and f F 

is closed, then the equation (l) has a unique solution x * 

in the set g(D) c X . The sequence {x^ } defined by * 
x*,a &(*n) » where **-*** z#>- V~1 f p(«(s5tt)J * converges 

in the norm topology of X to x * and the inequality (3) 

holds with /S * <*» II <?~1 II • 

Theorem 3. Let F be mapping defined on the bounded 

set D(F) c X , F : D(F) -» Y , f : r —> Z , g : Z-+ 

-» X , M (g) ̂  • °° t eg : z —* z i where X, r, Z are 

linear normed spaces. Let f, y be linear mappings, cf 

continuous, and such that there exist inverses f , Cp ; 

c^ continuous. Let zQ € Z be such that the inequality 

(2) holds for every z^ % z^e D , where D » { z e Z ; 

| U - zQ II £ r ? , r fe (1 - /3 r'llgT'll (If F(g(z0)) II , 

fh * <3C l ^ ' l ^ l . Let g(D) c D(F) . If either a) % is 

complete, or b) X is complete for g and f F is clo

sed, then the conclusions of theorem Z remain valid. In

stead of (3), the error I x * - x^ U satisfies IIx -

- xji * M(g)/s^(i -/3 r'« *, - z„ |. 
On taking X,r Banach spaces, Z * X , g * I ( I 

is identity mapping) we obtain the following 

Corollary. Let X,r be Banach spaces, F : X —* T , 

Cf a linear continuous mapping from X onto X , 
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f i X —-> X l inear having the inverse f ""* • Let E be a 

closed subset of X . Furthermore, l e t the following condi

t ions be f u l f i l l e d : l ) For every u, v e E the inequal i ty 

|| f (F(u)) - f ( F ( v ) ) - g> (u - v ) l l£ ac llu - v II ho lds . 2) The 

closed ba l l D « { x e X ; II x - x^ II & r j , where x . i s 

defined by the equality y0 -» <̂  (x^ - x̂  ) , x0 i s an ar

bitrary element from E , y 0 » f ( F ( x 0 ) ) , r «fe /3 (1 - / 3 )~. 

|| x . - x^ fl f /S a dC M < 1 (M i s a constant from lemma l ) , 

i s contained in E . Then the equation ( l ) has a unique so lu

t i o n x * in D . The sequence "tx^J defined by y /n>. f
a 

* 9 ( a ^ " **i-4 ) > «* » *a- f - f ( P ( x J " p ( x ^ - r ) ) conver

ges in the norm topology of X to x * and II x * - x ^ 1 & 

& /i^d -/3 )"Hx^ - xe JJ. 
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