Commentationes Mathematicae Universitatis Caroline

Věra Trnková
 Universal categories

Commentationes Mathematicae Universitatis Carolinae, Vol. 7 (1966), No. 2, 143--206
Persistent URL: http://dml.cz/dmlcz/105052

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 7, 2 (1966)

UNIVERSAL GATEGORIES
Nera trikovi, Praha
鲳

In [9], A. Pultr defined universal categories as follows: a category K is called universal if every small category is isomorphic with a full subcategory of K. It is easy to see that such universal categories do exist. The problems solved in [9],[10], [12], concern further properties of universal categories, namely where from usual categories are universal.

The notion of aniversal category given above requires the existence of a full embedding for every amall category. Thus a universal category in this sense may be called universal for all amall categories. But it is natural to consider also other "systems" of categories, for example to consider a category such that every (not necessarily amall) category may be fully embedded in it. ${ }^{\text {x }}$)

In the present paper some metatheorems are given, from which there follow these results: There exists a category in which every category may be fully embedded.

There exista a category with a singleton in which every category with a singleton may be fully embedded.

[^0]There exists an additive category in wich every additive category may be fully additively embedded.

There exiats a concrete category in which every conerete category may be fully embedded.
There exists a good bisategory ${ }^{\text {x }}$) in which every good bicer tegory may be fully embedded by an isofunctor which preserves injections and projections.

The present paper is written in the set-theory with the Bernaye-Gödel axioms, [4]. Although the paper is not written formally (in some details even not quite precisely) these xiom are consistently respected.

I. Preliminaries.

411 needed definitions (category, functor and so on) are given in [7].

1. Motation: If K is a category, denote by K^{σ} the clasa of all its objects, by K^{n} the class of all its morphiame. If a, be K^{σ}, denote by $H_{K}(a, b)$ the set of all mom rphiam of K from a to b. If $\alpha \in H_{K}(a, b)$, put $\leftarrow=a$, $\vec{a}=b$. If $a, b, c \in K^{\sigma}, \alpha \in H_{K}(a, b), \beta \in H_{K}(b, c)$, then the composition of α and β will be denoted by α. β. If K is a category auch that K^{σ} is a set, then K will be called anall. We ohall use the aymbol $K^{\prime} \subset K$ to deno te that K^{\prime} is a ubcategory of K; and the symbol $K^{\prime} \mathcal{f}^{\prime} K$ to denote that K 1s a full aubeategory ${ }^{x}$) of K.
x) For the definition of a good bicategory see section V. 8 of the_present paper.
zx) We recall that a subategory K^{\prime} of K is called full if $H_{K \prime}(a, b)=H_{K}(a, b)$ for all $a, b \in K^{\prime o}$.

We shall say that a category K is one-point (or one-object) if the classes K^{σ}, K^{m} have exactly one element ($o x$ if K^{σ} has exactly one element).

Let K be a category. We recall that $a \in K^{\sigma}$ is called a singletion (or cosingleton) of K if, for every $b \in f^{\sigma}$, $H_{K}(b, a)\left(o r H_{K}(a, b)\right)$ contains exactly one element and $H_{K}(a, b) \neq \phi\left(\right.$ or $H_{K}(b, a) \neq \varnothing$ respectively). If Φ is a functor from a category K to H, we shall write $\Phi: K \rightarrow H$; if K, H are small then Φ is called amall. If $\Phi: K \rightarrow H, \Psi: H \rightarrow M$ arse functore, then the composition will be denoted by $\Phi \cdot \Psi$ or $\Phi \Psi$. If $\Phi: K \rightarrow H$ is a functor, $\alpha \in K^{\sigma} \cup K^{m}$, then we shall write $(\alpha) \Phi$ instead of the more usual $\Phi(\alpha)$.
All considered functors are covariant, unless otherwise expresisly atated.
4 onetomone functor of a category into a category will be called an isofunctor into or an embedding. An embedding onto a full subcategory will be called a full embedding. If K^{\prime} 1s a subcategory of K, then the inclusion functor $L: K^{\prime} \rightarrow K$. is defined by $(\alpha) \downarrow=\alpha$ for every $\alpha \in K^{\prime \sigma} \cup K^{\prime m}$. 2. Convention: If K is a category, $\alpha \in K^{m}$, then α is alwaye a triple, the first member of which is $\overleftarrow{\sigma}$, and the third member is \vec{a}. Thus if K_{1}, K_{2} are categories such that $K_{1}^{\sigma} \cap K_{2}^{\sigma}=\varnothing$, then also $K_{1}^{m} \cap K_{2}^{m}=\varnothing$.
3. Convention and notation: As noted before, the present per per is witten in the Bernaya-Gödel set-theory, [4]. Thue we distinguish between eete and clases and all axiomegiven in [4] are ssemed. A clace which is, not a set is uavaliy called a proper class. The axiom of choice for classes may be form
mulated follows: let X be a class, R an equivalence on X; then there exists a choice-class Y (i.e. $Y \subset X$; if $y, y^{\prime} \in Y$, $y R y^{\prime}$, then $y=y^{\prime}$; and for every $x \in X$ there exists a $y \in Y$ such that $x R y$). It is used often in this form; for example the existence of a skeleton of a category requires it. But, as shown in [4], this form is equivalent with the following one: every class X may be well ordered (by $<$) such that for every $a \in X$ the clase $\{b \in X ; b<a\}$ is a set (the proof requires: the axiom D of [4]). The last form will also be used often in the present paper ${ }^{x}$) and auch a well order will be called an O_{n}-order for X (also when X is a set). The properties V and W considered in the present paper are always supposed to be given by a normal formula, [4]. Let k, h be sets; then 〈h,h〉denotes the corresponding ordered couple. If k, h are classes, we shall use the aymbol $[k, h]$ for the ordered couple and it may be interpreted for example as $[k, h]=k \times\{0\} \cup h \times\{1\}$. If f is a mapping, we shall write $(x) f$ instead of more usual $f(x)$. Every reflexive and transitive (or also antisymmetric) relation will be called a quasi-order (or partial order, respectively).
4. Definitions: Let T be an O_{n}-ordered class (by $<$). A collection $\left\{k_{\alpha} ; \alpha \in T\right\}$ of small categories will be
x) Metatheorems of the present paper are proved without using the axiom of choice: The axiom of choice is needed for applications only.
called a monotone system of small categories if k_{α} is a full subcategory of $k_{\alpha^{\prime}}$ whenever $\alpha<\alpha^{\prime}$. A category k will be called the union of a monotone system $\{$ kga; $\alpha \in T\}$ of amall categories and denoted by $\bigcup_{\alpha \in T} k_{\alpha}$ if $k^{\sigma}=$ $=\bigcup_{\alpha \in T} k_{\alpha}^{\sigma}$ and every k_{α} is a full subcategory of k. $\mathbb{I}-$ vidently k is small if T is a set.
Let T be an O_{n}-ordered class (by $<$). Let
$\left\{h_{\alpha} ; \propto \in T\right\},\left\{h_{\alpha} ; \alpha \in T\right\}$ be monotone systems of small categories. Let $S_{\alpha}: h_{\alpha} \rightarrow h_{\alpha}$ be a functor such that for every $\alpha<\alpha^{\prime}$ there is $\mathscr{S}_{\alpha} \cdot h_{L_{\alpha}}^{\alpha^{\prime}}=h_{\alpha} h_{\alpha} \alpha^{\prime} . S_{\alpha^{\prime}}$, where $h_{\alpha}^{\alpha^{\prime}}: h_{\alpha} \rightarrow h_{\alpha^{\prime}}, k_{\alpha}^{L_{\alpha}^{\prime}}: k_{\alpha} \rightarrow k_{\alpha^{\prime}}$ are inclusion Punctors. Then $\left\{\mathscr{S}_{\alpha} ; \alpha \in T\right\}$ will be called a monotone system of small functors. A functor $\varphi: h \rightarrow h$, where $h=\bigcup_{\alpha \in T} h_{\alpha}, h=\bigcup_{\alpha \in T} k_{\alpha}$, will be called the union of $\left\{\varphi_{\alpha} ; \alpha \in T\right\}$ and denoted by $\varphi=\bigcup_{\alpha \in T} \mathscr{S}_{\alpha}$, if for every $\alpha \in T$ there is $h_{l_{\alpha}} \cdot \mathscr{Y}=\mathscr{L}_{\alpha} \cdot{ }_{h_{L_{\alpha}}}$, where ${ }_{l_{\alpha}}$: $h_{\alpha} \rightarrow h,{l_{\alpha}}_{\alpha}: k_{\alpha} \rightarrow k$ are inclusion functors.
5. Definitions: A couple $\langle\ell, \mathscr{X}\rangle$ will be called a semismalgam (of small categories) if \mathscr{K} is a non-empty set of small categories and ℓ is a full subcategory of each $k \in \mathscr{K}$.
A semiamalgam $\langle\ell, \mathscr{K}\rangle$ will be called an amalgam if $k_{1}^{\sigma} \cap k_{2}^{\sigma}=l^{\sigma}$ whenever $k_{1}, k_{2} \in \mathcal{K}, \quad k_{1} \neq k_{2}$. An amalgam $\langle\ell, \mathscr{K}\rangle$ will be called an unglueing of a semiamalgam $\left\langle\ell, K^{\prime}\right\rangle$ if there exists a one-to-one mapping f of the set K^{\prime} onto \mathscr{K} such that to each $h \in \mathscr{K}^{\prime}$ there exists an isofunctor of k onto $(k) f$, which is identical on $\boldsymbol{\ell}$.

