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Commentationes Mathematicae U n i v e r s i t a t i s Carol inae 

7 , 2 (1966) 

UNIVERSAL ©fcTEGGRIES 

Vera TRNKOtfi, Praha 
m 

In [9j, A* Pultr defined universal categories as follow*: a 

category K is called universal if every snail category is 

isomorphic with a full subcategory of K • It is easy to see 

that such universal categories do exist. The problems solved 

in [9j,[10],[l2j, concern further properties of universal 

categories, namely where from usual categories are univer

sal. 

The notion of a universal category given above requires 

the existence of a. full embedding for every small category* 

Thus a universal category in this sense may be called uni

versal for all small categories. But it is natural to consi

der also other "systems1* of categories, for example to consi

der a category such that everj (not necessarily small) cate

gory may be fully embedded in it* 

In the present paper some metatheorems are given, from 

which there follow these results: 

There exists a category in which every category may be fully 

embedded* 

There exists a category with a singleton in which every ca

tegory with a singleton maor be fully embedded* 

x) The question whether there exists such a category also for

mulated A* Pultr in a conversation* 
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There exleta an additive category in which evwy additive oa-

tegory may be fully additively embedded. 

There exists a concrete category in which every concrete ca

tegory nay be fully embedded. 

There eziata a. good bicategory x In which every good bicar-

tegory mmy be fully embedded by an*ieofunctor which preaervee 

injectiona and projectione. 

The preaent paper la written in the eet-theory with the 

Bernmya-Godel axioms,[4j. Although the paper la not written 

formally (in aome details even not quite precisely) these a-

xlome are conalatently reepected. 

I. Preliminariea. 

All needed definitions (category, functor and so on) are 

given in [7]. 

1* Notation: If K is a category, denote by K*~ the class 

of all its objecta,by K"* the class of all ita morphisme. 

If «/, > € K* ; denote by H K (*7£r) the set of all no-

rphlsms of K from a, to Jbr. If <*. € H^ 6*, 4 J, put tC - cv, 

5? - >. If a,, ̂ , ce K"l <*e HK (a,,Jb~), fi e HK(4t7c), 
then the composition of <*> mod ft will be denoted by <x . /3 • 

If K I n category such that K* is a set, then K will 

be called small* We shall use the symbol K' c K to deno

te that K' is a subcategory of K, and the aymbol K' <= K 

to denote that K la a full subcategory n ) of K . 

x) Por the definition ot a good bicategory aee section V.8 of 

Ifet-KftSgat paper. 

xx) We reeall that a subcategory K' of K la ealled full if 

HSL^2±J a HK Co,, b) for all a, Jb> * K" . 
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We ahaii aay that a category K ie one-point (or one-ob

ject) if the elaaaea K f K ^ have exactly one eleaent (or 

if K^ has exactly one eleaent)* 

Let K be a category. We recall that a. e K°* ie cal

led m aingleton (or coalngleton) of K if, for every A-eft*, 

H K iJlr1 a,) (or H^ (a,^r) ) contains exactly one eleaent 

and HK(cu1^r) & $ (or H^ Ur, a, ) ^ 0 reepectively)• 

If $ ia a functor froa a category K to H ; we shall wri-

te $ : K -* H ; if K, H are amall then $ ia called 

•aall. If f : K -* H , ¥ : H ~> M are functora, then the 

composition will be denoted by $ • ¥ or $ ¥ . If 

§ : K - > H la a functor, *c e K ^ u K"* f then we ehall 

write toO $ instead of the more usual $ (<*-) • 

All considered functors are covariant, unleaa otherwise ex

pressly stated. 

• one-to-one functor of a category into a category will be 

called an iaofunetor into or an eabedding. An eabedding onto 

a full subcategory will be called a full eabedding* If K' 

la a subcategory of K , then the inclusion functor c * K -+ K 

la defined by (oc) u = ac for every aC e K'*0 u K'"* . 

2* Convention: If K is a category, aC e K** 7 then oC is 

always a triple, the first member of which ia tc , and the 

third aeaber is at . Thus if K^ , K% are categorise sueh 

that Kf * <Z * 0 , then also K? n K? - # • 

3* Convention, «nd BOt«.UoP: As noted before, the present par 

per is written in the Bernaye-Godel aet-theory, [4j. Thus we 

distinguish between aeta and elaaaea and all axioaa given ia 

I4] are aseuaed. A elasa which is,not a aet la usually called 

a proper class. The axioa of ehoiee for elaaaea aay be for-
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mulated as follows: let X he a class, R an equivalence 

on X -, then there exists a choice-class Y (i.e. y c X * 

if ^> ̂ -'e y ; /y. R /̂ / ., then ^ -» ̂ / ; and for every 

.X € X there exists a y e y such that A R^- ). 

It is used often in this form; for example the existence of 

a skeleton of a category requires it. But, as shown in UJ, 

this form is equivalent with the following one: every class 

X may be well ordered (by < ) such that for every & e X 

the class {& e X 7 & < a/ } ia a set (the proof requires 

the axiom D of T4J). The last form will also be used often 
x) in the present paper and such a well order will be called 

an 0^-order for X (also when X is a set). 

The properties V and W considered in the present paper 

are always supposed to be given by a normal formula,[4J. 

Let M/y <%v be sets; then (-'fê A- > denotes the correspon

ding ordered couple* If M,7 M, are classes, we shall use 

the symbol I A , ^ A/ I for the ordered couple and it may be 

interpreted for example as I A,, A 1 » A, x {0} u A, x.{1}^ 

If i is a mapping,, we shall write (# ) f instead of more 

usual i (x ) 0 Every reflexive and transitive (or also anti

symmetric) relation will be called a quasi-order (or partial 

order, respectively). 

*• Definitions? Let T be an (^-ordered class (by < ). A 

collection, { A ^ j <t e T J of small categories will be 

x) Metatheorema of the present paper are proved without using 

the axiom of choice: The axiom of choice is needed for appli

cations only. 

- 146 -



called a monotone system of small categories if -^ la a 

full subcategory of Jk^, whenever cc < oo'. A category Jt 

will be called the union of a monotone system {•<*&> <^ € T} 

of small categories and denoted by_,^ ^oo if «h ~ 

* U Jk£ and every ^ is a full subcategory of Jo. f-

vidently -4 ia small if T is a set. 

Let T be an (^-ordered class (by < )• Let 

{ -fyc 'i cce"^^,i T ^ C 7 <£ e "H be monotone systems of small ca

tegories* Let gu : Jv^ —.> Jb^ be a functor such that for * 

every oo < ai,f there is <f^ • ̂ *' » J, *' • ^, , where 

*l*': A —> A , i fc*' * A- ~* A,/ « e inclusion func-

tors. Then T.$SC> oc e T \ will be called * monotone sys

tem of small functors. A functor Cf : Jo -± Jv 7 whers 

h SdieT **<*> ' ̂ * J * T ^ >wi11 *• called tne ^ i 0 1 1 of 

{97 » oc e T J and denoted by y -» U 9^ , if for e-

very <i£ T there is ^ * y> *• eg. • \^ , where \ c : 
Om 

^ -+ Jh, os Jh, —> Jk are inclusion functors. 

5# Definitions: A couple ( &, VC > will be called a sead-

amalgam (of small categories) if % is a non-empty set of 

small categories and i is a full subcategory of each 

Jk, e OC -

A semi amalgam ^ ̂ , # > will be called an amalgam if 

4^ n Jh£ - i* whenever A,„K%* X, J^ + A,% . 

An amalgam ( s£, $C > will be called an unglueing of a se-

miamalgam ( JL f &C' > if there exists a one-to-one mapping 

f of the set Xf onto Of such that to each Jt, e X' the

re exists an isofunctor of Jk onto CA )4 } which is iden

tical on JL # 
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Let < JL , % > be an amalgam* Every email category K such 

that every At e X ia a fu l l subcategory of K , wil l be 

called a fi^-tfy; of the amalgam <£, X > • 

I I . Categorial metatbeorem 

I. Metadefinition: Let V be a property of eategoriee. We 

•hall aay that a semiamalgaai < X , 3C > baa V i f ^ h a a 

V and a l l Jk e X hate V . We shall aay that V Iff fmfflj-

gamic i f every amalgam with V has a f i l l i n g with 1/ * 

Examples: 

In [11] i t ia proved that every amalgam (^l9 X > has a f i l 

l ing K such that K* -^U^ A,"' . 

a) The property Vc of being a. category ia amalgaaie. 

b) Let X be a one-point category, a, e H* , Clearly, the 

following property VJ (or V̂  or V'' ) ia amalgar-

mie: to contain Jk aa a fu l l subcategory such that a, ia 

a singleton (or a coalngleton or a null object, respectively), 

e) It ia eaay to see that the following property V± la a-

malgamie: a category M, haa Vt if-and only i f 

bcvuL \^j^(a,,ir) -a 1 tor every cu% Jlr e >h<r . (If 

< jt0 C O la an amalgam with Vz , K i t s f i l l i n g , iden

t i f y a l l aorphiame ^ , V auch that •££""« *o> - ju, - %? #) 

d) Let ^ be a small category, le t S , 5 be two classes 

of cardinal numbers* Evidently the following property V3 

ia amalgaoic: a category Jk haa V, i f and only i f i t con

tains X as a fu l l subcategory, and i f a, e ZL", J^r e Jk'-Jf, 

than (UXKCL H^ (a,,Jtr) e S , toftd HA (4h, a> ) e S" . 



e) Let 1 be a one-point category. Clearly, the following 

property VH la aaalgamio: a category Jk haa V^ if and 

only if it contains A , as a full subcategory and la con

nected • 

2. Mftfrtrflnj-non* Let V be a property of categories. We 

shall say that V has a small character if every category 

K has V if and only if K is a union of a monotone 

system of small categories with V • 

a) The property V0 of being a category is of small cha

racter. For, if K is a category, take some Q-v-order < 

for the class K^ and let Jt^ be the full subcategory 

of K auch that Mf «. {& € K* -, J2r < o, } . Then e*i-
eu 

dently K - U M,^ and {M,^ \ a, e K+ f la a mo

notone system of small categories. 

b) It is easy to see that the propertiea l( to ^ from 

examples lb) to d) are of small character. 

c) Let \ be a one-point category. It will now be proved 

that the property V^ , of containing M, as a full subca

tegory and being connected, also is of small character. Evi

dently the union of m monotone system of small categories 

with V% has V̂ . • How let K be a category with V^ ; we 

attempt to express it as the union of m system with the re

quired properties. For every small full subcategory Jv of 

K choose a small full connected subcategory Jv of K , 

x) A category M> is called connected if for every a,, Jlr& K** 

there exist C^ V.M <W & M,9* such that e* * Cuf c** * Jtr, 

% CH f H+A / u Ha/e^ , e4 ) * p for i « 4, ...9 m - 1 . 
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which contains Ju (this is poaaible: for any a,? & e JhT 

chooae c^^ ... ca'* e K* such that c?>* ~ Q, 7 

* 9 9 % * 

$f m & and H / ^ ; c^) v *.(£*, £*) * 0 , •*« 
aJr % * * 4 ' 4 K **< '4* 

put ^ r \ ^ a r *f V >0001 C">ijr ? > l t U e a 8 y t 0 * e e 

that ^ ie connected)* How l e t < be an 0^ -order for 

the class K0" - Jfc , let o> be the f i rs t element. Put 

\ , * ^ j i f O/ ^ K**, cu 3* 0>0 , denote by ^ the 

fu l l subcategory of K such that W* {&e K ^ Jr < a,}u 

u ^4^ ^ V , and put Jk,^ «= ^ . Then evidently K« 

m U M>„ . and «( ̂ <_ *, a> e K^} has the required pro-
ae K̂  a ? 

perties. 

3. Metadefinition: Let V be a property of categoriea. Let 

%, be a small category with V * We shall say that V 1ft 

Jk -invariant if it aatisfies the following conditions: 

m) every category with V contains JR, as a full subcatego

ry; 

b) if a small category Ms has V and there exists an iso-

functor of M, onto a category Jv 1 which ia identical on 

jR, 1 then Jv has V • 

Metadefinition: Let V be a property of categoriea. We shall 

demote by V the following property of categories: a" cate

gory has V, if and only if it may be fully embedded into m 

category with V » 

Î arryleji: Jtet % to V^ be properties described in 1. 

a) Ehe property V0 is evidently J& -invariant, where J*, 

is && eapty category.* Evidently V0 sr V0 , 
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b) Every category with a singleton (or cosingleton or a sys

tem of null morphiaias) has V1 (or V] or V" respecti

vely) . 

e) New prove that every connected category has V£ , Let 

K be a connected category; one may suppose that J^^n 

n K
0"-* 0. Let H be the following category: H*-. Mf u K°~, 

JPL ̂  K are full subcategories of H ? and for a 6 Jk, , 

> € K^ there is H H fa,^)-{<tv,0;>> ?, H H C*;a) - 0 .-

Evidently H has V^ -

4* Categorial Metatheorem: Let Jk be a small category. Let 

V be an amalgamic Jk -invariant property of small charac

ter. Then there exiata a category U with property V sueh 

that every category K with V may be fully embedded in 

U . Moreover9 if K has V 1 then this embedding is iden

tical on M, . 

