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Commentationes Mathematicae Universitstis Carolinae 

7, 1 (1966) 

ON A THEQHEM OF M. KATfiTOV 

Stanislav TOMJCSEK, Liberec 

In the present note we shall prove a theorem of M. Kat§-

tov (cf.[4]fL5J). 

Let A be an infinite completely regular topological spa­

ce. We denote by ECX ) the linear space of all finite for­

mal linear combinations SL\± X^ , where x± € X and \^ 

are real numbers. If \ is a locally convex topology on 

ECX) f we write (ECX)f \ ) . CCX) means the Banach 

space of all bounded continuous functions on A with the usu­

al norm. Putting 
<x,f > = HA4 < x . i , f > 

for any f e C iX) and any x - -2" \^ u^eE CX) ; we de­

fine a locally convex topology 6̂ -= 6(E(X) f CCX)) on 

ECX) . Every f e CCX) defines a linear function on ECX) 

continuous in the weak topology 6 (we denote this linear ex­

tension of f by the same letter). Consequently we may consi­

der on the adjoint space CCX) to CE (X) f6 ) all concepts 

defined on CCX) by means of the duality between CCX) and 

£ ( X ) (e.g., the polar set 16° t the Mackey topology etc.). 

Notation. In further discussion 3B means the system of all u-

niformly bounded and equicontinuous subsets H of CCX) f %t* 

stands for the collection of all equicontinuous subsets H of 

CCX) bounded in the weak topology tf CCCX) , E CX)) • 
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The locally convex topology on ECX) defined by the collection 

{ H % H e i e } ( { H % H e W*j ) we denote by t (by t*). 

% represents the Mackey topology on E(X) * It is well 

known that all spaces. CE (X)f t ) ; (E(X), t*) and (E (X),&) 

have the same dual space C(X) (c.f .£7J). This implies 

(T(E(X), C(X)) * t * t* * T?CE(X)7C(X))> 

Obviously ECX) may be considered as a subset of the space 

C(X) of all linear functions continuous on C(X) - Any to­

pology X » {T, t; t* on E(X) may be extended in a natu­

ral manner on C Y X ) . If X is a compact space, then 3K » #£* 

and t * t * This follows directly from the classical theorem 

of Ascoli. 

Now we recall the following result of M. KatStov (c.f. £4J, 

[5]): 

for any compact space X the completion (E(X), t) of 

C£ CX ), t ) ia algebraically isomorphic with C(X) -

Remark. It should be noticed that the preceding theorem is true 

in a more general case* For a pseudocompact space it can be pro­

ved by the Grothendieck's method of completion (for the topology 

t « t* )• The proof of this statement will appear in a study 

on A -structures. 

The following theorem is due to M. KatStov (e.f.C4J). 

Theorem. Let X be a compact space; then the completion of 

ECX) with the topology t:(E(X)7 CCX)) is isomorphic 

to CCX) with the topology r (CCX), CCX))' 

.Proof. 1° Xet X be a compact space. In this case X is a boun­

ded subset of ECX) for any locally convex topology X compa­

tible with the duality. From a theorem of Mackey it follows that 

any absolute convex and &(C(X) , E(X1) -compact subset K 
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of O C X ) is bounded on X • Making use of a theorem of Grot-

hendieck (c.f.t2J)f we may conclude that K is compact in the 

weak topology V(C(X)1 C'(X)) * This implies that v(£(X), 

C CX )) is induced by the topology -r ( C'(X ) , C (X )) on the 

subspace £ CX) S C (X) -

2° We shall prove that C(X) is a complete space with the to-

pology t • It was recalled that (E(X),t) is algebraically 

isomorphic with C (X) • The topology on C'(X) defined by» 

this algebraical isomorphism we denote by A 0 • It is evident 

that both locally convex spaces (C'(X) f A 0 ) and C£ CX), t) 

have the same adjoint space C(X) < From this it follows that 

the topology XQ is compatible with the duality between CCX) 

and C ' C X ) -

Any neighborhood of the origin in C(X) for the topology A 

is of the form 2L , where ZC is an absolute convex neighbor­

hood of the origin in C E CX ) ., t ) 5 the closure 21 is ta­

ken in an arbitrary locally con? ex topology compatible with the 

duality. The statement follows from the fact that the polar set 

U° is an element of & and U°° m U • 

3° We prove that (C'CX)f T ) is cdmplete. The last statement 

is evident. The neighborhood basis of the origin for the topolo­

gy f i3 formed by absolute convex sublets closed in the topo­

logy t . From t « T and 2° it follows that (CCX ) , V ) 

is complete (c.f»t6l). < 

The proof of the theorem will be complete if we note that 

E CX ) is a dense subset of ( CCX ) , r ) • 

Remark. In general the theorem is not true for any completely 
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regular space X • Let X &a, for example, an infinite d i s -

creta space. I t i s well known that in this case (E (X)r t ) 

i s isomorphic to £* (X) (e . f . [3- l ) . Obviously the space 

( E ( X ) t T ) ia isomorphic to £A(X) ; too. The dual space 

to (E(X)f V) i s in this case identical with X°°(X). 
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