Let $\langle\boldsymbol{\ell}, \mathscr{K}\rangle$ be an amalgam. Every mall category K such that every $k \in \mathscr{K}$ ts a full abcategory of K, will be called a billing of the malgam $\langle\mathscr{L}, \mathscr{K}\rangle$.
II. Categorial metatheoren

1. Metedefinition: Let V be a property of categories. We shall say that a semisalgan $\langle\boldsymbol{l}, \mathcal{K}\rangle$ has V if l has V and all h $\in \mathcal{K}$ havi V. We shall say that V ia emalgamic if every amalgam with V has a filling with V.

Examplea:

In [11] it is proved that every amaigam $\langle\ell, \mathcal{K}\rangle$ has a filling K such that $K^{\sigma}=\bigcup_{\xi} H^{\sigma}$.
a) The property V_{0} of being a category is amalganic.
b) Let \bar{h} be one-point category, $a \in \bar{h}^{\sigma}$. Clearly, the following property V_{1} (or V_{1}^{\prime} or $V_{1}^{\prime \prime}$) is amalger uic: to contain 高 as a full subcategory such that a is a aingleton (or coaingleton or null object, reapectively).
c) It is easy to see that the following property V_{2} is amaganic: ategory k has V_{2} iftand only if card $H_{k}(a, b) \leq 1$ for every $a, b \in k^{\sigma}$. (If $\langle\ell, \notin\rangle$ is an with V_{2}, K its filling, identify all morphism μ, ν such that $\overleftarrow{\mu}=\overleftarrow{\nu}, \vec{\mu}=\vec{\nu}$. d) Let H be a amall-category, let $\vec{S}, \overleftarrow{S}$ be two cliasses of cardinal numbers. Evidently the following property V_{3} is ameanic: a category k has V_{3} if and only if it containg 哀 a full aubcategory, and if a $\in \bar{h}^{\sigma}$, b $\in k^{\sigma}-$ kr $^{\sigma}$, then cand $H_{k}(a, b) \in \vec{S}$, cand $H_{f}(b, a) \in \overleftarrow{S}$.
e) Let \bar{K} be onemoint category. Clearly, the following property V_{4} is amalgamic: a category k has V_{4} if and only if it contains \bar{h} as a full subcategory and is conmected \mathbf{x}).
2. Metedefinitien: Let V be a property of categories. We shall say that V han anmall chapacter if every category K has V if and only if K is a union of a monotone aystem of amall categories with V.

Eramplen:

a) The property V_{0} of being a category is of amall character. For, if K is a category, take some O_{n}-order < for the clasa K^{σ} and let k_{a} be the full subcategory of K. ouch that $k_{a}^{\sigma}=\left\{b \in K^{\sigma} ; b<a\right\}$. Then evidentiz $K=\bigcup_{a \in K^{\sigma}} k_{a}$ and $\left\{k_{a} ; a \in K^{\sigma}\right\}$ is a moo notone aystem of amall categories.
b) It is easy to see that the properties V_{1} to V_{3} from examples 1b) to d) are of small character.
c) Let \bar{k} be a onempoint category. It will now be proved that the properts V_{4}, of containing \bar{H} as a full subestegery and being connected, also is of small character. Evidently the union of monotone system of amall categories with V_{4} has V_{4}. Now let K be category with V_{4}; we attempt to express it as the union of aystem with the required propertiea. For every small full subcategory h of K choose small full connected subcategory \tilde{h} 'of K,
x) A category k is called connected if for every $a, b \in K^{\sigma}$ there exist $c_{1}, \ldots, c_{n} \in h^{\sigma}$ auch that $c_{1}=a, c_{n}=b_{r}$, $H_{h}\left(c_{i}, c_{i+1}\right) \cup H_{h}\left(c_{i+1}, c_{i}\right) \neq \varnothing \quad$ for $i=1, \ldots, m-1$.
which contains h (this is possible: for any $a, b \in h^{\sigma}$ choose $c_{1}^{a, b}, \ldots, c_{n}^{a, b, b} \in K^{\sigma}$ such that $c_{1}^{a, b}=a$, $c_{n_{a, b}, b}^{a, b}=b$ and $H_{K}\left(c_{i}^{a, b}, c_{i+1}^{a, b}\right) \cup H_{K}\left(c_{i+1}^{a, b}, c_{i}^{a, b}\right) \neq \varnothing$, and put $\tilde{h}^{\sigma}=\bigcup_{a, b \in h^{\sigma}}\left\{c_{1}^{a, b}, \ldots, c_{n a, b}^{a, b}\right\}$; it is easy to see that \tilde{h} is connected). Now let $<$ be an O_{n}-order for the class $K^{\sigma}-\bar{k}^{\sigma}$, let a_{0} be the first element. Put $h_{a_{0}}=\bar{h}$; if $a \in K^{\sigma}, a>a_{0}$, denote by h the full subcategory of K such that $h^{\sigma}=\left\{b \in K^{\sigma} ; b<a\right\} u$ $\cup \cup_{b<a} k_{b}^{\sigma}$, and put $h_{a}=\tilde{h}$. Then evidently $K=$ $=\bigcup_{a \in K^{\sigma}} k_{a}$, and $\left\{k_{a} ; a \in K^{\sigma}\right\}$ has the required prom parties.
3. Metadefinition: Let V be a property of categories. Let
$\overline{h e}$ be a small category with V. We shall say that V ie
\bar{k}-invariant if it satisfies the following conditions:
a) every category with V contains \bar{k} as a full subcategory;
b) if a small category k has V and there exists an isofunctor of k onto a category h, which is identical on \bar{k}, then h has V.
Metadefinition: Let V be a property of categories. We shall denote by \bar{V} the following property of categories: a category has \bar{V}, if and only if it may be fully embedded into a category with V.
Examples: let V_{0} to V_{4} be properties described in 1 .
a) The property V_{0} is evidently \bar{k}-invariant, where \bar{h} to an empty category. Evidently $V_{0}=\bar{V}_{0}$.
b) Every category with a singlet on (or cosingleton or a system of null morphisms) has \bar{V}_{1} (or \bar{V}_{1}^{\prime} or $\bar{V}_{1}^{\prime \prime}$ respectively).
c) Now prove that every connected category has \bar{V}_{4}. Let K be a connected category; one may suppose that $\bar{k}^{\sigma} \cap$ $\cap K^{\sigma}=\varnothing$. Let H be the following category: $H^{\sigma}=\bar{h}^{\sigma} \cup K^{\sigma}$, \bar{k}, K are full subcategories of H, and for $a \in \bar{k}^{\sigma}$, $b \in K^{\sigma}$ there is $H_{H}(a, b)=\{\langle a, \phi, b\rangle\}, H_{H}(b, a)=\phi$. Evidently H has V_{4}.
4. Gategorial Metatheorem: Let \mathcal{K} be a small category. Let \checkmark be an amalgamic \bar{k}-invariant property of small character. Then there exists a category U with property V such that every category K with \bar{V} may be fully embedded in U. Moreover, if K has V, then this embedding is identical on \bar{k}.
Corollaries: Uaing the properties V_{0} to V_{4} described in the examples, it is easy to see that
a) there exists a category in which every category may be fully embedded.
b) There exists a category with a singleton (or cosingleton or null object) in which every category with a singleton (or cosingleton or a system of null morphisms reapectively) may be fully embedded.
c) There exists a connected category in which every connected category may be fully embedded.
d) There exists a quasi-ordered class in which every quasiordered class may be fully embedded.

There exists a partially ordered class in which every
partiully ordered clase may be fully embedded.
e) Asaume given a semigroup Σ with a unit. Then there exiets a category U and $a \in U^{\sigma}$ such that a is a generator ${ }^{x}$) (or cogenerator) of $U, H_{U}(a, a)$ is isomorphic to Σ, and that every category K containing - generator (or cogenesator, respectively) be $\in K^{\sigma}$ with $H_{k}(b, b)$ is isomorphic to Σ, may be fully embedded in U. (cf Appendix II a) of the present paper.)

III. Proof of the Metatheorem

In this section, \bar{h} is a small category, V is an amalgamic \bar{k}-invariant property of amall character.

1. Lemra: Let h, h^{\prime}, l be amall categories with V, let h be a full subcategory of h^{\prime}, let $\varphi: h \xrightarrow{\text { onto }} l$ be an isofunctor identical on \bar{h}. Then there exista a categoin l^{\prime} with V and an isofunctor $\varphi^{\prime}: h^{\prime} \xrightarrow{\text { onto }} l^{\prime}$, which extende φ; furthermore ℓ is a full subcategory of ℓ^{\prime}. Proof: Evidently there exists a category l^{\prime} and an isofunctor $\varphi^{\prime}: h^{\prime} \xrightarrow{\text { onto }} \ell^{\prime}$, which extends φ. Also ℓ^{\prime} has V, since φ^{\prime} is identical on \bar{k}.
2. Lamma: Let $\left\langle\ell, K^{\prime}\right\rangle$ be a seniamalgan with $V, k \in K^{\prime}$. Then there exiate ite unglueing $\langle\ell, \mathscr{K}\rangle$ with property V and such that $k \in \mathcal{K}$.
peone: This is evident.
x) We recall that a_{0} is a generator of a category h if 1s anch that, whenever $\mu, \nu \in H_{h}(b, c), \mu \neq \nu$, then there existe $\alpha \in H_{h}\left(a_{0}, b\right)$ with $\alpha \mu \not \mu \propto \nu$.
3. Notation: Let $c x$ be a cardinal number, h and h small categories. The symbol card $k \backslash h \leq c x$ is to mean that h is a full subcategory of h, card h^{σ} -$-h^{\sigma} \leqq a$ and for $a \in k^{\sigma}-h^{\sigma}$, b εk^{σ} there is card $H_{k}(a, b) \leq c r$, card $H_{k}(b, a) \leq c k$.
4. Lemma: Let l be a mall category with property V, let u be a positive cardinal. Then there exista a semiamalgam $\langle\dot{\ell}, \mathscr{X}\rangle$ with V and auch that:
1) card $k \backslash \ell \leq a \quad$ for be $e \notin$;
2) if h is a small category with V and card $h \backslash l \leq$ $\leq c r$, then there exist $k \in \mathbb{K}$ and an isofunctor $\varphi: h \xrightarrow{\text { onto }} k$ identical on l.
Proof: Let \mathbb{K} be the class of all amall categories he with property V and such that card $k \backslash l \leq c r$. Let ρ be the following relation on $\mathbb{K}: k_{1} \rho k_{2}$ if and only if there exists an isofunctor of k_{1} onto k_{2} identical on l. Evidently ρ is an equivalence on \mathbb{K}; denote by \mathscr{K} some choice-class. Now it is sufficient to show that \mathcal{K} is a set. Let M be a set, $M \cap \mathcal{R}^{\sigma}=\phi$, card $M=c x$; set $S^{\sigma}=M \cup l^{\sigma}$. For every $\langle a, b\rangle \epsilon S^{\sigma} \times S^{\sigma}$ let $H(a, b)$ be a set of some triples $\langle a, a, b\rangle$ such that $\operatorname{card} H(a, b)=c \quad$ and that for $\langle a, b\rangle \epsilon$ $\epsilon \ell^{\sigma} \times \ell^{\sigma}$ there is $H_{l}(a, b) \subset H(a, b) ;$ set $S^{m}=$ $=\langle a, b\rangle \in S^{\circ} \times s^{\circ} H(a, b)$. For every $h \in \mathscr{K}$ choose some one-toone mapping φ_{h} of the set $h^{\sigma} \cup h^{m}$ into the set $S^{\sigma} u$ $\cup S^{m}$ with the following properties: if $\alpha \in l^{\circ} \cup l^{m}$, then $(\alpha) \varphi_{h}=\alpha$; if $a \in h^{\sigma}-l^{\sigma}$, then (a) $\varphi_{h} \in M$; if $\alpha \in h^{m}$, then $(\alpha) \varphi_{\mu} \in H\left((\overleftarrow{\approx}) \varphi_{h},(\vec{x})_{\varphi_{h}}\right)$.