Corollaries: Using the properties l/e to 1^ described in 

the examples, it is easy to see that 

a) there exiata a category in which efery category may be 

fully embedded. 

b) There exists a category with a singleton (or cosingleton 

or null objeet) in which every category with a singleton (or 

cosingleton or a system of null morphiama respectively) may 

be fully embedded. 

e) There exists a connected category in which e^ery connect

ed category may be fully embedded. 

d) There exists a quasi-ordered class in which e'Very quasi-

ordered class may be fully embedded. 

There exists a partially ordered class in which e^ery 



partially ordered claaa may be fully embedded. 

a) Aeauae given a aemigroup JJE with m unit* Then there 

exiata a category U and a, e (J0" auch that a is a ge

nerator (or cogenerator) of U , Hy (a , a ) is iso-

morphic to 2T , and that ovary category K containing 

a generator (or cogoneiator, respectively) Ar e K^ with 

H K (4K, ̂ r ) la isomorphic to 2E . may be fully embedded 

la U • (Of Appendix II a) of the present paper.) 

III. Proof of the Metatheorem 

la this section, JL la a small category, V id aa aoalga-

mic Jfe -invariant property of small character* 

-U LfijU&'» l*t -H, A', i> be aaall categories with V , 1st 
onto 

Jfa be a fu l l subcategory of •&' , l e t </ * A • £ be 

aa iaofunctor identical oa M . Then there exists a catego

ry A' with V and aa iaofunctor cf't Jv --—4 .^', which 

extends cf % furthermore i i s a fu l l aubcategory of A' • 

£&oj£s Evidently there exists a category A' and aa iaofunc

tor <f* i Jhf %&* A' 9 which extends </ . Also A' 

has V , since y' Is identical oa AfL . 

a* iftaflft: Let < A , $C'> be a semiamalgam with V, A e •%'. 

Then there exists I t s unglueing < A, X > with property 1/ 

such that ^ # #C • 

: this, i s evident* 

x) l a recall that O>0 i s a generator of a category<<& i f 

Is sueh that, whenever ^ . V g H ^ (Mr^ c )% p 4» »> ; thaa 

there exists ot/ e H^ (ct#, .-ft-) with sC <o> * cc -P » 
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3* Rotation: Let oc be a cardinal number, Jk and Ac 

small categories• The symbol &a>cU Ac\Jv £. ac i s to 

mean that Jh, i s m fu l l subcategory of M,, coxcL Jk, — 

-Jhf& oc and for oc e MS ~ Jh,"\ Jr e J*,* there i s 

iwtcL Hĵ  (a,, Ar) & at; caxd, H^ T̂ > a,) .£ <x « 

4* Lemma: Let I be a small category with property V, 

let a be a positive cardinal* Then there exists a semi-

amalgam v ^ ? X > with V and such that: 

1) co/tuat A N. A, & oc for Jh, e X, *? 

2) i f A i s a small category with V and tcuccL Jv \ Z& 

£. oc f then there exist M. e X and an isofunctor 

y.Jh, ?-%> Jk, identical on I . 

Proof: Let fK be the class of a l l small categories Ms 

with property V and such that caxd, Jt, \ A £ oc . Let 

q> be the following relation on IX - M,1 <p Jh% i f and 

only i f there exists an Isofunctor of Jk,^ onto M>% identi

cal on A . .Evidently e> i s an equivalence on IK ; deno*-

te by JrC some choice-class* Now i t i s sufficient to show 

that X U a s e t . Let M be a se t , M f\ A?** 0, cwtd M* cz>} 

set ST m Mu l* . For every <cc,&> e $rx S* l e t 

H ( ( ^ , ^ ) be a set of some triplea (a,, ac , Jlr > such 

that csvcoL H (a,, Ay) -* oc and that for < a,, Ar > € 

e &** l r there i s Ht (cu, Ar ) c H (Q,74> ) <; set S ^ * 

^ ^ ^ ^ ^ 5 ^ H Co., 4K). For every A e X choose aome one-to-

one mapping cj>̂  of the aet JH? u Jh, v into the aet $**u 

u $<* with the following propertied*, i f <*, 6 AS u A"**, 

then Coc)y^ - oc • i f a, 6 A ^ - ^ , then 

(a,)9k € M ., i f oc e At,"* f then (*)cfae H UZ)%t (0?)%)* 
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Iridently one may define ft composition on the aet 

(hfkfau (-h**)^ ao aa to form a category (denote i t 

by Jv ) f and <#K : to> —> Jh will then be an iaofunc-

tor of Jh, onto %,. If for Jh,, Jk e 3C there la X -

m Jhj , then <£> • y^4 ia an ieofunetor of Jh, onto Jk 

which la identical on Z , and therefore Jv » Jt . Now 

i t ia eaay to eee that the A ' a , where A variee over 

% , form a aet* 

->• I a H I ! *** c*, be • poeitite cardinal number, let 

< ^ , X > be an amalgam with property V eatlafylng 1) 

and 2) from Lemma 4# Let A,' be ft email category with pro

perty V f Jh, i ta fu l l auboategory with property V , 

cf • M, —2-> £ an laofunctor identical on Jk, and 

ca*cL Ji \Jh & &, • Then there exiete an iaofunctor of 

Jh/ onto eome Jt € $C which extende y * 

£r£o£: Thie followe eaelly from Lemma 1* 

*• IfflttaW **t t -**% j />€>($, -4 ) } be a monotone eye-

tern of email categoriee. Then there exiata an order-preeer-

* lag mapping -f : S —* T into the olaem T of a l l car

dinal nuabere aueh that: 

1) ( ^ M ^ II , where A>Q ia the f iret element of S ; 

2) for every /* e S with >* > /be there ia 

£Efto£* Pat <4>«,)-£ * 0 . I f ^ 6 S , /t> 5- /t>0 9 put 

<*W a 2**-*- M* , where /M*, * 2 . C*)-P , /**•-* 

{ eaлeĹ ĹИЛ ĹcL,Âr)u HA/->, л ) ) j 
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then evidently 4 has the required propertiea. 

7* PfflgtTOfiUffl tf U : Let T be the claaa of a l l cardi

nal number a. For oc & T denote by T .̂ the aet of a l l 

fi € T less than £fc . Let f, e T and l e t i M^ ; 

Mt- 6 Tfr 1 be a monotone ayatem of email categoriea with 

property V euch that: 

A) 4 ^ - -*T $ 

B) i f AH- > 0 then: 

if A ' ie a small category with property V 7 Jv its 

full subcategory with property V f cf : Jv -mm\l^\^m$J%^ •» 

iaofunctor of Jv onto a full subcategory of U J& which 
<#•«• <AM* **** * 

i s identical on -4t and i f &**cL Jv \ Jv £ AH>> f then 

there exists an iaofunctor of Jv onto a f u l l subcategory 

of J^M^ 1 which extends y * 

Let >jtt' follow to -)Bt • We wil l construct J^ BO that 

*£ -*W ; *H* e Tft7 i i s a monotone system of small catego

r ies with V satisfying A) and B). Put J* - U J*,**. • 

For every f u l l subcategory J> of J*, with property V choo

se some amalgam ( Z , Q ^ > satisfying 1) and 2) from 

Lemma 4, where one puts at «• <jst . Let ^ d̂ 7 3 ^ > be 

an unglueing of the semiamalgam < ^- *#^ u { 4 3 ) such 

that Jk, € $t£ , l e t K^ be i t s f i l l i n g with property V. 

Denote by it the set of a l l K^ ( JL varies over a l l fu l l 

subcategories of M, with property V ) • Let {Jt7Xy be 

an unglueing of the semiamalgam ^ Jk7 %t >• Let Ji^ be a 

f i l l i n g with V of < Jk, % > . 
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Hew it is eaay to see that i^%^m, <*K- e T^/ J is a 

monotone system of small categories with V satisfying 

A). Now prove B). It is sufficient to prove that if A ' f Jh, 

are small categories with property V 7 (uvcU 4%'\ Jk, » fl. / 

cf i ^^^^J^qfan. am isofunctor onto a full subcatego

ry of A identical on ~3& . then there exists an is ©func

tor ifr of Jh! onto a full subcategory of Jk,^ which ex

tends Cf . To prove this aeaertion, first put <<l ** C^v )y • 

Then* using Lemma 5, there exist £'e 1Xl and an iso

functor $'t Jt,' Z&+ J' sueh that ^ ^ * <f. Then 

there exist J" € Mg mud an iaafunetor <#" t X' ***& I" 

which i» identical on I, consequently C*'# ^ ' l ^ - V • 

Denote by ij„ * £" — > Kg the inclusion functor onto a 

full subcategory of Kg % let K e X , let £ ; f^2** K 

be an isofunctor which is identical on A , (and consequent

ly also on Jl ), and denote by c - K — > M,^ the inclu

sion functor onto a full subcategory of M/^ . Put yr *= <f'. 

• cf » Upt » ̂  , u . Evidently iff is an isofunctor onto a 

full subcategory of M^ and ( <u) if'y"ot„ % L * C^u.) cf 

for (U, € <fa, . This concludes the proof of B)# 

By transfinite induction one obtains a. monotone system 

{'%* S ** € T ? of small categories with V satisfying A) 

and B). Put U » ^ U r < ' < W • Th«» evidently U has V . 

8. PT9P9iitl9n: --%t H be a category with property V • 
Then there exists an Isofunctor of H onto a full subcate

gory of U which is identical on M . 



Projpjt: Using Lemma 6, one may suppose that H «• U - ^ , 

where i^%', <b e T' } is a monotone system of small ca

tegories with property V T/ la a subclass of the 

class T of all cardinal numbers, 0 e T'; Jv0 = f̂c and 

co^ui CA^ \ U M±} & A> for 0 < /{> e T / . How it is 

easy to eonatruct an isofunctor $ of H onto a full aub-x 

category of U . Put $ =• U / SP^ , where c^ is the 

following Isofunctor of ̂ i^ onto a full subcategory of M^: 

c?a : A 0 - Jk — + %, * Jk,c is identicals for /* e T', 

,6 > 0 , put cp **&, «f* ; *V- Aw ^^iK'^i and 

use B) from the construction of U . 

The proof of Hetatheorem is complete. 

IT* Hetatheorem for additive categories 

1. We recall the well-known concepts of additive categories 

and related notions: 

Definition: Let K be a category, -h a partial addition 

on rC"1, such that: if <K> -*- ft is defined, then to * 

- ^f, 3T . /? > every £ H K fa,,-^), ̂  C a , - ^ ) 3 1 8 *a 

abelian group, and if <u, e HK (e, a, \*,fle HK(*,4>), i><? \&A\ 

then fiu * (<JC +(b )<y>s*(U..<x,.T)+£i,./Z'y> * We shall say 

that then L K ,+ 3 ia an a-category • Moreover, if 

z) In [8], a-categories are called preaddltive categories. 

In the present paper the term a-category was chosen for 

the sake of analogies with the following parts of the pa

per. 
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***** pair of objecte of K haa * biproduct * ' in K ?then 

C K ., **• J w i l l be called an additive category. For an a -

oatagery 4 * C K , -*-J aet IA I » K > K wi l l be alao 

called the underlying category of A . We ahall aajr that A 

la amall whenever K la email. 

2 , -Buflnltions L«t .4,A' be a,-categ©riea. $ wi l l 

be called an a-functor of A into A' i f i t ia a functor 

of Ml into J4'J amah that to -f /*) 4 * <<*>$ • 0»*# 

whenever ot •*» /3 la defined. Moreover i f $ ia an iao-

functor, then i t wi l l be called an a-iaofunctor or a. -

embedding. If $ ia an iaofunctor of 141 onto a ful l aub* 

category of IA'1 , then It wi l l be called a fu l l a-iaofunc

tor or m fu l l & -embedding. Let A f A' be a-catego-

riea. We ahall aay that A ia an .2,-subcategory of A' i f 

IAI c \A'\ and the incluaion-functor ia 0. -embedding. Mo

reover i f It ia a ful l a-embedding, then A wil l be cal

led a fu l l a-aubcategory of A' * 

3* PtflSltAW * couple < Z , X > wil l ba called an a, -

aemiamalgam i f OC la a non-empty aet of a mall a-catego-

riea and 4 ia a fu l l a-subcategory of a l l Jk, £ 3C • 

An (^-aemiamalgaia < 4 9 3C> wil l be called an <t-ar 

D*lgam i f i J ^ i ^ n i-l^l** * U i r whenever Je-t , 

x) < Jrf{^ f% 1 1*% i $r%} y ia called a biproduct of ob

jecta a,, y <&2 in a -category [ K ? + ] i f t^ £ 

^ HK ( a 0 ^ ) ? Jn * HK iJb>, ct..), i ~ 1, I and 

Ч Яi - -Є^, , C г * » *«v^ (, 2 ) , tfГ, fc, + JГ^ ^ = -e^. 
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Ail a-amalgam < 4>f X > will bo called an a-unglueing 

of an a-samiamalgam < £f X' > if there exists a one-

to-one mapping f of the set 3C' onto 3t such that for 

every M € X' there exists an a -isofunctor of Jt onto 

(Jk)-f , which is identical oa JL . 

