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UNIFORM DIMENSION OF MAPPINGS
(Preliminary communication)
Jan HEJCMAN, Praha

By the dimension of a mapping f : P—>Q , where P,
Q are topological spaces, the number sup{dim 1y) ;
J € Q} is usually understood. Some authors consider in a
certain sense stronger definitions of the dimension of
mappingé for metric spaces, e.g. uniformly zero-dimensio=-
nal mappings [2] or, as a generalization, the strong di~-
mension of mappings [5]. We define the uniform dimension
of uniformly continuous mappings for uniform spaces. It is
closely connected with the uniform dimension A4 (seefl]).

For uniform spaces, we use the terminology of (3]. If
(X,U) 1is a uniform space, U e U , X 1is a collection
of subsets of X , we say that ¥ is U-discrete if
U{K]JAL=p forany K,L in X , K+ L ; we say
that X 1is a U-cover of a subset M of X , if for each
point x of M there exists @ K in X such that
U[xl A Mc K . Further, all mappings are supposed to be

uniformly continuous. .
Definition. Let (X, %) , (Y, ¥ ) be uniform spaces,

£ : X—7Y a mapping. The uniform dimension of £ 1is de-
fined as the smallest non—-negative integer n with the fol~-
lowing property: for each U in % there exist ¥ in ¢

and ¥ in % such that, if M 4s & subset of Y anmd
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Mx M cV , then there exists & collection X of subsets
of X such that J 1s & W-cover of £ '[M], ExKc U
far each K in X , and each point x of £ 7[M] 1s
contained in at most n + 1 sets of X . The uniform
dimension of f will be denoted by A4 4 £ . If such a
‘mumber n does not exist we set A Adf = o0 .

It is easy to prove that the definition may be expres-
sed in a formally stronger manner, in that the collection
¥ may be supposed to be the union of n + 1 W-discrete
subcollections. )

First we introduce some elementary properties of A d f.
If X is a non-void uniform.space, & is a one~point spa-
ce, £ : X—S 4is a mapping, then A d f is equal to
the mentioned A d-dimension of the space X ; shortly
Adaf=AdX.Thus A d-dimension of a uniform space
may be considered as the A d-dimension of a certain map-
ping. If X, I are uniform spaces, f : X — Y is a map-
ping, Y  1s a subspace of Y such that Yo £[X) and
P =f:X—Y ,then Adf= Adaf . If g is the
r;atriction of amapping £ then Adg s Adf . If
is a uniform embedding then Aa j=0.

Theorem l. Let X, ¥ be non-void uniform spaces, p
the canonical projection of X x ¥ onto X . Then Adp =
=Aax,

Theorem 2. Let X, Y be uniform spaces, f : X —>Y,
& the restriction of £ to a dense subspace of X , Then
Aar= Aag.

Every compact space has a uniquely determined unifor-
mity and every continuous mapping is uniformly continuous.
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Theorgs 3. Let X, ¥ be compact Hausdorff spaces,
f:X—> Y. Then Adf & n if and only if
Am "yl & a forall 3 in Y.

The foliuving theorems concern some non-trivial pro-
Perties of the uniform dimension of mappings.

Theorem 4. Let X, Y, Z be uniform spaces, f : X
~ Y, g:1Y—>Z,Then Ad(g o £) 5 Aaf +Aag.

From Theorem 4 we obtain immediately N

Theorem 2. Let X, Y be uniform spaces, £ : X—> Y,
Then AdX & AaY+ Aar, '

Theorem 6. Let {X_;oce AF, {Yc;ocehf be fa-
milies of uniform spaces, {f,. ; ««c € Af a fam:liy of map~-
pings, f : X — I" eLet £: M{X ;x € AF —
—> T{Y_ ;x € A} be defined by the formula f£{x j=
={f %x.?.Then Aaf & S Aaf, .

Ir .x is a uniform space and (R, @ ) is a metriec
space, we shall denote by C, (X, R) the set of all uni-
formly continuous mappings of X into R , endowed with
the distance 6 defined by

6 (£, g) = min (1, sup {P (fx, gx) ; x€ X}{) . If R
is complete, then cw(x, R) 1is also a complete metric
space. The following theorem (which is first proved for
k = 0 ) characterizes the dimension A 4 of pseudomet-
riec spaces by means of mappings into Euclidean spaces.

Theorem 7. Let P be a pseudometric space, k, n
integers, O & k #n . Then the following properties are
equivalent:

(1) AaP & n,
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(2) there exists a mapping £ : P —> E 4 Vvith
Aar & x,
(3) the set of all mappings £ : P—>E . with
A df & k 1is a dense G -set in the space
c (P, E,_g).
~ It ocan be proved that the assumption of pseudometrizabi-
lity of P 1is essential even for the implication (1) =9 (2),
Thus every metric space with finite dimension A 4 can be
mapped by a uniformly zero—-dimensional mapping into a com=
pact space (e.g. into the Hilbert cube). One may ask whet-
her this holds for any metric space. We shall show that the
answer 1is negative. First, let us introduce a theorem of an-
other character, which is also concerned with the equality
of the dimensions A d and J"a (see (4] or [1]).
Theorem 8. Let a uniform space (Y,?”) have the fol-
lowing property:
(£) for each ¥V imn U +there exist & uniform cover X of
Y and a number n such that Kx KcV for each K in
X , and -each point of Y is contained in at most n
sets.of X .

Let X be a uniform space and f : X Y a mapping with

finite A d £ . Then the space X also has the property (£).
If @ uniform space X fulfils condition (f), then

AdX= g°aX. Condition (f) is trivially fulfilled by
compact spaces. Combining Theorems 8 and 6 we obtaln, for
example, this result: If a uniform space X admits a uni-
formly finite—dimensional mapping into a product of spaces
with finite A & and a compact space, then Ad X = &4 X,
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Suppose that for every metric space P there exists a
uniformly zero—dimensional mappirg of P into a compact
space. Consider a uniform space X with ¢"d X < Ad X
(see [1]). The space X can be embedded into a product of
metric spaces. This product has a uniformly zero-dimensio-
nal mapping into some compact space (by Theorem 6). But
then we obtain A dX = o 4 X, a contradiction.
References:

(1] J.R. ISBELL, On finite-dimensional uniform spaces,
Pacific J.Math.9(1959),107-121.

(2] M, KATETOB, O pasMepMoCTH XecenapaGeabMHX NMPOCTPAKCTSE,
Yexoca.MAT . XypHAX 2(77)(1952),333—368..

(3] J.L. KELLEY, General Topology, New York 1955.

(4] D.M. CMMPHOB, O pasuepMocT: NDOCTPAHCTB GAMB0CTH,
MaTem.cGopuuk 38(80)(1956),283-302,

(s] M.J. LIEPCHEB, XapaxTepucTuKa D&3MEPDHOCTH MeTpudec-
KOr'O OPOCTPAKCTBA NPM MOMOmMM DasMep-
HOCTHNX cBoltcTB ero oroSpaxexuil B 8B-
KIKAOBH npocTpaicrTBa, Marem.cSopumk 60

(102)(1963),207-218.

(Received September 13,1965)

- 385 -



		webmaster@dml.cz
	2012-04-27T16:04:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