Svidently one may define a composition on the set
$\left(h^{\sigma}\right)_{h} \cup\left(h^{m}\right) \varphi_{h} s 0$ as to form a category (denote it by \tilde{h}), and $\varphi_{h}: h \rightarrow \tilde{h}$ will then be an isofunctor of h onto \tilde{h}. If for $h, h \in \mathscr{H}$ there is $\tilde{h}=$ - \tilde{h}, then $\varphi_{h} \cdot \varphi_{k}^{-1}$ is an isofunctor of h onto k which is identical on l, and therefore $h=h$. Now it is easy to eee, that the $\tilde{h} ' s$, where h varies over JK , Porm a set.
5. Lemm: Let $c r$ be positive cardinal number, let $\langle\ell, \mathscr{K}\rangle$ be an malgan with property V satiaiying 1) and 2) from Leman 4. Let h ' be amall category with property V, h ite full subcategory with property V, $\varphi: h \xrightarrow{\text { onto }} l$ an isofunctor identical on \bar{h} and card $h^{\prime} \backslash h \leq c k$. Then there exista an isofunctor of h^{\prime} onto some $k \in \mathscr{X}$ which extends $\mathscr{\varphi}$.
Breot: This followe easily from Lemma 1.
6. Leman: Let $\left\{h_{p}, p \in(S, \zeta)\right\}$ be monotone system of amall categories. Then there existe an order-preserving mapping $f: S \rightarrow T$ into the oleos T of all cardinal mumbers auch that:

1) $\left(s_{0}\right) f=0$, where s_{0} is the first element of S;
2) for every $s \in S$ with $s>s_{0}$ there is card $\left(h_{s} \backslash_{t \rightarrow p} h_{t}\right) \leq(t) f$.
Peoot: Put $\left(s_{0}\right) f=0$. If $s \in S$, $s \& s_{0}$, put
$(s) f=2^{\mu t}+M$, where $\mu=\sum_{t \rightarrow s}(t) f, M=$
$=\sup _{a \in h_{p}^{\prime}, b \in h_{i}^{\sigma}-u_{t i s} h_{i}^{\prime \prime}}\left\{\operatorname{cand}\left(H_{h_{p}}(\dot{a}, b) \cup H_{h_{s}}(b, a)\right)\right\}$.

Then evidentiy f has the required properties.
7. Conatpuction of U : Let T be the class of all cardinal numbers. For or $\in T$ denote by $T_{o c}$ the set of all $\beta \in T$ less than C. Let $\{\in T$ and let $\{$ lem; m $\left.\leqslant T_{\text {a }}\right\}$ be a monotone syatem of amall categoriea with property V such that:
A) $k_{0}=\bar{k}$;
B) if $M>0$, then:
if h^{\prime} is a small category with property V, h its full aubeategory with property $V, \varphi: h \rightarrow_{m} U_{m} k e_{m}$ an isofunctor of h onto a full subeategory of $\bigcup_{\mu m} b_{w}$, which is identical on \bar{k} and if card $h^{\prime} \backslash h \leqslant \mu$, then there exists an isofunctor of h^{\prime} onto a full subeategory of k_{μ}, which extende φ.
Let p^{\prime} follow to p. We will construct k_{p} so that
$\left\{k_{m} ;\right.$ ut $\left.\in T_{\text {n }^{\prime}}\right\}$ is a monotone aystem of amall catego-
 For every full subcategory l of $h_{\text {k }}$ with property V choose some amalgam $\left\langle\ell, \mathscr{K}_{\ell}\right\rangle$ satisfying 1) and 2) from Lemma 4, where one puts $\not \subset=\mathfrak{p} . L_{e}\left\langle l, \mathscr{H}_{\ell}\right\rangle$ be an unglueing of the semiamalgam $\left\langle\ell, \mathscr{K}_{\ell} \cup\{k\}\right\rangle$ such that $k \in \mathscr{H}_{\ell}$, let K_{l} be its filling with property V. Denote by \mathscr{L} the set of all $K_{\mathcal{L}}(\mathcal{L}$ varies over all full subcategories of the with property V). Let $\langle k, \mathscr{K}\rangle$ be an unglueing of the semiamalgam $\langle k, \mathscr{L}\rangle$. Let k_{k} be a filling with V of $\langle k, \mathscr{K}\rangle$.

Now it is easy to see that $\left\{k_{\text {m }}\right.$; M $\left.\in T_{R},\right\}$ is monotone aystem of amall categories with V satisfying A). Now prove B). It is afficient to prove that if h^{\prime}, h are amall categories with property V_{7} cand $h^{\prime} \backslash h \leqq k$, $\varphi: h \rightarrow k=\bigcup_{m<k} h_{m}$ an isofunctor onto a full subeatego $x y$ of k identical on \bar{k}, then there exists an isefunetor ψ of h^{\prime} onto a fall subcategory of k_{k} which extende \mathscr{G}. To prove this assertion, firet put $l=(h)_{S}$. Then, using Lemm 5, there exist $\ell^{\prime} \in X_{l}$ and an 1s0 functor $\dot{\rho}^{\prime}: h^{\prime} \xrightarrow{\text { onto }} l^{\prime}$ such that $\varphi^{\prime} / h_{2}=\varphi$. Then there exist $\ell^{\prime \prime} \in \mathcal{H}_{l}$ and an isofunctor $\varphi^{\prime \prime}: \ell^{\prime} \xrightarrow{\text { onto }} \ell^{\prime \prime}$ which is identical on l, consequently $\left(\varphi^{\prime} \cdot \varphi^{\prime \prime}\right) / \ell_{h}=\varphi \rho$. Denote by $u_{l^{\prime \prime}}: l^{\prime \prime} \rightarrow K_{l}$ the inclueion Punctor onto a full subcategory of K_{ℓ}; let $K \in \mathcal{K}$, let $X: K_{\ell} \xrightarrow{\text { onto }} K$ be an isofunctor which is identical on te (and consequentIy also on l, and denote by $L: K \rightarrow k_{k}$ the incluaion functor onto a Pull aubcategory of k_{k}. Put $\psi=\varphi^{\prime}$. - $\mathscr{S}^{\prime \prime} \cdot \iota_{\ell^{\prime \prime}} \cdot \chi$ • \downarrow. Evidently ψ is an isofunctor onto a Pull aubeategory of k_{k} and $(\mu) \varphi^{\prime} \varphi^{\prime \prime} \iota_{l^{\prime \prime}} x \iota=(\mu) \varphi$ for $\mu \in h$. This concludes the proof of B).
By transfinite induction one obtains monotone syster $\left\{\right.$ \&tw $^{\prime}$; w $\left.\in T\right\}$ of small categories with V satisfying A) and B). Pat $U=U_{m} U_{T}$ km. Then evidently U has V. 8. Propenition: Let H be a category with property V. Then there existe an isofunctor of H onto a full subcategory of U which is identical on \bar{k}.