Let (Zj X ) be an a-amalgam. A small a-category K 

such that every Jt e JC is a full a-subcategory of K , 

will be called aa a-filling of the a-amalgam < Jt, 0C>* 

4* la analogy with the notions of a monotone system of 

small categories and its union, one may define the corres

ponding a-notions of a monotone system of small a-cate

gories and its union* 

In analogy with metanotions of amalgamic property, Afe-inva

riant property9 property with small character, one nay defi

ne the corresponding a-met anot ions, of a-amalgamic pro

perty, M, - a-invariant property (where Jk, is a small 

a -category) and property of a-small character. If V Is 

a property of a-categories, the definition of V Is also 

evident* 

5. HBtPtfreorgm: Let A be a small a-category, V sa 

(X -emalgamic and Jt - CL -invariant property of aa a -

small character. Then there exists an a-category U with 

V such that every a-category with V nay be fully 

a, -embedded la U . Moreover, for a.-categories with V 

this a-embedding is identical oa M* • 

6. la Appendix II b) of the present paper a proof of the 

assertion is sketched that the property of being aa a-ca

tegory is a-amalgamic. Evidently it is of a-small eha-
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raeter. Thus, using the fact that every a.-category may be 

fully a-embedded in an additive category, Ll], we have 

the following reault©: 

a) There exlat0 an additive category in whieh every a, -cate

gory may be fully a-embedded. 

b) There exists an additive category U such that for eve

ry a , i'e I U I r
 ; H g C a , ^ ) is a torsion group (or 

a finite group), and with the property that every 4-cate

gory A with H A C a , ^ ) la a tor©ion group (or a finite 

group, respectigely) for every ou^Jlre IAl°* may be 

fully a-embedded in U . (The proof la sketched in Appen

dix II c),e).) 

e) There exi0t0 an additive eategory (J with a generator 

(or a eogenerator) c e lUI^ auch that HQ (c , c ) la 

isomorphic with a given ring with unit, and if A is any 

a, -category with a generator (or a eogenerator, respecti

vely) Q, e IA |* such that the ring© H u Cc , c ) and 

H A CO*, & ) are iaomorphic, then A may be fully a-

embedded in U . The a-embedding extends the ring-iso-

morphi0m of H A Co., a,) onto H u (c , e ) , (The 

proof is eketched in Appendix II d),e).) 

?• Note? It can be shown that the situation is quite ana-

loguous if the sets of morphiomo from an object to an ob

ject are net necessarily abelian groups but universal al-

gebraa of a given type and aatlafy a given aet of equali

ties (of course, the operations must be distributive with 

reepect to the composition of morphlsmaK 
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8. ff.rojf of f̂ta Meta^aorej ft?, /-L-categoriea: This wi l l 

only be sketched* Let 4 be a small ^-category, le t V 

be an a -amalgamic Jk, - a -invariant property of a,-small 

character* The lemmas analogous to Lemmas 111*1 and 111*2 

for a-categoriea and a-functors are eaaily formulated 

and proved* We shall now formulate and prove the analogue 

to 111*3 and 111*4: 

Notation: Let at, be a cardinal number, M,, Jv email Q, ~ 

eaitegoriea* Then owed Jk, \ M, & at, denotea that J% * 

ia a ful l 0,-aubeategory of A and ca/ul I <k, I \ \4v I & ac. 

Lemma: Let <l be a small O,-category with V, l e t ot, be 

a positive cardinal* Then there exista an 0,-aemiamalgam 

< I f X > with V auch that: 

1) i f A e X , then a^ccL &, ^ £ £ c*. ; 

2) i f A ia a amall a-category with V and ecuul Jv \ 

\Z £ en, f then there exiat a M, e JC and an o,-ieo~ 

functor cf t &, ?^% Jk which ia identical on -^ -

Proof: Let IK' be the class of a l l amall &-categories Jk, 

with V auch that tax,d Jk S 4, £ at, , l e t IK«{ 1*4,1/ 

A e IK'J , Let p be the following relation on IK t , 

lify I p l-fe^l i f a n d o n l y ** t h e r e exists an iaofunctor of 

IJe l̂ onto \ \ \ which la Identical on \ l \ . .Denote by 3^ 

some choice-clasa. In the proof of .Lemma 111*4 i t la pro-* 

ved that % i t a aet* For e^erj M, e ffl denote by 0C^ 

the aet of a l l ct ̂ categories Jt, auch that i ia an 

& -subcategory of Jk and MvlmJv$ put ^ ' * 4 , V W "*** 

The a-aemiamalgam < 4 , S O haa the required proper-
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ties, concluding toe proof of the lemma. 

Now it la eaay to complete the proof of the Metatheorem 

for &-categories using the analogues to III.6,111,7,III. 

81 this la left to the reader* 

V. Bieategorial metatheorem 

1. We recall the well-known notion of bicategory,[5j, and 
4 

of related notions: , 

PtfiaiUffl* *»et K be a category, I , P its subcatego

ries sueh that 

1) IT n P™ is the claas of all iaomorphiams of K$ 

2) each L c IT is a monomorphism of K ; 

each sr e P"^ is an epimorphiem of K; 

3) to every oc c K*~ there exist t e I"" , sr e P™ 

sueh that <*0 *• sr * t j 

4)if L , L ' € r , srfst'e PI* have *r - t - *r'. c' , 

then there exists an isomorphism p of K such that 

Sf m sr • p 9 i/ * f> * c 

Then [ K f I , P J ia termed a Jit -category x); it is 

termed small if K is small* Let 3 * [ K , I , PJ be • 

Jb> -category, set I # \ * K , 1^ * I""', % * P"* . Then K 

will be called also an underlying category of 32>, 1# the 

class of all injections of 3 , P% the class of all pro

jections of fh • 

x) The term Jly -category instead of blcategory, was chosen 

for the sake of analogies with other parts of the present 

paper* 
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2 . .Definition: Let Jh , Jh' be Jlr -categoriea. A functor $ 

of 131 into IS'I ia called a Jlr -functor if (l*% ) $ c 1^, 

( pa ) .5 C P^/ • $ will be called a Jlr -isof unctor of *8 

into J6' if it ia an iaofunctor of \Ji I into I3'l and 

V n (\ar)$ - CI3)$, ^ n C l S r ^ - C ^ ) ^ . I*, moreover, 

$ is an iaofunctor of 13JI onto a full subcategory of 

IB' I ; then it will be called a full Ar -iaofunctor or a full 

Ar -embedding* Let Jb ? (ft* be ^-categories. We ahall 

say that ^ it a (full) Jlr -eubcategory of J&' if W3I c 

C I Jb'\ and the inclusion functor is a (full) -$--embedding. 

3* The definitions of a Jlr -8emiamalgam and ita .-#--unglue-

ing, and of a Jlr -amalgam and ita ^-filling are evident* 

The definition of a monotone system of ^-categories, a 

monotone system of Jlr -embeddings and their union is evi

dent. It A , is a snail ^-category, than the aetadefini-

tions of Jlr -amalgamic, At/ - .J"-invariant property of -#--

small character are evident. It la also evident that the 

following metatheorem Holds: 

lietatheorem: Let Ab be a small Jr -category. Let V be m 

Jlr -amalgamic, M - Ar -invariant property of Ar -small cha

racter. Then there exists a ^-category U with property 

V auch that every Ar -category with property V may be 

fully .4r-embedded in it; this Ar -embedding is identical 

on Jk> • 

4* However, aa shown in the Appendix, II f), this metatheo

rem is not useful, because the property of being a .^-cate

gory is not r̂-aaiaJLgamic. (The question as to whether there 
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exists a -^-category in which every ^-category may be 

fully Jlr -embedded remaina open.) We ahall give a more gene

ral metatheorem, which has more satisfactory application*. 

5. MBtadefinitions Let W be a property of & -embeddinga. 

It will be said that W la monotonicallr additive if the 

union of every monotone system of ^-embeddinga with W 

has W . It will be aaid that W is categorial if 

a) every ir -iaofunetor onto haa W and 

b) the composition of two Jlr -embeddinga with W has W. 

6. Metadeflnitions Let V be a property of .vtr-categoriea, 

W a property of Jb0 -embeddinga. It will be aaid that V 

haa at Jlr -small W -eaaraeter if a ^-category K haa V 

if and only if K is the union of a monotone system 

i'k't I <£ € T J of small ^-categories with V such that 

for any cC < <K* the inclusion ^-functor C* : Jb—»A 

haa W . 

It will be said that V ift 1 - -Ŵ ffffir-JQ Wiffll rfff\tti% %<t 

W if it haa the following property: if (, <l t $C > is a 

J(r -amalgam with V such that the inclusion ^-functor 

i^ t t —» Jk, haa W for ev%r^ At e X 9 then thera 

exiata its ^-filling K with V such that for every 

A e X the inclusion Jtr -functor *£ : xfe, —-> K haa W. 

7* MfitWthf °rt§ ffg Jb- -Q^tiOTrtflfs ^ W be a catego

rial property of Jbr -embeddinga. Let J& be a small Jr -

category* list V be a property of -#*-categories, whieh is 

Jfl m jfr> -invariant, Ar -amalgamie with reapect to W and 

la of Sr -small W -character. Then there exists a -^-ca

tegory with V in whieh every Ar -category with V aay 
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be fully Jlr-embedded• The ̂ -embedding is identical on 

Jk, ? and has W whenever W ±9 monotonically additive. 

Proof is analoguous to that of Metatheorem V.3 and there

fore it is ommitted. 

8. Definition: Let £ be a full Jr -subcategory of Ji . It 

will be said that J Iff a, fl9Q4 Jr -subcategory 9f J* ** 

it has the following property: If (tu e {Jk, I m< and ei

ther pT e Ul*' or ju? e IZl^ , then there exist 

Tf e F̂  - L € 1^ such that fc *» JT * L and *r e lZ\°*, 

A •&*-category K will be termed a good Jr -category if 

K-*^^. JE^ f where f^^, 5 oc ̂  "V ? is a monotone system 

of small Jr -categories such that for any <x> < <** 'Jt^ is 

a good Jr -subcategory of J^^* * 

9. Let W be the following property of Jr -embeddlnga: 

u : Z —> J* has W if and only if it is a ^-embed

ding onto a good ^-subcategory of Jt . In Appendix,11 g) 

it is shown that VV is categorial and monotonically addi

tive. Let V be the property of being a good Jlr -category* 

Then M is of Jlr -small W -character; this follows imme

diately from the definition. V is Jk -invariant, where 

Jk/ is an empty -#*-category. In Appendix, II h) it is 

shown that V is Jr -amalgamic with respect to W. Thus 

we have the following result: 

QprpJrilary %Q foe Kttath$ore» f9V Jr-gattwrtsr. 
There exists a good Jr -category in which every gbod <$r~ 

category may be fully Jr -embedded. The Jlr -embedding is 

onto a good Jr -subcategory* 
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10. How wa give some conditions for a ^-category to be 

a good >#"-eategory. 

IjejalUL2 A ^-category dual to a good ^-ca tegory ia i t 

se l f a> good Jtr -category. 

Proof: This follows immediately from the definition of a 

good Jtr -category. 

frffllift pi A ^-category i s a good ^-category i f and only 

i f i t s skeleton Is a good ^-category* 

Proof: Let B be a -ir-category, S be i t s skeleton* For 

every Cu * IB/*" choose an isomorphism 6^ of B sueh 

that t « ^ » ? « I S I ^ . I»et P J B - ^ S be a 
«< * Oft 

Jtr -functor auch that (4/ ) P - <jf, Cf*,) P • 6g4 . (tc . 61% • 

If B la a good Jr -category, then B «* U Jb* , where 
t * C T ^ 

-{<&£, i cc € ~T } is a monotone system of small -^-cate

gories amen, that A%, *• a gooa ^ -subcategory of *-0£-/ 

whenever ct < at'. Put /©^ » (Jb^ ) P . Than evidently 
5 ~ ML, 4u and { ̂ - j ̂  C T } la a monotone sye-

« C f T * * * * 

tern of small ^ - c a t e g o r i e s , which has the required proper

ty. Consequently 5 la a good Jlr -category* Conversely, i f 

S be a good Jtr -category, wa shall prove that B i s good* 

Then S » Xi **«* , where { \ x fiTJ ia a monotone 

system of small Jit -categories sueh that va^ ia a good 

^ -subcategory of A^t whenever cC < oc ' . The property 

of being a ^ -ca tegory i s of > -small character, aa 

shown i n Appendix, II !>• Consaquantly B ~ ^ U 2 >f̂  , where 

{4& } /5 6 Z J i« a monotone system of small ^ -cate

gories. For *very fh 6 Z denote by o&- the smallest 

- 166 -



cceT Buoh that Ck, ) P i s a ^--subcategory of A^ . Let 

now JlTp be the fu l l Jlr -subcategory of 8 auch that /^j /*V 

=-lA* \*u\M,(\
<r. Then evidently B ^ ^ ^ and the 

system <^-; fi e Z ] has a l l the required properties. 

We recall the well-known definition: 

BeflnlUoa, A ir -Category S3 i s termed well-powered (or 

co-well-pswered) i f for every cu <s \& \ r there exists a 

set ^ c 1^ (or .£ c (73 ^ « « h that, far every c c 

€ I ; I** o, ; (or & e f* ? tf m a, ) there exists an 

d e 7^ (v* sr'e fP^ ) and an isomorphism er such that 

L *^- t / (or 7r**zr'*6 respectively). 

Lemma 1: # i s a good & -category i f and only i f i t i s 

well-powered and eo-well-pewered. 

Proof: Let Si be a good ^-category; le t Si ^c^r^c > wae*« 

^̂ £c"/ ^ e ^"? i s a monotone system of small -#--categories 

such that, for oc < oc\ J^ i s a good ^-subcategory 

of Jlr^ . Let cue\Si\°'. Choose oc e T such that a, e 

€ \ir^ /*" y l e t 7 be the class of s l l ^ce *-+i (&?** cv. Sin-

ee ^ i s a good .^£r -subcategory of •# , each fie e 7 may 

be expressed as t̂£ -rtf", >> ; where ^ « P^ , y> € l^,^Je l-tg. /*"• 

but then 0* must be an issmorphlsm. Consequently Si i s 

well-powered. Analogously i t may be proved that Si i s eo-

well-pewered. 

Conversely9 l e t Si be s well-powered cerwell-powered 

Jlr -category. Let Ŝ  be i t s skeletoruWe shall prove that 

*$ i s good. If A> i s a small f u l l subcategory of / \f I % 

denote by 75 the smallest good Jlr -subcategory of if such 
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that IJ¥l 3 y&, ^ ia a small Jlr -eatog©ry» Indeed, 

put .4^ *- /^^ | for m, odd denote by A^ the set 

of a41 ^ m I Vl* such that there exists t £ 1^ with 

*fc * 0 , , 1 ^ 6 ^ ^ M > for /n. oven denote by A^, 

the set of a l l a> e \s£\cr such that there exists a 

7T e F>- with .5F^* a,, 3r « A*.. , 5 l e t /S" be 

• fu l l Jlr -subcategory ©f if such that / 7$ i" = U A„ . 

If {^ J <£ € T } i s a monotone system of small catego

ries suoh that I */ / «• c/ A> then { %. } cc € T } 

has the required properties* 

11. Now wo show, using Lemmas 1 to 3 , that most of the 

usual bicategories are good -#--categories. 

Let --vrvyt, be the category of a l l sets and a l l their 

mappings* Let $ : E ^ A —* E^^ bo a functor, eo-

•ariant (or contratariant) suoh that 

( # ) for every & € E £ ^ the class {Jb-e E £ ^ ; 

CfiO § » a J i s a se t . 

If a e E£^ , <* c £ ^ denote (*)$ by a,* 

i - # x ) 
(fee may thou define the following category E v : 

x) The definition of the category E* was given by 

A. Pultr and Z. Hedrlin. 
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I E* I r ia the elaaa of a i l couplea < &, X > ; where 

0, c J E^^ l ^ c e $ i Hg# (<o, f x > , < ^ , x ' > ) ia the aet 

of a l l ac* m «a,, x >, *C, <a,% x ' > > , where oC i a -.> a 

ia • mapping aueh that Cx)oo* c. x ' (or x 3 CxMoG** 

reapectively). 

It la eaay to aee that £ * may be blcategorlsed natu

ral ly in two waya (the contravariant case ia indicated in 

parentheaea): 

f̂  ia the claaa of a l l oe,*: < a,, x > —> <o/, x / > 8ueh 

that (Q,)OC =* cj7 (x)*$ =. x (or 6x')oc* »> x o 

nfa,'*)<** ) . 

\ la the elaaa of a l l of: <cu, x > —» <o/, x '> eueh 

that co : o, —-> a,' la one-to-one into and (x)oir c **' 

(or x 3 Cx')oG* ) . 

?x la the claaa of a l l oo*: <o,,-x > —> <a/., x ' > aueh 

that oC : 0 , - 2 ^ 0 / ' andCx)o6* c x ' (or x :=-^x')**,* )« 

lz ia the elaaa of a l l oc*: < o^ x > —»<a/, ,x' > aueh 

that ot i a,—> aJ la one-to-one into and ^x )<*>* =r *'n 

n Co,*) 06* (or x -* cx ' )oc* reapectively)* 

Then, uaing Lemma t and 3 , i t ia eaay to aee that both 

[E* , 5 , I, J and £ £ * , % , 12 ] are good - £ - e a -

tegoriea for every functor (covariant or contravariant). 

$ : E ^ —» E ^ 9 aatiafying ( * ) • Ala© a l l fu l l ^--amb-

eategoriea are good Ar -categoriea. Thua for every eova-
< 

riant functor $ : En+ — > E ^ ^ aatiafying ( # ) 

the category of all <f -apacee and § -morphioma [ 6J bi-

categorixed aa before ia a good ^-category. 
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VI. Relatite Metatheorem 

1. Definition: Let M be a category. Let Jk,, .A be 

subcategories of M, ^-*^fe~>M, (̂  s A —> M the in

clusion functors, </> ; ê, —> A a functor. We shall 

say that cf is an M -functor if there exists a natu

ral transformation of Uj^ into <f %, (i.e. if for 

every o, e Jk, there exists a morphism (U,^ e 

e HMCo/;Ca)c^) such that for every <x e W^CcL7Jlr) there 

is at • (u,^ ~ <<^ - (ac ) cp ). If cf : M, —> Jh, is an 

isofunctor into and % and cf t^ are naturally equiva

lent (i.e. all (Ct^e H M 6a/., C^/*^ ) are isomorphisms 

of M ), we shall say that (f is an M -isofunctor in

to or M -embedding. If y is a full (or small) embed4in^ 

ajud also an M -embedding, we shall say that it is a 

full (or small respectively) M -embedding. 

2. Definition: Let M be a category. A semiamalgam 

< X , % > will be called an M -semiamalgam if all Jh e 

€ % are subcategories of M . 

The definition of M -unglueing of an M -semiamalgam 

is evident. The definition of an M -amalgam and its 

M -filling is also evident. 

3. M^a4efj.nAtjLgna: Let M be a category, W a pro

perty of M -embedding*• We shall say that W is catego-

rial if 

a) every M -isofunctor onto has W and 

b) the composition of any two M -embeddinge with W 

haa W -
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We shall say that W is monotonically additive if the 

union of every monotone system of small M -embeddings 

with W has W . 

4* Metadefinitiona: Let M be a category, Jfe its 

small subcategory. Let V be a property of subcatego

ries of M ., W a property of M -embeddings. The me

tadefinitiona of the following metanotions are analogous 

to those given before (cf V.5 and 6): 

1/ is of M -small W -character; V is M -amalga-

mic with respect to W ; V is <h - M -invariant. 

5. We recall that a category is called replete (cf [3J) 

if with each object a, it also contains a proper class* 

of objects isomorphic to Cu . 

Relative Metatheorem: Let M be a replete category, Jt 

its small subcategory. Let W be a categorial property 

of M -embeddings, which is monotonically additive* Let 

V be • 4 - M -invariant property of subcategories 

of M 7 which is of M -small W -character and is M • 

amalgamic with respect to W * 

Then there exists a subcategory U of M with property 

V such that every subcategory of M with 1/ can be 

fully M -embedded in U . This M -embedding la in

dent ical on M and has W . 

Proof; This is given in the next section. 

6» Corollaries; a) Let M be a replete category, kJk, the 

empty category. It is easy to see that the property V of 

being a subcategory of M and also W of being an M -

embedding satisfy the requirements of the Metatheorem. Thus 
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we have the following reeult: Let M be a replete cate

gory; then there ezlate a subcategory U in which eve

ry subcategory of M nay be folly M -embedded, 

b) There exiete a concrete category in which every con

crete category may be fully embedded, 

o) There eziata a eoncrete category with a singleton (or 

ooelngleton or null object) In which every concrete cate

gory with a singleton (or eoaingleton or null morphiems) 

may be fully embedded* 

d) There ezleta a connected concrete category in which 

every connected concrete category may be fully embedded. 

e) If M la an a-category, then BV^TJ /M/-iaefune-

tor le an d -isofunctor. Consequently we have the follo

wing result: 

Let M b t a replete a-category. Then there eziata 

an a-eubcategory in which every a -subcategory of M 

may be fully a-embedded. 

f) There eziata a category of (abelian) groups in which 

every category of (abelian) groups may be fully additlve-

ly embedded* 

g) If M la a Ar -category, then every IMJ -isofunc

tor la a 4r -isofunctor* Consequently we have the follo

wing reeult: 

Let M be a replete ^-category. Then there exists a 

}y -eubcategory U , which ia a good Jr -category, and la 

eueh that every <tr -eubcategory of M , which le a good 

ix -category, may be fully $r -embedded in U . 
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VII. Proof of the Relative Metathtorea. 

The proof of the Relative Metatheorem, which ia not enti

rely analogous to that of the bicategorial or additive 

metatheorem, will be given expllcltely* 

1. In the following M ia a replete category 9 Jt its 

email subcategory, W m categorial property of M -

embeddings, which la monotonically additive; V ia a 

property of subcategories of M 1 which ia & - M -ia* 

variant i M -amalgamic with respect to W and ia of 

M -small IV -character. 

Notation: The fact that > f e , ^ c M , Jfa c A and the 

inclusion functor L : A% — y Jk, has W, will be deno- . 

ted by Jfo c. Jk , The conjunction of Jh* f- Jk and Jh, c 
w o 6 * * 

c M 9 will be denoted by Jv c M> . 
If < £ 7 X ) la an M - (semi)amalgam with V and such 

w 
that Z c Jk for every Jk e X , then it will be ter
med a W - M -(8emi)amalgam with V . 
It <4 , X> ±m m W - M -amalgam with V, and K ia 
ita M -filling with V auch that A c K for every 
A a K ,thea K will be termed ita W - M -filling 
with V . 
If { J ^ -7 oc € T } is a monotone system of small sub-

w 
eategoriea of M with V auch that J^. cr M^, whenever 
oC < oc', then we shall say that it ia a W - M -monotone 

system with V • « 

If < Â c •, <& 6 T j i a a W - M -monotone ayatem with V 
lit 

and K» U 4 ^ , then evidently J^c f K ^ ^ «*a*3r 

oC 6 T . 
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2« ->-D-aa: Let A' ; Jk, 4 be small subcategories of M 

with V 7 4v c Jh' 9 cf ;Jh, ??% I an M -iaofunctop i-

dentical on M . Then there exists £' c M with V 
w 

such that Z c. Z' and that there exista an M -iaofunc

top <f': A' onto^ £' which extends &? . Mopeovep, i f 

4f n W- A")* 0 , then 4"- Z0* * A"~^ A*" . 
ifroof: First suppose ^ n f̂ ""- A** ) - 0 . Let 

if4*,) Q,e A^l, (U^e HM (cu, Cou)<f ) , be m natupal e-

quivalence of functops t^ and cf ^ , where L^ : A —•» M 
^ll ^ —* ^ l i r e * n e i n c l u s i 0 , ! - fnnctopa and cf. A—> 

<-*>> <l . POP ^ e A / < r - .A*' denote by ^^ the identi

fy t fi^ e ^M ^ j ^ ' - 4' a n d ^ ' m a 3 r De <*e-?i»ed a« f o l 

lows: C / ' ) ^ ATu (Jhl'-A"), **/tr n 9>fa Vfcjrjft i s iden

t i ca l , fop <*. € H ,̂ (cu7Jb>) put Ceo )tf'*("£. cc • (Ufr and 

put V * (A')cf' . It £r r\ CJhS'-Jh") * 0 , choose 

some A ' c M such that Jfi* n i^ .* ^ r and that the-

pe exiata an M -isofunctop qr : Av fnto> A' which 

ia identical on A . Set A -* (<K>)y > §? * V"/fc * 9? and 

the f irst case apply to A , A 7 £ and y * 

3* Lejuaa: Let <>•£, 3£' > be a IV - |V| -semiamalgam with 

V , l e t he %' . Then there exists i t s M -unglueing 

<47JC> auch that A e X \ < £, X > i s a l ^ - M - a -

malgam with V • 

£gfifi£: This i s evident. 