Proef: Using Lemma 6 , one may suppose that $H=\bigcup_{n \in T}$, his, where $\left\{h_{s} ;\right.$ s $\left.\in T^{\prime}\right\}$ is a monotone system of small categories with property V, T^{\prime} is a subclass of the class T of all cardinal numbers, $0 \in T^{\prime}, h_{0}=\bar{k}$ and card $\left(h_{p} \backslash \cup_{t<s} h_{t}\right) \leq s$ for $0<s \in T^{\prime}$. Now it is easy to construct an ieofunctor Φ of H onto a full subcategory of U. Pat $\Phi=\bigcup_{s \in T}, \varphi_{s}$, where φ_{s} is the following isofunctor of h_{s} onto full subcategory of $k_{/ s}$: $\varphi_{0}: h_{0}=\bar{k} \longrightarrow \bar{h}=k_{0}$ is identical; for t $\in T^{\prime}$,

use B) from the construction of U.
The proof of Metatheorem is complete.
IV. Metatheorem for additive categories

1. We recall the well-known concepte of additive categories and related notions:

Definition: Let K be a category, + partial addition on K^{m} such that: if $\alpha+\beta$ is defined, then $\overleftarrow{\pi}=$ $=\stackrel{\overleftarrow{\beta}}{ }, \vec{a}=\vec{\beta}$, every $\left[H_{k}(a, b),+/ H_{K}(a, b)\right]$ is an abelian group, and if $\mu \in H_{K}(c, a), \alpha, \beta \in H_{K}(a, b), \nu \in H_{K}(b, d)$, then $\mu \cdot(\alpha+\beta) \cdot \nu=\mu \cdot \alpha \cdot \nu+\mu \cdot \beta \cdot \nu$. We shall say that then $[K,+]$ is an a-category x). Moreover, if
x) In [8], a-categoriea are called preadditive categories.

In the present paper the term a-category was chosen for the sake of analogiee with the following parts of the por per.
every pair of objecte of K hae biproduct ${ }^{x}$) in K, then $[K,+]$ will be called an additive category. For an $a-$ category $A=[K,+]$ set $|A|=K ; K$ will be aleo called the underlying category of A. We shall say that A is small whenever K is small.
2. Definition: Let A, A^{\prime} be a-categories. Φ will be called ma-functor of A inte A^{\prime} if it is a functor of $|A|$ into $\left|A^{\prime}\right|$ such that $(\alpha+\beta) \Phi=(\alpha) \Phi+(\beta) \Phi$ whenever $\alpha+\beta$ is defined. Moreover if Φ ie an isofunctor, then it will be called an a-isofunctor or $a-$ embedding. If Φ is an isofunctor of $|A|$ onto a full subcategory of $\left|A^{\prime}\right|$, then it will be called a full a-isofunctor or full a-embedding. Let A, A^{\prime} be a-categories. We shall say that A is an a-subcategory of A^{\prime} if $|A| \subset\left|A^{\prime}\right|$ and the incluaion-functor is a-embedding. Moreover if it is a full a-embedding, then A will be called a full a-aubeategory of A^{\prime}.
3. Definition: A couple $\langle\ell, \mathcal{K}\rangle$ will be called an $a-$ semiemalgam if X is a non-empty set of small a-categon ries and ℓ is a full a-aubcategory of all be $\in \mathcal{K}$.

An a-semiamalgam $\langle\boldsymbol{\ell}, \mathscr{K}\rangle$ will be called an $a-\infty-$ ralgam if $\left|k_{1}\right|^{\sigma} \cap\left|k_{2}\right|^{\sigma}=|\ell|^{\sigma} \quad$ whenever k_{1}, $k_{2} \in K, k_{1} \neq k_{2}$.

$$
\begin{aligned}
& \text { x) }\left\langle b,\left\{b_{1}, \pi_{1}, \iota_{2}, \pi_{2}\right\}\right\rangle \text { is called a biproduct of ob- } \\
& \text { jecta } a_{1}, a_{2} \text { in a-category }[K,+] \text { if } \iota_{i} \epsilon \\
& \in H_{K}\left(a_{i}, b\right), \pi_{i}=H_{k}\left(b, a_{i}\right), i=1,2 \text { and } \\
& b_{i} \pi_{i}=e_{a_{i}},(i-1,2), \pi_{1} \iota_{1}+\pi_{2} l_{2}=e_{b} .
\end{aligned}
$$

An a-amalgem $\langle\ell, X\rangle$ will be called an a-unglueing of an a-semianalgam $\langle\ell, \mathcal{K}\rangle\rangle$ if there exists one-to-one mapping f of the set $X^{\prime \prime}$ onto X such that for every $k \in \mathcal{K}^{\prime}$ there exists an a-isofunctor of k onto $(k) f$, which is identical on l.
Let $\langle\ell, \mathcal{K}\rangle$ be an a-mmalgam. A small a-category K such that every $k \in \mathcal{K}$ is a full a-subcategory of K, will be called an $a-f i l l i n g$ of the a-amalgam $\langle\boldsymbol{l}, \mathcal{K}\rangle$. 4. In analogy with the notions of a monotone system of amall categories and its union, one may define the corresponding a-notions of a monotone syatem of small a-categories and its union.

In analogy with metanotions of amalgamic property, $\bar{k}-i n v a-$ riant property, property with amall character, one may define the corresponding a-metanotions, of a-amalganic property, $\bar{k}-a$-invariant property (where \bar{k} is a small a-category) and property of a-amall character. If V is a property of a-categories, the definition of \bar{V} is also evident.
5. Intatheorem: Let \bar{k} be a sall a-category, V an a-amalgamic and $\bar{k}-a$-invariant property of an $a-$ small character. Then there exists an a-category U with V uch that every a-category with \bar{V} may be fully a-embedded in U. Moreover, for a-eategories with V this a-embedding is identical on \bar{k}.
6. In Appendix II b) of the present paper a proof of the asertion is sketched that the property of being an a-cer tegory is a-amalganic. Evidently it is of a-mall cham
racter. Thus, using the fact that every a-category may be Pully a-embedded in an additive category, $[1]$, we have the following results:
a) There exists an additive category in which every a-category may be fully a-embedded.
b) There exists an additive category U such that for every $a, b \in \mid \cup l^{\sigma}, H_{U}(a, b)$ is a toraion group (or a finite group), and with the property that every a-category A with $H_{A}(a, b)$ is a torsion group (or a finite group, respectigely) for every $a, b \in|A|^{\sigma}$ may be fully a-embedded in U. (The proof is sketched in Appendix II c),e).)
c) There exista an additive category U with a generator (or a cogenerator) $c \in I U \mid \sigma$ such that $H_{u}(c, c)$ is isomorphic with a given ring with unit, and if A is any a coategory with a generator (or a cogenerator, respectively) $a \in|A|^{\circ}$ such that the rings $H_{u}(c, c)$ and $H_{A}(a, a)$ are isomorphic, then A may be fully $a-$ embedded in U. The a-embedding extends the ring-isomorphiam of $H_{A}(a, a)$ onto $H_{u}(c, c)$. (The proof is sketched in Appendix II (d), e).)
7. Note: It can be shown that the situation is quite analoguous if the sets of morphiams from an object to an object are not necessarily abelian groups but universal algebras of a given type and satisfy a given set of equalities (of course, the operations must be distributive with respect to the composition of morphisms).
8. Proof of the Metatheorem for a-categories: This will only be sketched. Let \bar{k} be a small a-category, let V be an a-amalgamic $\bar{k}-a$-invariant property of a-amall character. The lemmas analogous to Lemmas III. 1 and III. 2 for a-categories and a-functors are easily formulated and proved. We shall now formulate and prove the analogue to III. 3 and III.4:

Notation: Let $c k$ be a cardinal number, k, h small a cetegories. Then card $k \backslash h \leq c k$ denotes that h. is a full a-subcategory of k and cand $|k| \backslash|h| \leq a$. Lemma: Let l be a small a-category with V, let $c k$ be a positive cardinal. Then there exista an a-semiamalgam $\langle\ell, \mathscr{K}\rangle$ with V such that:

1) if $k \in \mathcal{K}$, then card $k \backslash l \leqq c x$;
2) if h is a small a-category with V and card h, $\backslash \ell \leqq c \pi$, then there exist a $k \in \mathscr{K}$ and an $a-i s o-$ Punctor $\varphi: h \xrightarrow{\text { onto }} k$ which is identical on l.
proor: Let \mathbb{K}^{\prime} be the class of all amall a-categories k with V such that card $k \backslash l \leq c k$, let $\mathbb{K}=\{|k|$; $\left.k \in \mathbb{K}^{\prime}\right\}$. Let ρ be the following relation on $\mathbb{K}:$. $\left|k_{1}\right| \rho\left|k_{2}\right|$ if and only if there exists an isofunctor of $\left|k_{1}\right|$ onto $\left|k_{2}\right|$ which is identical on $|\ell|$. Denote by \mathscr{H} some choice-class. In the proof of Lemma III. 4 it is prom ved that \mathscr{H} is a set. For every $h \in \mathscr{H}$ denote by \mathbb{K}_{h} the set of all a-categories k such that ℓ is an a-aubcategory of k and $|k|=h ;$ put $\mathscr{K}^{\prime}={ }_{h \in \mathcal{K}} \mathbb{K}_{h}$. The a-semiamalgam $\left\langle\ell, \mathscr{K}^{\prime}\right\rangle$ has the required proper-
ties, concluding the proof of the lemma.
Now it is easy to complete the proof of the Metatheorem for a-categories using the anmlogues to III.6,III.7,III. 8 ; this is left to the reader.