4* Definition: A category H wil l be called a repletion of 

a category P if: 

l ) P ia a fu l l subcategory of H and contains some 
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skeleton of H 5 

2) for every ct e P<r
; a l l .^ e H^- P^ equivalent 

to a. form m proper class . 

5* Lfi£ima: --«t R be an equivalence on a class A such 

that, for every CL € X , {&- e X 3 A- R CL } i s a proper 

class . Then there exists y c X and a one-to-one map

ping y of A onto y such that for every CL 6 X the

re i s CL R (CL) r and { i - 6 A - Y ; i r R a ? i s a pro- • 

per class . 

Proof: Let -i he an 0^ -order for X ; set X^ « 

= { > 6 X ; > - { a i , S ^ - = { ^ e X j ^ ^ a ^ R a J . Put y * « 

* {ir e X ? -^ i s an isolated point of the set %. } . Then 

evidently for every CL e X the class {-#-*s X - y * ; ^ R a, ? 

i s proper. Now let CL e X and let { ^ 5 -0-e X^ / be a 

system of one-to-one mappings %. ; ^ —* ^ such that: 

1) i f Jr -? Jlr\ then ^ ' / ^ * <^ . i f &' i s a non

isolated, then %, « ^ T | J 

2) i f -ir -J ^ ' , then f -*) <#£' R > • 

We shall construct %, : X^ —> Y* . If CL i s non-isola

ted, put tfi-^^ Ufa * 1-f a succeeds CL 7 i t i s suf f i 

cient to define (&')%, only. Choose (CL')TO, € {c e y J 

ftRa, c * « ^ ) r ^ } . put ^ % f 4 r „ y - « » f ; r ' * * y 
such that (a)y-r ( a ) y * for every OL e X • 

6. The notation from item 5 will be used. Moreover, denote 

by M' the full subcategory of M such that tA,er * M^-M* 

It&JBia: There exists a full subcategory P of M ' and an 

M' -isofunctor of M 1 onto P such that M ' is a reple-
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tion of P • 

££oj£s Set X « M/<r 5 let R be the equivalence on X 

auch that CL R 4t if and only if -̂  and Jit are equiva

lent in NT , Apply lemma 5. Let P be a full subcategory 

of M # auch that P ^ a y, P be an M ' -ieofunctor 

of M ' onto P auch that n/x » 2T- Then evidently P 

and P have the required propertiee. 

7. .flotation: The notation from item 6 will be need. 

a) If Z c M*f denote by (Z) the full eubcategory of 

M auch that (ZY * Z . S*t M, *{&*), P* (P^v Jk*) * 

Let P be an M -ieofunctor of M onto P , identical 

on %, and auch that 4-1' * ^ * 

b) Chooae eome 0^ -order -̂  for the claaa P*", which 

will be fixed in the following. Denote by a ita first e-

ltment. Uf A> e Pr, put fi>+ * ( { i e P ^ t-?-*}) , 

^ - c*ru K ; -
c) For Jh, c A ' put A ' -a- ̂  * (A/#"- A * " } • 

T 8* .ku&Ilft>: L« t L c M. L have V . Then there exists m 

H c M and an M -iaofunctor of L onto H f Identi

cal on 4t, auch that H « ^s,^% } *»•*• { ^ , A> & S'} 

ia • W- M -monotone system with V auch that S' la 

• aubclaaa of P*", c e S'f J% ** M f and for every /a ^ 

t i S ; > t t - c **•*• ia A^ - ^ J% c -/Ha 

£fc§fl£: L haa property V) conaequently L * U Jt^ , 

where { ^ ^ e A ) la a W - M -monotone system 

with V* aai 4c =* ^ w l t h <i t h e f i r a t •!•••--** •* 
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A . Put H » ( L) T , 4^ % (4^ ) f* . Now i t i s easy to 

find an order-preserving mapping <P of A into P such 

that (<&<,) f « C and that for every oc € A the cate

gory 4^ i s a subcategory of ^ ^ ^ • It i s sufficient 

to choose (cc)-f £• tmax(*uu(x> (/l)f,A>up, 4^) where < i s 

the order on A . Of course put S'** (A)-f f and for A € S' 

put 4vA - ^ ' o ) * - * * 

9. Construction of U : Let A> c P% /* S* C and l e t 

<{ A > t JB P% t *{ A> } be a IV - M -monotone system with V 

such that: 

A) Ac « Jb y 

B) i f t §- e then a} -*f n P0"-* 0 ; 

b) if Jh% A c M aire small and 

have V, to, «p Jt', A'--- Jv c -fvt and grt J% -~*J^A«, 

is a full M -embedding with W identical on M , then 

there exists a full M -embedding with W of to,' into 

Jh^ , which extends cf • 

We construct A A such that ^Afi > t « P * % * s J * J is a 

W - M -monotone system with V satisfying A) and B). Put 

*" ̂ V*"^ # For every 4 f A with V denote by 2 ^ 
the set of all to, c M with V such that ^ c ^ and 

A -A- J c ^ , Let < 4 f$Ct> be an M -unglueing of the 

W - M -semiaaalga* < 4f ^ u f J* J > such that Jt c 2^, 

let K4 be its IV - M -filling with V. Let J£< be the 

set of all K£ t where 4 <~ A , 4 haa y > then 

<,4ttf> is a V\/- M -seaiamalgaa with V y let < -It, # > 

be its M -unglueing* Denote by A ' its IV - M -filling 
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with V. Let JhA be a subcategory of M aueh that 

Ji^ r\ Pr=s <p and that there exists an M -iaofune-

tor of Jk/ onto ^ identical on Jk . (Such a category 

Jk,* exiata because, for every a, e M<r, {<tre M**- P**• 

Jir la equivalent in M with o, ? is a proper class*) 

It la eaay to aee that { ^ ; £ £ .4> ? satisfies A) 

and B a). To prove B b) it is sufficient to show that, 

if fv', Jv are 8mall aubcategoriea of Mt Jv c Jv , 

& A' have V, ^ ; Jv —> Je, * (J 4k, is a full M -

embedding with W identical on j£ and Jh!' •** A c ./i/^ , 

then there exi8ta a full M -embedding 7/r with W of 

A' into M/fi which extends ^ . We ahall prove thia 

auxiliary aaaertion. Put & - (A ) <f y then evidently 

Z c Jv and there exiata ^' c M aueh that <l % £' 

and there exiata an M -iaofunctor cf';A'f2&*£' with 

y \ » cf and 4' + £ ~ Jk'± A (becamaeCA'^^M^ 

^ 0 )• Consequently £' e #€>z . Now it is eaay to 

aee that there exists a full M -embedding % with W of 

^' into - ^ identical on £ . Of course put y sz <?'•%• 

By trans finite induction one obtains a W - M -monotone 

system {Jk>M -, 4> e ?* J with V satisfying statement* 

A) and B). 

Pat U * i j \ . Then evidently U haa V. 

1°» Proooaitioni Let H be a aubeategory of M with pro-

party V * Then there exiata a full M -embedding with W 

of H into U identical on JH • 
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Proof s Using Lemma 8 one may suppose that H -* ̂  U ^* .» 

where {M^ % A> e S'} i s a VV- M -monotone system 

with V , S'c Pdr
9 c e S' , Jiya - 3L and for eve

ry <* £> c there i s J)\ -s- (̂  ^ c f i^ . Now i t i s 

easy to construct a fu l l M -embedding $ with W of 

H into U . Put $ « U , c^ where ^ i s the foX-

Xowing fuXX M -embedding with W of ^ into J ^ : 

% : \ *%,-+%, = Jk,c i s identicai? i f * e S\ A> he, 

set Cf » U c* * then 9> i s a fuXX M -embedding 

with IV of A s U A , into 4 = U 4 and define 
£*S' * *<* * 

c/^ by B b). 

A p p e n d i x 

I* MJBllMrt WlJyffrsarfX qfrteflorjeg 

a) The following metadefinitions may be given: 

Let <T be a "system* of categories. A category U wiXX 

be caXXed un^vrgai for 7f if everj category from 0* 

can be fully embedded into U , A category U wiXX be 

caXXed couniveraaX for 7f if it can be fuiXy embedded 

into every category from 9^. A category U wiXX be 

caXXed a frtofrma.1 undergo,; category fog *& i? it ia 

universai for <T and eouniversaX for the system 7Ti 

of aXX categories universai for 0~ • 

Evidentiy if a category from W is universai for &, 

then it is a minimal universal category for- ZT • 
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b) Hew shew that a minimal universal category far the 

elaaa of all small categories does net exist. 

Definition: Let K' be a full eubeategory of a category K. 

le say that K' la aeparated in K if for every cue Kt<r
9 

4te Kr-t K,<r there ia HK (o,7Jlr) u HK(<*r7 &U0 . A ca

tegory K la connected if K la thexonly full subcatego

ry of K separated in K . 

Let JC be a class of email categories, let <p be a 

partial order for X. We define a category K » X X 

aa follows: 

The elaaa K*" ia the clajaa of all couplea rm, « < a* ,<**>>, 

where M, e JC , a, e JiT. T&r^may/*nif/rrPae K^rm^-<<^ ? 

A^>, i*i,2.,put HK (m%itsm,z) s{<mtf,<30,m^:l>'faceHjk (a,i7a,2)j 

whenever M^ - ̂  . i£ J*^ 4* Jk^ , pvX HK ("n,, /»* 1 » 

«{<'»iwf,0,^ > J whenever ̂ f f ̂  j and pwtHK(<mi,<rnz)=0 

In the other cases. The definition of composition of morph-

iams in K la evident. (It la defined ao that for every Jt e 

$,% the mapping ^ tM —* K with (a,)sp *<o,i<ti> for aeJkT, 

(<*,)<? *«£, sk ,> ,GC 7 <£ ,&>> for oc eM,™ ia a full 

embedding of Jk into K *) It p ** 0 9 we ahall write 

2E.3C instead tit £. X * 

theorem: there exists no minimal universal category for the 

elaaa of all email categories. 

F£ej£i Denote by V the elaaa of all email categories. No 

category universal for *V ia 8mall. Put V * 2. ty . I«et 

^ be a total order for the elaaa ^, W* £L *¥ * Evident

ly V and W both are unlvereal for <V. Every full eub

eategory of V whieh la not email ia not connected. Every 
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full subcategory of W which ia not small is connected, 

*) ilfiis.: Wo shall say that a category Ji may be fully sepa

rately embedded into a category K if there exists an 

isofunctor of Jt onto a full subcategory of K separa

ted in K . 

The following properties of the category V « S. *V 

may be verified: 

1) Every it 6 ^ can be separately fully embedded in* 

to V . 

2) If K ia a category auch that ever^ M. e *W can be 

embedded in K ? then V can be embedded in K * 

3.) If K ia a category such that every M, e V can be 

fully separately embedded in K 7 then V can be fully 

separately embedded in K • 

i i . prppgrtiea yf propertAgg* 

How we prove some propositions about some natural properti

es V . 

a) Lei Jk fre a small category, o,0 e H* i&Um&SbS^** 

L§± \/ fre, the toUftfiPK property: a gateflcffy f< haja V 

It frBfl QHJ-.Y tf I t contains. Jk aa a fu l l auboat»gQyy 

ajd 4,0 lg ft ftSBerafror of K . Wf gfrall pro,f * that V* 

x) We recall that CLQ i s a generator of a category A i f i t 

ia true that i f pc , i> c H^ (Jb*9 c ) f (U, & ^ f then the

re exiata an <t e H ^ f a , , ^ ) sueh that <*> ("> * *> ^ • 
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ie an.al.gamic» The following proposition ia true: If 

< £, X > la an amalgam, aa € 4°* m generator of 

every Jt e X ? then there exieta i ta f i l l i n g K 

such that ao i s a generator of K . 

We prove the proposition only for the ease that Of = 

»{A17AJ9A^£^{a^},^X<r *>{%},%*%. Let Jk be 

the sum of categories Jtn and ~&2 with the amalgamated 

eubcategory i , £ l l j . Let {-i,£ } -* {1,2}. Let Zf. be 

the following equivalence on H^ (o^ , a^ ) : 

(jm, Z± (u,' i f and only i f <JC • ^ a <*> * ^a ' for ei«-» 

ry oc 6 H ^ Co*,, a^ ) . 

How i t ie easy te see that i f (U, Z^ (U', then 

(a • e Z± (LL . 6 for every 6 e H% Ca^, a^ >; 

^ . ^ » <o / . ff for every 6* e HJ; Caj,4r\&* ai j 

6* - (<* Z^ & - (U,' for every ^ 6 H £ Ca4 , 0^ ) ; 

9 • (j, * G • (uu' for every ff e H% Cir7 a4 ),Jr4* <*% • 

Let now K be a category aueh that K*" * >Ji% u Jb2 , <**"i 

amd A 2 are fu l l subcategories of K and H^ f<â  i^j ^ s 

tffa^f x CH^ Ca^,<y>/ ) x fa,^, } . 