V. Bicategorial metatheorem

1. We recall the well-known notion of bicategory, [5], and of related notions:
Definition: Let K be a category, I, P ite subcategories auch that
1) $I^{m} \cap P^{m}$ is the class of all isomorphisme of K;
2) each $L \in I^{m}$ is monomorphism of K;
each $\pi \in P^{m}$ is an epimorphism of K;
3) to every $\alpha \in K^{m}$ there exist $L \in I^{m}$, $\pi \in P^{m}$ such that $\alpha=\pi \cdot L$;
4) if $L, L^{\prime} \in I^{m}, \pi, \pi^{\prime} \in P^{m}$ have $\pi \cdot L=\pi^{\prime} \cdot L^{\prime}$, then there existe an isomorphism ρ of K such that $\pi=\pi^{\prime} \cdot \rho, \iota^{\prime}=\rho \cdot L \cdot$
Then $[K, I, P]$ is termed a b-category ${ }^{x}$; it is termed amall if K is small. Let $\mathcal{B}=[K, I, P]$ be b- category, set $|\mathcal{B}|=K, I_{\mathcal{B}}=I^{m}, P_{\mathcal{B}}=P^{m}$. Then K will be called also an underlying category of $\mathcal{B}, I_{\mathcal{B}}$ the class of all injections of $\mathcal{B}, P_{\mathcal{B}}$ the class of all prom jections of B.
x) The term b-category instead of bicategory, was chosen for the sake of analogiea with other parts of the present paper.
2.Definition: Let $\mathcal{B}, \mathcal{B}^{\prime}$ be b-categories. A functor Φ of $|\mathcal{B}|$ into $\left|\mathcal{B}^{\prime}\right|$ is called a b-functor if $\left(I_{\mathcal{B}}\right) \Phi \subset I_{\beta^{\prime}}$, $\left(P_{\mathcal{B}}\right) \Phi \subset P_{\mathcal{B}^{\prime}} \cdot \Phi$ will be called a b-isofunctor of \mathcal{B} into \mathcal{B}^{\prime} if it is an isofunctor of $|\mathcal{B}|$ into $\left|\mathcal{B}^{\prime}\right|$ and $I_{\beta^{\prime}} \cap\left(|\beta|^{m \nu}\right) \Phi=\left(I_{B}\right) \Phi, P_{B^{\prime}} \cap\left(|\mathcal{B}|^{m}\right) \Phi=\left(P_{\beta}\right) \Phi$. If, moreover, Φ is an isofunctor of $|\mathfrak{B}|$ onto a full subcategory of $\left|B^{\prime}\right|$, then it will be called a full b-isofunctor or a full b-embedding. Let $\mathcal{B}, \mathcal{B}^{\prime}$ be b-categories. We shall say that \mathcal{B} is a (full) br -subcategory of \mathcal{B}^{\prime} if $|\mathcal{B}| c$ $C\left|\mathcal{B}^{\prime}\right|$ and the inclusion functor is a (full) b-embedding. 3. The definitions of a b-semiamalgam and its b-unglueing, and of a b-amalgam and its b-filling are evident.. The definition of a monotone syatem of b-categories, a monotone system of b-embeddings and their union is evident. If \bar{h} is a mall b-category, then the metadefini-
 small character are evident. It is also evident that the following metatheorem fiolds:
Metatheorem: Let \bar{k} be a small b-category. Let V be a b-amalgamic, \bar{k} - b-invariant property of bymall character. Then there exists a b-category U with property V such that every b-category with property V may be fully b-embedded in it; this b-embedding is identical on \bar{k}.
4. However, as shown in the Appendix, II f), this metatheorem is not useful, because the property of being a b-category is not b-amelgamic. (The question as to whether there
exists a b-category in which every b-category may be fally b-embedded remaine open.) We shall give a more general metatheorem, which has more satisfactory applications.
5. Metadefinition: Let W be a property of b-embeddings. It will be said that W ie monotonically additive if the union of every monotone system of b-embeddinge with W has W. It will be said that W is categorial if
a) every b-isofunctor onto has W and
b) the composition of two b-embeddings with W has W.
6. Metaiefinition: Let V be a property of b-categories, W a property of b-ombeddings. It will be said that V has b-amall W-character if a b-category K has V if and only if K is the union of a monotone system $\left\{k_{\alpha} ; \alpha \in T\right\}$ of small b-categories with V such that for any $\alpha<\alpha^{\prime}$ the inclusion b-functor $c_{\alpha}^{\alpha^{\prime}}: k_{\alpha} \rightarrow k_{\alpha}$, hae W.
It will be said that V ia b =amalgamic with respect to W if it has the following property: if $\langle\ell, \mathscr{K}\rangle$ is a b-ameigam with V such that the incluaion b-functor $L_{n}: l \rightarrow k$ ha: W for every $k \in \mathscr{K}$, then there exists its b-filling K with V such that for every $k \in \mathscr{K}$ the incluaion b-functor $\bar{\zeta}_{k}: k \rightarrow K$ has W. 7. Ketetheorem for b-catesopien: Let W be categorial property of b-embeddings. Let \bar{h} be a small bcategony. Let V be a property of b-categories, which is死 - b-invariant, b ammigamic with respect to W and is of b-amall. W-character. Then there exists a b-category with V in which every b-category with V may
be fully b-embedded. The b-embedding is identical on \bar{k}, and has W whenever W is monotonically additive. Proof is analoguous to that of Metatheorem V. 3 and therefore it is ommitted.
7. Definition: Let l be a full b-subcategory of k. It will be said that l is a good by mubcategory of he if it has the following property: If $\left.\left.\mu \in\right|^{k}\right|^{m}$ and either $\longleftarrow \in \mid \ell 1^{\sigma}$ or $\vec{\mu} \in \mid \ell 1^{\sigma}$, then there exist $\pi \in P_{k}, L \in I_{k}$ such that $c i=\pi \cdot L$ and $\vec{\pi} \in \mid \ell 1^{\circ}$. A b-category K will be termed a good b-category if $K=\bigcup_{\alpha \in T} k_{\alpha}$, where $\left\{h_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small b-categories such that for any $\alpha<\alpha$ 'focis a good br -subcategory of be α^{\prime}.
8. Let W be the following property of b-embeddings: $L: \ell \rightarrow h=$ has W if and only if it is a b-embedding onto a good b-aubcategory of k. In Appendix, II g) it is shown that W is categorial and monotonically additive. Let V be the properity of being a good b-category. Then V is of b-small W-character; this follows immediately from the definition. V is \bar{k}-invariant, where \bar{k} is an empty b-category. In Appendix, II h) it is shown that V is b-amalgamic with respect to W. Thus we have the following result:
Corollersy to the Metatheorem for b -catezories:
There exists a good b-category in which every good bcategory may be fully b-embedded. The b-embedding is onto agood b-subcategory.
9. Now we give some conditions for a b-category to be - good b-category.

Lemma 1: A b-category dual to a good b-category is itself a good b -category.
Proof: This follows immediately from the definition of a good b -category.
Lemme 2: A b-category is a good b-category if and only if its skeleton is a good b-category.
Proof: Let B be b-category, S be its skeleton. For every $a \in|B| \sigma$ choose an isomorphism σ_{a} of B such that $\stackrel{\sigma_{a}}{ }=a, \overrightarrow{\sigma_{a}} \in|S|^{\sigma}$. Let $\Gamma: B \rightarrow S$ be a b-functor such that $(a) \Gamma=\overrightarrow{\sigma_{a}},(\mu) \Gamma=\sigma_{\vec{k}}^{-1} \cdot \mu \cdot \sigma_{\vec{\mu}} \cdot$ If B is a good b-category, then $B=\bigcup_{\in T} b_{c c}$, where $\left\{b_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small b-categories such. that b_{c} is a good b-subcategory of b_{c}, whenever $\alpha<\alpha^{\prime}$. Put $\Delta_{\alpha}=\left(b_{a}\right) \Gamma$. Then evidently $S=\bigcup_{\alpha \in T} s_{\alpha}$ and $\left\{s_{\alpha} ; \alpha \in T\right\}$ is a monotone symtom of small b-categories, which has the required property. Consequently S is a good b-category. Conversely, if S be a good b-category, we shall prove that B is good. Then $S=\alpha \cup T S_{\alpha}$, where $\left\{s_{\alpha} ; \alpha \in T\right\}$ is monotone system of small b -categories such that os is a good b-aubcategory of s_{α}, whenever $\alpha<\alpha^{\prime}$. The property of being a b-category is of b-small character, as shown in Appendix, II i). Consequently $B=\bigcup_{\beta} \mathcal{K}_{\beta}$, where $\left\{k_{\beta} ; \beta \in Z\right\}$ is monotone system of small b-categories. For every $\beta \in Z$ denote by α_{β} the smallest
$\alpha \in T$ such that $\left(k_{\beta}\right) \Gamma$ is a b-subcategory of s_{α}. Let now b_{β} be the full b-subcategory of B such that $1 b_{\beta} 1^{\circ}=$ $=\left|s_{\alpha_{\beta}}\right|^{\sigma} u\left|k_{\beta}\right|^{\sigma}$. Then evidently $B=\bigcup_{\beta \in z} b_{\beta}$ and the system $\left\{b_{\beta} ; \beta \in Z\right\}$ has all the required properties. We recall the well-known definition:
Definition, Ab-eategory \mathcal{J} is termed well-powered (or co-well-powered) if for every $a \in|\mathcal{B}|^{\sigma}$ there exiete a set $J_{a} \subset I_{\mathcal{B}}$ (or $\mathcal{P}_{a} \subset P_{\beta}$) such that, for every $L \in$ $\in I_{B}, \vec{l}=a$, (or $\pi \in P_{\beta}, \overleftarrow{\pi}=a$) there existe an $L^{\prime} \in \mathcal{J}_{a}$ (or $\pi^{\prime} \in \mathcal{P}_{a}$) and an isomorphise σ such that $\iota=\sigma \cdot c^{\prime}$ (or $\pi=\pi^{\prime} \cdot \sigma$ reapectively).
Lemma_ 3: \mathcal{B} is a good b-category if and only if it is well-powered and co-well-powered. Proof: Let \mathcal{B} be a good b-category; let $\mathcal{B}=\bigcup_{\in T} b_{c}$, where $\left\{b_{\alpha} ; \alpha \in T\right\}$ is a monotone syatem of small b-categories such that, for $\alpha<\alpha^{\prime}, b_{\alpha}$ is a good b-aubcategory of b_{α}. Let $a \in \mid \mathcal{B} 1^{\circ}$. Choose $\alpha \in T$ such that $a \in$ $\epsilon\left|b_{\alpha}\right|^{\sigma}$; let I be the class of all $\mu \in I_{B}, \vec{u}=a$. Since b_{α} is a good b-subcategory of \mathcal{B}, each $\mu \in I$ may be expressed as $\mu=\sigma \cdot \nu$, where $\sigma \in P_{\beta}, \nu \in I_{\beta}, \overleftarrow{\nu} \in\left|b_{\alpha}\right|^{\sigma}$; but then σ must be an isomorphism. Consequently $\mathcal{\beta}$ is well-powered. Analogously it may be proved that \mathcal{B} is co-well-powered.
Conversely, let \mathcal{B} be well-powered co-well-powered by -category. Let \mathscr{S} be ite skeletan.We shall prove that \mathcal{Y} is good. If s is amall full subcategory of $|\mathcal{P}|$, denote by $\bar{万}$ the amallest good forabcategery of \mathscr{S} such
that \mid 万 $\mid \supset 力 。 万$ is a small b－category．Indeed， put $A_{0}=s^{\sigma}$ ；for n odd denote by A_{n} the set of all $a \in \mid \mathscr{Y} 1^{\circ}$ such that there exists $L \in I_{\mathscr{S}}$ with $t=a, \vec{l} \in A_{n-1} ;$ for n even denote by A_{n} the set of all $a \in \mid \mathcal{Y} \|^{\circ}$ such that there exists a $\pi \in P_{\rho}$ with $\vec{\pi}=a, \overleftarrow{\pi} \in A_{n-1} ;$ let \bar{r} be －full b－aubcategory of \mathcal{S} such that $|\bar{万}|^{\sigma}=\bigcup_{n=0}^{\infty} A_{n}$ ． If $\left\{B_{\alpha} ; \propto \in T\right\}$ is monotone system of small catego－ pies such that $|\varphi|=\bigcup_{\alpha} \mathcal{S}_{\alpha}$ ，then $\left\{\bar{B}_{\alpha} ; \alpha \in T\right\}$ has the required properties．