The definition of the composition in K i s evident* It ia 

em»y to aee that M, has the required properties* 

b) flow pr^yo ^^t to*, pyoptrty of frelfifi an a-category Af 

a. -amalgamlc ., The following proposition holds: 

Let iXy <K > be an & -amalgam* Then there exists i ta 

a - f i l l i n g K such that i f H i s an a -category, ^ * 

4- - ->H a i a-funetor such that $hL * ^'/^ to* 

every Jk,, Jt>' € X , then there exists exactly one 
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a -functor <f; K —y H such that gĵ  « ^ - y whera 

t^ : .Jt —> K i s the inclusion a -functor. 

( K wi l l then be called an .2-sum of a,-categories 

with amalgamated ^-subcategory I . ) 

We prove the proposition only for the case that X -» {^ir^k^j, 

IJfyl*- Ur-ia*,}, 1 ^ 1 ' - {^h^ + <*JL • 1^ » ^ / ^ « 0 

then put IK !*« f a , , a^ } ; 4t f , -4^ are fu l l ^-subcate

gories of K and HK fa*, , 0 4 ) - {*4*f, a^ f ; HK ^ *f >« fS^a^J* 

Then evidently K has the required properties* Consequent

ly we may suppose that \Z\r ^ 0 . Let M be the sua 

of categories \ Jk^\ and \A/X\ with the amalgamated subca

tegory U l , f 11] . Let {+,j>l- Hi 2-}**% recall that eve

ry (Us e H^ (0,4 , &,£ ) may be expressed as ^ » <rt>/3? 

where oc e H .̂ ^ , ^ ) ; / 3 e H ^ C A ^ i -** fi /*) and i f also 

^ = <*/. /&' , where *c'e H^ Ca^), (I'e Hj^C+ty ) , &'e \l\<r, 

then <oC;/3> R* <<*', /2'> , where R* i s the smallest 

equivalence on the s e t , U {H* «b4,A>) x, ŴL (&f a,*, )} 

containing the following relation R -• <<A*t fe > & <°t/? >3'> 

i f and only i f there exists * X € \Z \"* such that <*-» 

*<*,'. X in ^ , (Vm X • /i in Jk# , £113. Then, as 

i s easy to see, Jk, has a system of null morphisms. Let 

Gv be a free abelian group with co~ ^. as zero and 

H^ fa* $ fy)- {6^ a,, i i t s 8#t of generators* 

Let A be a category defined as follows: A\Ts \M,^\ru 14^1, 

14̂ 1 and \Jk%\ are to be fu l l subcategories of Jv9 put 

^\C^i^)m{Qz}9<(ti^<a^ j , i f ^ , ^ c ^ , s e t ^ u , a < ^ . 

^ , a^ >, V » <a^ , >>, a^ > and put pi -*- v -= ^ -«- ^ ; 
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consequently i f /m, € H^ (a4 .>#>/), then m, - ^ +•••+ 

+ (£4 where ^ f , . . . , <a^ € Hj Co^ , o^. ) • now put 

G'-tfrv *(griijUy4>...-f-er*(a^ for every 6 € H ^ 6**,-H)> 

d'./m.s &*(U,1+*~+&'(a,A for every #€ H^4 ^ a^ ),-£-£ Ml*"; 

m-ff* (Aj&+—+(x7it>& for every r « H ^ Co^ , a^ ) • 

m.d'«(C^f*6+---j-(t4fc.a' for every 6"e H^faj ,&),&-€ Ul*; 

and i f /*, e Hflf(frj7a>4)> /rt* T^ + ••• + T ^ , put /TO.*/n* 

« Z 2 ("a. • >L > /n. - /m, * X S ^, • ^ • 

fhe composition in M, i s associative because the composi

tion in >*fe i s associative. Moreover, i f /m,, m, e HjL(a>4, 

c^)?6fe Hj^(^f<^4)ftf€HA(a^7c)f then &< (<m, + rrv) t? * 

» C. r^rv • if + &• m, . *e> . 

Now l e t T4 be the following relation on H^ fo^ , o^ ) ; 

/TO, T̂  <7t i f and only i f either 

/m, « CoC,, •*• -Xr4 ) - fi> f where oo f, ot^ H ^ co^ , Jr ) 7 & e 

e U l r , /3« H ^ r > , a ^ > , / n . » o c ^ ^ c ^ , or 

/m, * oc • (/ii + f&i ) f where oc e H^. (a,4,&), <£re Ul' 
> 

fii f fii e Hh} (&t*&) *** *rv * <*-A + <*>'Ai 

/'Evidently, i f <m> T4, m, f then 

I e^-iti/ T4 &< m, for every <Te H$v(a4,<^l)7 

i*)J &*sm » r * m, for every GfeH^f***-*),-*'*^ \ 

\ m.eT± m. . & for every ? e H 4 , ( 0 ^ , 0 9 ) ; 

\marf0'** m, . o for every €e H^(a^1^),Mt^a^. 

Let S^ *b# the following relation on H ^ Ca^ f a^ ) ; 

fM, S4 m, i f sad only i f rm, * ^ + £ y m, * f, + %'t where 

f, e HA (<x,4 , e # ) , <& TS «,' • 
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.evidently (*0 remains true if we replace TJ by $% • 

Let S f be the smallest equivalence on H ^ Ca.; f &£ ) 

which contains 5; . Then Si is a congruence on the 

group Hj^Ccbi, &}), *ad (*) remains true on replacing 

T ; fcgr s * . 

Let now K be a category such that Kf« •£i/r* ? I f̂ef / and 

Ixfê l are fu l l subcategories of K and HK (ct^ 7 o^ ) -=• 

Using <*) with "Q replaced by S* , the definition 

of the composition in K la evident* How i t i s also easy 

to define ttk, &-category K auch that IK\ m K , and 

^17 ^% a r e <*> -subcategories of K m Let now H be 

an a -category, ty : A , —> H , ^ : ^ —> H be # -

functor such that % /* « ^ A . Then there exists ex

actly one functor ^? ; £Z —> H such trat -# « V*?1* 

S i - \ ' Y , *h«p* %,' '***, \-*%>, £ : '-% t - * %> w e 

inclusion functors* Let if: Jh, —¥ H be a functor such 

that v y ^ | « cff - ^ / ^ \ ** % a n d t h a t i r /?n-<£ ^(04,62,), 

/m'~ (&i+ •••+ fa , then J/wv )ijr * Crt«>f >Y + >•• + (p*'>Y * 

It /m* S* m> t9 then evidently (/m,)yr **(*v)iy . Conse

quently there exists an a, -functor <̂  ? K —* H such 

that % * V S r , 9 i * « f c - 9 ' , w h e r « S ; A ~ * K > 
(̂ ; Jz^ — f K are inclusion functors. The unicity of cp 

is evident. 

c) tejt V; (oj* \4 ) fre thft ft-U^iM PTWffrty Pf' ^ -cate

gories : 

fin 0,-c^t^oCT K Hit V, <££ ^ > iff flnfl onj.y tf 

H K ^ 9 ^ ) la a torsion group (#r a f jlfifrte, ffQfflt rgf~ 
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PgrtiVgll? tW ifgfl <&, ̂  e iK\"~. Then it i« o,-a-

malgamie. 

If (X,Xy ia an 0/-amalgam with Vi (OP ̂  respectively), 

then the -t-ftum K of <Z-categoriea from X with amalgama

ted ^-subcategory Z has V1 (OP I
7, ); this follows imme

diately from the construction of X (ef Appendix, 11 b). 

d) £ e i X frtt m a,zs&l&Esa&t <**> e \H\r frg i\t mmv*-. 
\Wt 1*\ V frg tfag t9ll<y*im property 9f ^-ca^efiprlggs 

Ifi azSSl££9xy. K &§£ V it and 9ftly fcf it g9ntaj.es ^ s§ 

ft fyfrl &-gffifr9*tegory aueft that ^ t t ft ftgngrator of /<. 

Then V jjL .x-amalgamic. We prove only that i f £ i s a 

fu l l a-aubcategory of £,-categories ^Af , «&̂  aueh that 

la a. generator of both ^ ? - ^ ? then there exists an 

Ci - f i l l i n g A of the a-amalgam <£,{<k>i ;<&2?> eueh 

that <X0 i s a generator of Jk> • 

Let A bean a--aum of A f and ^ with amalgamated &-

aubcategory , / , Let {i,j>l *• f'/, £ ?. Let Z* be the f o l l o 

wing relation o n h ^ ^ , ^ ) . («, Z± pu' i f and only i f 

at * ru< as <&> •(<*/ for every <3C e H^ (Q,0 7 a^ ) „ Then i t la 

easy to see that Z± la a congruence on the group 

Ik (*€ > a i ' > IBSd t n a * i f (to %i (u.' , then 

(U, • 6" Zi (A/ ' S tot every S0 B H^ Ca^ ,<&/); 

(A,.6 **> (LL ' ff for every 6*€ H^Ca^,^^*^* 

&»(u>Z.i & * ro/ for every # € H^ (#4 , ^ ) / 

^•(tc * IT • ^a/ for every ^ 6 H^60*.,a*- ) , ^ ^ ^* • 

Of course put H^Ca^ , a^ ) s <a^ J x CHAC^4,^/ W ^ j ) t a « 

root i s evident* 
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Evidently, i f H^ (c , ci ) la a torsion group (or 

m f in i te group) for every c , d € JJt£ \, iv* 1,1, then 

H^ ( c7 d ) 18 too for every t, d e IJvl^ . 

e) Lfti J t bg a,n a-category, Wf fffCfUtf U t HbaS A 

ca,n. fre f niiy a -fafrefflefl in%9 aa •<Mii1f^f girtf S O T 

K - We shall sketch thia construction to ahow that 

^hf *nciujiop func-froy faa,s gfVfgfj, reg\rtrf4 propggUff« 

Every a e \ K\r is a finite collection of elements 

of IA,lr.Xf ^ - i a i > * » ^ . , . # , / n , J , ^ * f ^ ; / « V - - ^ ' € , K , r ' 

then HK C a , ^ ) i s the set of a l l oi, - <a>,{<*^ 5 -t - V " 

•• • > <*>,£ - V->™}>&where e c ^ e H^ (Tâ  , ^ ) . The 

triple <a.9{t&t9j i*,?}^) *m ** denoted simply 

^ {<**,* S *> ^ J * • If <* =- f c c ^ J ^ , ^ J* > 
/S * { / * * , * ) i , ^ j * e HK Co., . * ) ; then ox + /& -

***<,* M , * * W 1*. If «c- fee*,* > <S;£ j * * «K '*>*>> 

fi*iflltf}*><&i*eHKCJbic),U»n *-fl-{ f*%j.-fas *,*}*• 

It i s easy to see that *& can be ful ly a-embedded into 

K and K i s additive; and also that If for any c , d € 

€ \M*\* the group H^ (c7 d ) i s a torsion group (or % 

f in i te group respectively) then for every a, Jtr e IK I** 

the group HK (a ,Jlr) ia also such* 

Now prove that i f c i s a generator of Jt, then {c ? i s 

a generator of K . Let a, & e \K\r, at, fie HK (a,&), 

*+/l,*>*{<Xiii,}+,f!*ffl*{fltj.iiff'}*. Then there exist 

% , 3>0 such that ^» , ̂  # /S* , ^ - Hence there t ex i s t s 

a (u, e Hfrte, a ^ > such that (a •*>^,/# ^(OL -fi^^ . 

Take <p * f f t • -i J*, ft sH^fe , o~ ) such that ft • ^ , 
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Pi " ^o, <t,t for * ft ie f where CJ denotes the null 

aorphiaau Then p - <*, + p . /S . 
t } ffwr «•<"« that th, rnrrm-tv of being » J-zsMtsssa 

-*
not A

 --nliramlr,
 T
r~ ̂ * , , A . be -#-eatego-

riea from the following diagram* (identltiea are not 

indicated): 

all diagrama are commutati-e and 

^•{i^Urttt, j
 u
 5 ufcc,oc',^ , .^,»-,J, 

«4-{i*»tS&,J o % u { ^ , ̂  , ̂  , ̂  J , 

-Є: 

It is easy to see that Z is 

a full <& -subcategory of 

both xfef and - ^ . Let ̂  be 

m & -category such that Jkf 

and A ^ are both full ^--sub

categories of J& • 

Then necessarily oc/ot
/€ .%, , 

p * ^ ? p'.pS € Ijk, and 

CC " p • (CO a: OC . p ' /CO • 

But then necessarily there ex

ists an isomorphism 6"e 

e H^ (a,, a,' ) . But 1 is a 
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„MUtWW""^ ski'"""''!*! 
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full Jlr-subcategory of *-fe, so that &e H£ (a>9 a,' ) ; 

this is a contradiction, because Hg (cu, a') «• 0 . 

g) Now yg p m e thtft *hg property vv pf frgiBff m ^rejOmdc 

ding onto a good ir-subcategory ia categorial and mono-

tonjcaUy alfliUfg* 

First prove that W i s categorial. It la sufficient to 

prove that i f K i s a good -ir-subcategory of R, R • 

good -Ir-subcategory of S 7 then K ia a good ^ - s u b 

category of S . Let (CL e IS l'm', {& € I K I*" . Since * 

IKI^c I R K ; there exists JTe f| , t e ls such 

that tT € I R K and (u, * ft. t . But then T* =• 

» ^ e \K\r and consequently t e IR . Thus there 

exist G e PR , p e JR »UCh that 5* e I K I r 

and L - a* • 50 5 then ^ * far- ff ) -jo . The proof 

i s analoguous in the case that <tZT c I K I ** . 

Now prove that W i s monotonically additive* Lot 

i^cc) o^G T}, {<$&) cc € T} be monotone systems of 

small ^ - c a t e g o r i e s such that, for every ot € T9 A ^ la 

a good ^--subcategory of i j , I t shall prove that then 

the Mr -category S * <£JT ^ ia a good Jtr -aubcatego-

ry of B> "OCVT **&> ' L e t (^ e ! B ' "* a n d l e t 

(<?€ i s r . Choose oc e T such that 

ra, e I ^ r v , (5? e 1/^ I** . Evidently there then ex

i s t s T f e F ^ c r ^ , L € . ] ^ . c I B such that 

h) tejt V frg thg Property of frglBft ft *Q9fl & -m%%M*$* 

Lai w i?e thg pmgrty tf frglM t & -gafrgflflam wrtg g 
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ffgy irgf g that V &sL.&-m$rR*®lQ wtft rtgpgrt te 
W • The following proposition holds: Let < 29 Xy 

be a ^-amalgam auch that i is a good ^-sub

category of every At e X. Then there exists its 

Ar -filling K such that every At e X is a 

good 4r -subcategory of K ; and that if H is a 

4r -eategory and gj^ t M ~> H are -#* -functors 

with *&/£-* ^'/^ for every J&, At e X , thea 

there exists exactly one -&- -functor y>: K —* H 

with c ^ • t^ - 9? , where L ^ t At —+ K is the 

inclusion ^r -functor. 

Ws prove the proposition only for the case that 

% m {M/n , At^ } * 

" Sct ^ - 8^1 U- Jb*' ^ - ^ 2 • *** * * 
a sum of the categories 1-4,1 and I At I with the amal-

gamated subcategory U i f £ 11] „ Put P* * f*c ./3 ; 

oc e P^ .j 5c? e 1/ l*j /3 i s an isomorphism of A | , l £ * 

*{fi *<x,'} cC€l^7<x,€llf} /J i s an isomorphism of A } 

p r t P . p ^ p / u P ^ P / , r - i,u if u i± u 1 * . 

Then evidently P c ^ ^ , I c At/* . 

2) $©w prove that i f (U, f %> e> P, ^ * P i s defi-

aed ia ^ f then (Ot > \> e P * 

I*t < ^ , ^ 1 * { < / , 2 J , If < * * , » € ^ u $ * , thea 

evidently (to * %> e P . 

Coaeequeatly le t ^ € f* u i$*, » € 1 u 1 * I -^ 
<u, € f* f v •» «t*$, occ fj ; So € 1/1*% /3 i 8 

aa iaomorphiam of Jv; thea tom^Z B l \ l*V* \4t^ l*~ ? 
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thus <?c € r| and therefore (tt* * oc c P. and then 

(to* v>€ P. Let {Cc e fj , V € fj . Then tF e / i / ^ . 

Since 2 i s a good .-#- -subcategory of Jz^ , there ex

i s t s a x, c IJ and an isomorphism 9> of -fê i such 

that *P -= t r . y . But then (u, • t? £ rj and there

fore pc - -p ** ((to .-&)•</> e P . Let (CL* R*- % , 

(tc s <K, ' fh ? where c x e r] , 5? e l i | ^ ft ie 

an isomorphism of M, > and let i>€ P^ u £* ? >>-= y'«cf'7 

where X € ^ a n d ^ *8 mn isomorphism of A ( <f may 

be also identity of course)• Then /&€ \£\<r, ft* \^\r
t 

consequently /i i s an isomorphism of M,j. and there

fore ft • y e Pj. . Since i i s a good ^-subcatego

ry of A,^ 9 there exists m v e p£ and an isomorph

ism cf of -&£. sueh that ft . y ** *v * cf . But thea 

cC • "C c % and Cf • cT i s an isomorphism of ^ ; 

thus (u, • y> ** ai, • ft * y • ̂ ^ f<x • f ) - f y * <**") £ P -

3) Similarly one may prove that i f (U,, *P e 1 and/c^-P 

i s defined, then (j^ • y> € 1 * 

4) Now we prove that i f (U € •.V"1', then there exist ote 

e P , ft e I such that ^a, *ac • ft . i f moreover 

<w* € l - V ^ «r ruT g l-fc^l"", then 5£ * /Jb^ r 

f/rt » 4, 2 ) . t h i s i s evident whenever (U. e iJe^ I"*' . 

How le t {i,j>} -= {1,21, (U c A** such that ^ e 

€ Î Cfc 1% <£? e 1% I**. Then there e:pist cf € \Jk>i I"*, 

Y € \M^ \"+ with (uu « cf^ Y • Th«» ^ -« *£ - <y , 

V * ^ • t y where fl^ fi /J , iy € 1̂  , ^ 6 f j , c r c L£ , 

and thus there exist St e PL , c € 1̂  with tr L ** L • 

. irry . How put <& ** *Kf • err, ft - L • L^ . Evidently 
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*, e P, fi> € 1 9 (jLvcL.fr and 5? e UP* • 

5) Let {i,?}~{'1, 1]. Ve r e c a l l f [ l l ] f that i f (U. e 

e ^ , &£ l W , j a f c l J ^ t h c n ^ -* <* ./« f where 

oC € 1 ^ r , fa 6 / ^ P . If alao (UL m oc' . / 3 ' with *,'e 

e \Jh4 r* /3'€ 14^ I"*, then <OL 7 fa > R* <<*/, /T> , where 

R* la the emaileat equivalence on the set 

eyi-ir * H** ^ *)* ***}(**<&')} which contains the 

following relation R * <<x,,fa> R <<*', /3'> if and 

only i f there exists a p e Ml** with cc >p - oc' , 

' a • fa* m fa . 

6) Now le t <oc 7 fa > R < oc', / S ' > . Choose ^ 6 rj , 

\ c * \>%e?z> Lneli 8UCh t h a t ^ " ^ * ^ ' ^ ' 
. t s- /J . Then choose ^ ; / a € Pt , t^ ^ € 1^ euch that 

*&,/» ' ^ - «sc • ̂  • Analogously choose JQ, 9 L^, , *fr, 

Now prove that there exlsta an ieomorphism r of i auch 

that * & / * ^ • r - ^ • ^ , r-* t ^ * ^ - ^ , • LA • 

Since <oc , /3> R <<*', fi>' > there exlate a p c U \"* 

with <*, • £> * oc', A m P • A' • Chooaa ^ e £ r e l t 

with ftp . t » jo . Choose *r * 5 > Loo,f> * I^ with 

^ c , p ' ^ , f - ^t • ^ • T h 6 n *£' * fe' - < * ' - < * • / > « 

• ^ r . t .^T - t ^ - f ^ ' J C ^ f ^ * . • ^ > con«oquently there 

exist • an iaomorphiam 9> of J ^ a^ch that J£ , ^ . c f « 

*«£/> He* uf m *' u*c* • S i f t C € ^ € M^iiF* W, 9> » 

an isomorphism of X . Now choose <^p,/3' € ?> ^ ^ £ 1^ 

auch that ^ • ^ - ij, • ^ , , then (jrf . Jrf^. 



,(Lt,r' V ) s s V t'p''k'Lrmf>-fi'-fi-*k- L
A ,«that 

there exist a an isomorphism yr of -hj. auch that fK. • y -* 

• -S,f • 9 • CI'./*' • L«;/»' ) -*,,?'9'**c -fy- %,?' 

fc-p^'-fc^-t-^;S-V^-y-W*V-VVV'W- V • 

out all the considered morphisms are morphiams of >fê  and 

L . is a monomorphism of JIJ ,' then L • <o • Jr*,» ̂  • c • 

• * • W • c<»-««.<-«t-y %.• s»-^) v - %/ %„ • r- % a^' 
All the considered morphisms are elements of / £ J"m' and 

therefore there exists an isomorphism T of A such that 

V r - V 9 ' ^ ' ' r " u - y v ' ^ ' - ^ ' • Butth« . 
evidently ^ . ̂  . -r = jg. . %f) . 9 . ^ . ̂  . ̂  , 

7) How it ia easy to aee that if <<*,/3 > K* <<*', ft>'*>> 

^'Iv'i'V-^--.*^'-^V^*5 ,'»th*0 there exl,ts " 1 -

aomorphiam "C of Z auch that 5^ - ̂  • f - ;7.r,. ^ , 3 , > 

^, . t s f ^ * 6 * Consequently i f t , L*€ IffTjSr'e P 

Jr*e \Jt\r
f5f< e \l\r and JT. L 7 JT' • c' are defined and 

equal, then there exist a an isomorphism T of ^ such 

that $r . v * Jr' f <z . i,' ** L > 
8) Let now ^a, g A ^ , ,xt *jr*L*:fr'. L' , where Jr;f ^r'c P, 

\ 
We shall prove that 
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(* ) there exiete an isomorphism r of 4 euoh that 

St * ^ m Jr', T • L' m L • 

Let <* 94>1 * 41 i 1} . Let po € / - f e ^ / ^ -

Then there exiet isomorphisms Cf, cf' ef Jv euoh that 

?T*p.<f, L*cf16-,?r'*p'-Cf'9 L'*cf'm*. G', where p9p'e ?+ , 

G, e>*e I4 . Thus there exiete an ieomorphien r ef 4t+ 

such that £> • T -» jo', l:**?'* &, ftnd then ST* (cf*. v . 

. cf') m ar'i (<f'i • <v ' cf') L' » L . 

New le t (U, e Jv^, jtl e \M%\*', (£e IM,^. If rfe Ul**, 

jft e U / r , then (*0 ia proved in 7K fhe following 

four eaeee are possible: (T?6 l-fe^ 1% J?' e l-fe ,̂ l r ) or 

(5r>6 |fe*l r S * € I-te^ l r ) or tfr*€ / fe^r , 5 * € Ik* I* > 

or f inal ly Or*elAjl*', jf*' e \Jk,4 \* ) . Only the 

f i r s t wi l l he considered, the remaining are analogous. 

I f SF*ef l-fe^K, &*' € / ^ l r , t h e n <rr, trr'€ P+ and the* 

re exiet ieomorphieme Cff Cf' of Jt^ and 6% &'e I* 

such that L - cf . 6*, L' = cf'. &' . Bat then -*r- <£ € 

€lZlr, 3T'»cf'e I Zla and there exiete an isomorphism <z? 

ef ^ with sr .cf . -v sz jr'. g>'9 <e.cr'~ 6*, and then 

trr. (cf.t? -cy-i) * TT', (<y>.?r-cf'-*)-L'= c . 

9) Now we must prof e that ef ery vr G P i s an epimorph-

iem of #i/1 e f ery Lei i s • monomorphism ef A. . It 

ia sufficient to profe thia far zr e f$ u f^, L€ I,, u 1^ 

only. U% H9j1-{1t2.t9 *rc Pi9 ^ » * A"*1-, *r • 

. ^ -» JT- V . Then efidently ^ m 1J* . It fit e 

Q I4t4 l
r , than ^ • >> . Let ^ e 1 ^ 1 ^ . Since 

euoh that /tc « ^ t ^ , > > « ^ . Lp and J ^ < U l r , 
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rt$ e \ll(r . Siaca (ST. ̂  ; • L^» (&.%). L^ , thara 

exiete an isomorphism if of £ with sr. JT^ . *r « ^r*^, 

T . L^ » 6^ * But ̂r is an epimorphiam of -&*•, aa 

that 7r^ . tr .=• Jr^ and comaequently ^ » ̂ T^, • L ^ m 

s ^ • ̂ * K» - ̂ » * K> * ̂  • ** <* c ** , t h « n 6 ia a 

monomorphiam af A . a i may he proved analogously. 

10) Row prove that P n I is the set of all iaomorph-

iama af M,. Let & be an isomorphism of -ft* •, we shall 

prove that & e P ri 1 . This is evident whenever 

er€MCyKj Jk™. Let t * , ^ * - ^ , * } , ^ * ^ , a*« ^ T -

Then evidently & * 7r • L , where ^T € iP , c e fy • 

I t may be then ahown that t • cr*-. jr"*, 6'*fr~ L~* 

l a > v ; consequently 6T e P n 1 . Conversely l e t 

€T e P n 1 9 we sha l l prove that S la an isomorphism 

af A . Thia ia evident ifffe(P^uPz)n C L - u 1 2 ) 

Let < , ^ £ ( 1 t M ; r e P/* r> if . Then 

6 * oL.fi = fi'. oc' , where ot€ ^ , 5?€ {£,{*, oc'e If , 

o? e (-€ /** and fi7 fi' are ieomorphiama of ^ * Thua 

c?c • f ** <&>'? where p - ft> • (/b')"i . I t ia eaay t o see 

that |>" e I Xl^j p*z? tT =tc e A,* . Consequently $> 

la an isomorphism of -&.£ and therefore oc • p e f% n Ig. * 

Consequently G la an isomorphism of ^ • 

The proof af I I g) ia complete, and [ A , P , I 3 has 

the required proper t ies . 

i ) ffyw prove ttort t t e property of frtin* » ^ -srtcfiory ig 
4 

OJC Jit -small character. Evidently if {<£% • cC e Tj ia 

a monotone system of small A* -categories, then 

B - ^ r <kc ia a & -category. 
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Conversely, Xet there he given a Jtr -eategoty B . fhea 

l & U U e^ , where { e^ *, ot eT} ia a monotone 

system of small categories. Let cc e T and Xet there 

he already constructed • moaotone ayetem { 4^ ; ft € T, 

fh < co i of small <tr -categories auch that every 

Arh ia a f uXX &> -auboategory of 0 and cA c i ̂  | . 

fa ahaXX conatruct ^ . Denote by 3J the emalXest e l e 

ment of the claaa { T& T> t*v U_ \J% \* c c* } ; for 

every (u, e cT' choose aoae a ^ € /Bl0"" aueh that 

there exist sr e P& , c € I a auch that ^ - Jr • L , 

J? * CL^ . Chooae % & T, # £ % , such that 

a, e 1* for every ^ e c t^ . For every (to e 
{** fi ( To 
6 C-T' choose eome a*, € \&\or aueh that there 

exist .rre f* f c, € Ift with (u, - ?r • L , W** o ^ . Choose 

*£ e T , a; « a; with <v € c& f ^ eirer* 
â, € <£+ f and ao on. Let - ^ be a fuXX Jr -aubeate-

,л gory of B auch that I ̂  J ~ L/, <V • 

III. Universal category for categories with a structure. 

I t ie easy to see that the Idea of the metatheorem and 

i t s proof ia the same for a* -categories and for^r -ca

tegories. How we shall apply i t to obtaia a corresponding 

metatheorem for categoriea with a structure, 

for the definition of categoriea with a structure the 

ideas given in L2] are used. 

X* l a the Beraayw-Oodel set-theory oae may &©t form the 
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category of all categories (not necessarily small) and 

aXX their functors, nor the category of aXX classes and 

aXX their mappings* 

Thus we shall suppose that there exists a strongly inacces

sible cardinal H r , i.e. an uncountable regular cardinal 

such that if &K < H r , then 1 ** < HT ; and let 

% be a set such that 

1) tcuocL fyi s tl^ ; 

2) i f a set A i s an element of °U f then eased, A < HT j 

3) i f tojul A < H ^ then A e <U <—» A c <U *h 

Every category K such tHat K* u K"* c *2£ and that 

for every *,} fr e K * there i s HK (a. 7 Jr) e <U will, 

be called a *U -category. 

A <06 -category K wi l l be called small i f K^G *U -

2. Denote by M the category of a l l sets A c <%l and 

a l l their mappings. Denote by £ the category of a l l 

<lt -categories ©nd a l l their functors. Denote by *€:£-* 

-I-?JtI— t&e forgetful functor, i . e . the functor which to e-

x) As i s well-known, the existence of a strongly inaccessib

le cardinal i s not provable from the axioms of the Bernays-

Godel set-theory. But i± we suppose i t , then a set €6 with 

properties l ) to 3) may be easi ly constructed. 

In £43 the ordered couple < x l y > i s defined to be <x,/y*>° 

*{*){*, tyl ) , where <x, «&} denotes the set consis

ting of # and <&. Thus i f *U sa t i s f ies 1) to 3) then A, 

B 6 *U implies A x h € *W . 
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very %L -category K assigns the set K"* of a l l i t s 

nor phi sins. 

3 . Let S be • category, let if - S ~* M be a fun

ctor with the following properties: 

oc) if i s faithful , i . e . i f oc, /S € if1', ST- /T, ^ - /^, 

(<x*))f =(p>)^ , then < T C « / 3 ; 

/S) i f oc e H$ (4> f A' ) i s an isomorphism of S , 

/S>0 e $°", C * ) ^ - - ^ ) ^ , then in S there exists 

exactly one isomorphism (I such that /3 « A> 

and C* ) tf - r/i) if j 

y) i f rm, e IMT n 16 , then a l l /& e S ^ such 

that 6* ) tf .* an, form a set the power of which i s 

less than H T • 

The objects of S> wi l l be called structures, S wi l l be 

called a, category of structures. 

4. Definition? Let ^ , <V e S * \ We shall say that V 

i s a substructure of A> i f: 

a) 0 ' ) t f c (A>)*f ; 

b) there exists an t 6 H $ U ' ; /&) such that 

(c)tf ; (/*')$-* (/*)& is the inclusion mapping; 

c) i f fi>"e S% p 6 H $ CV', ^ ) are sueh that 

(tfMcfo'tf and (p)^: (*")if—>(/>)& i s the 

inclusion mapping, then there exists exactly one 

ote Hs (A,*, /$' ) aueb that p' » oc • t and that 

G*)i/ ; f/b* ) ̂  — > (/*' ) if is the inclusion map

ping. 

It is easy to see that L from the definition is unique. 

It will be called an inclusion morphism (of A>' into A> in 

S ). It is easy to see that if A>', A " are both sub-
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atructures ©f A> and (*')\f* C^ytf, then • * ' « / * " ; 

and that i f A>" i s a 8Ubstructure of A ' and >*' i i « sub

structure of /b , then A " i s a substructure of ^ * 

5. Let £4 be a fixed subcategory of £ x S auch that: 

a) the objects of <£* are some <Jz,7A> , where - f e e 

6 £*, A € S°l (<h) *€** CA ) t/ ; the morphisms of C* 

are some < y>, f > where cf e £"" 9 f e &"*" 7 

C<?)*€ «• C*)bP ; 

b) i f < c/ ; - O e d ^ a n d y is an iaomorphisa of 

C , * ia an isomorphism of $ , then<c/* f ' > e C™* 

The objects of C* wi l l be called A -categories, morphisms 

of C^ wi l l be called A -functors. If KtVit , / t>> i s an 

A -category, put I K I « .4 and cal l i t the underlying ca

tegory of K . Xf $ « < ^ , f > i s an A -functor, put 

1$ J » cf and cal l i t the underlying functor of $ • If 

$ » <<? , -f > 19 mn A -functor such that Cf i s an inclu

sion functor, -F i s an inclusion morphism in S , ca l l $ 

an inclusion /b -functor; moreover i f cy i s f u l l , ca l l $ 

a fu l l Inclusion A -functor. If K ' , K are A> -categ©-. 

r lea, wa ahall say that K' i s a (ful l) aub-/& -category of 

K whenever there exists an (ful l ) inclusion A> -functor 

from K' to K • 

If K la an A -category, we shall say that K i s small 

whenever IK I la amall <%l -category ( i . e . IK P" m <%t ) # 

Every isomorphism of C* wi l l be called an A -iabfunctor 

onto. I f $ ia an A» -functor, cf * $ ' . t , where §' 
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i s an A -isofunctor onto, c i s an (full) inclusion A -

functor, then $ wil l be called an (full) A> -embedding or 

an A -isofunctor into (onto a fu l l sub - A> -category)* 

6* Let {<\, ; oc e T ] be a system of small A -catego

r i e s , T i s an Q̂  -ordered se t , T c °U and i f at <• oc' 

then Jk/^ i s a fu l l sub - A -category of ^ ^ * Then we shall 

say that {^c ', <*> e T } i s a monotone system of small A -

categories* If there exists exactly one »h> e £% such 

that \A,\ * , - V T l **{ **** t h a t e v e r y Ac i s a f u U 

sub- A -category of Jt-, then we shall say that - C ^ -, at € TJ 

i s summable and ^ i s i t s union, and denote by M, - LJ -fe* 

Let 4 - ^ ? oc € T} 7 { . ^ j oc € T J be monotone systems 

of small /S>-categories* Let #0.-.* ^ ^ —* ^%Q be an 

/fc> -embedding for every oc e T such that $«* • L* « 

r S , * ' • !>*/ for every <*, <: oc' , where by ^ t * ' J 

M^ —y M^t 7 L^ : Jt^ —> Jk,^, are denoted the inclu

sion- A -functors* Then we shall say that {<boc y <& & T } i s 

• monotone system of A -embeddings* Let Jt or Jt be an u-

nion of {-k^ ) <*> e T } or {M,^ 5 at e T} respec

tively* If there exists exactly one A -embedding § : Jz -* 

~* Jt, such that L^ $ * <ĵ  * L^ for every oc e T 7 

where /fcL; : M. —y ̂ fe, ^ t , ,• ^ —* ^ •*• inclusion 

/£ -functors, then we shall say that {§<*, *> ot e T } i s 

summable and that $ Is i t s union, and denote i t by tf =• 

9 V §cC * 
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7. Let W be a property of A -embedding*. 

We shall say that W ^a eatagorial if: 

a) every A> -isofunctor onto has IV ; 

b) if $ and <£>' have W and $ • $>' is defined then it 

also has W • 

We shall say that W is full if it has the following 

property: 

if $> is an A> -isofunctor onto, t a full Inclusion A> -

functor with W , both from the same small A> -category, 

both to small A> -categories, then there exists an A> -iso

functor §' onto and a full inclusion 4> -functor t/ with 

VJ such that $ L' - L $ ' . We shall say that W is mo-

notonlcall.y additive if every monotone system f $.* 5 cc € T\ 

of A) -embeddinga with W such that { $«, ; aC € T J , 

{ <$<* 5 oc € T J are summable, has a union with W • 

8. We shall say that < >£ 7JC > is an ^ -aemlamalgaai if X 

is a set of small A> -categories, exvod X -< B^- and <£ 

is a full sub- A> -category of every Jt e X . If more

over \M,\cr rs lA,'!*- Ul*0 whenever Jk,, AS e X, 

Jk, 4* M,' , then we shall say that K Jt 7 X > is an /b -

amalgam. 

The definition of an A> -unglueing of an A> -aemiaanalgam, 

and of an A> -filling of an A> -amalgam is evident. 

9. Let W be a property of ^ -embeddings, V a property 

of h -categories. 

We shall say that V is 4> -amalgamlc with respect to W 

if every A> -amalgam ( X r X > such that ..^ has V , 

that every A e X has V and that ,f or every A , € X tha 
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inclusion ^-functor t£ t Z —* M, haa Wf has an 

^ -filling K with V such that for every A e X the 

inclusion A -functor t£ * A —» K haa IV * 

We shall say that 1/ i&JSL A -small W -character if it 

has the following property: 

a) if i A * ; a e T} ie « monotone system of small A> -

categories with V such that the inclusion A -func

tor t*' s J^ —> <\, has W for every <c < cc ', 

then its union exists and haa V $ 

b) if an .4) -category K haa V, then K - U Jk , whe-
oC€T *£ ' 

r* *t^c > °c. ̂  T J ia a monotone system of small 

A -categories with V such that for every cc < oc 

the inclusion •$ -functor £ / ^ —• x<^, has IV* 

Let 4 be a small /6 -category* We shall say that V is Ji -

A>-invariant if the following obtains: 
a) it has V} 
b) every >fr -category with V contains A as a f u l l 

sub- /fe -category} 

c) i f <h i s a small /k -category with V f <p i s an 1-

sofunctor of l-AA onto a category X identical on 

\H\ j then there exists a small A> -category A 

with V and an A> -isofunctor $ of A onto *& such 

that \M,\ * <l , 1$ I * s^ • 

10* %tf^|j^orei|Xojr ^-f^fff iff i tt* **et W be a property 

of A -embeddings, which i s categorial, fu l l and monotoni-

cally additive* Let Jt be a small /* -category* Let V be 

a property of A -categories, which i s A - /b -invariant, 

/*> -amalgamic with respect to W and i s of A> -small 
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IV -character . 

Then there exiata an A> - category U with V auch that %v%~ 

ry A> -category with V can be f u l l y A> -embedded i n U . 

This embedding haa W and i t s underlying functor ia i d e n t i 

cal on I.&I • 

The proof ia l e f t t o the reader. 
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