11．How we show，using Lemmas 1 to 3 ，that most of the usual bicategories are good b－categories．

Let $E_{n / s}$ be the category of all sets and all their mappings．Let $\Phi: E_{n s} \rightarrow E_{n s}$ be a functor，co－ variant（or contravariant）such that
（＊）for every ai $\in E_{n \rightarrow}^{\sigma}$ the class $\left\{b \in E_{n \rightarrow}^{\sigma}\right.$ ；
（b）$\Phi=a\} \quad$ is a set．
If $a \in E_{n s}^{\sigma}, x \in E_{m s}^{m}$ denote（ a ）Φ by a^{Φ} and $(x) \Phi$ by α^{Φ} ．
O ae may define the following category $E^{\Phi} x$ ：
x）The definition of the category E^{Φ} was given by A．Pultr and Z．Hedrlin．
$\left|E^{\Phi}\right|^{\sigma}$ is the class of all couples $\langle a, \boldsymbol{x}\rangle$, where $a \in \mid E_{m s} 1^{\sigma}, x \subset a^{\Phi} ; H_{E I}\left(\langle a, x\rangle,\left\langle a^{\prime}, x^{\prime}\right\rangle\right)$ is the set of all $\alpha^{*}=\left\langle\langle a, x\rangle, \alpha,\left\langle a^{\prime}, x^{\prime}\right\rangle\right\rangle$, where $\alpha: a \rightarrow a^{\prime}$ is - mapping such that $(x) \alpha^{\Phi} \subset x^{\prime} \quad$ (or $x \supset\left(x^{\prime}\right) \alpha^{\Phi}$ reapectively).
It is easy to see that E^{Φ} may be bicategorized maturally in two waye (the contravariant case is indicated in parentheses):
P_{1} is the class of all $\alpha^{*}:\langle a, x\rangle \longrightarrow\left\langle a^{\prime}, x^{\prime}\right\rangle$ such that $(a) \alpha=a^{\prime},(x) \alpha^{\Phi}=x^{\prime} \quad\left(o r\left(x^{\prime}\right) \alpha^{\Phi}=x \cap\right.$ $\left.\cap\left(a^{\prime \Phi}\right) \alpha^{\Phi}\right)$ 。
I_{1} is the class of aIl $\alpha^{*}:\langle a, x\rangle \rightarrow\left\langle a^{\prime}, x^{\prime}\right\rangle$ such that $\alpha: a \rightarrow a^{\prime}$ is one-tomone into and $(x) \alpha^{\Phi} \subset x^{\prime}$ (or $\left.x=\left(x^{\prime}\right) \alpha\right)$.
P_{2} is the class of all $\alpha^{*}:\langle a, x\rangle \rightarrow\left\langle a^{\prime}, x^{\prime}\right\rangle$ such that $\alpha: a \xrightarrow{\text { onto }} a^{\prime}$ and $(x) \alpha^{\Phi} \subset x^{\prime}\left(\operatorname{or} x \sqsupset\left(x^{\prime}\right) \alpha^{\Phi}\right)$.
I_{2} is the class of all $\alpha^{*}:\langle a, x\rangle \rightarrow\left\langle a^{\prime}, x^{\prime}\right\rangle$ such that $\alpha: a \rightarrow a^{\prime}$ is one-tomone into and $(x) \alpha^{\Phi}=x^{\prime} n$ $\cap\left(a^{\Phi}\right) \alpha^{\Phi} \quad$ (or $x=\left(x^{\prime}\right) \alpha^{\Phi} \quad$ reapectively). Then, using Lemma 2 and 3, it is easy to see that both $\left[E^{\Phi}, P_{1}, I_{1}\right]$ and $\left[E \Phi, P_{2}, I_{2}\right]$ are good b-categories for every functor (covariant or contravariant). $\Phi: E_{n s} \rightarrow E_{n s}$, satisfying ($*$). Also all full b-sub categories are good breategories. Thus for every covariant functor $\Phi: E_{n s} \rightarrow E_{n s}$ satisfying (*) the category of all Φ-spaces and Φ-morphiams [6] bicategorized as before is a good b-category.

VI. Relative Metatheorem

1. Definition: Let M be a category. Let k, h be subcategories of $M, L_{k l}: k \rightarrow M$, $L_{h}: h \rightarrow M$ the inclusion functors, $\varphi: k \rightarrow h$ a functor. We shall say that φ is an M-functor if there exists a natural transformation of l_{k} into φl_{h} (i.e. if for every $a \in k^{\sigma}$ there exists a morphism $u_{a} \in$ $\in H_{M}(a,(a) g)$ such that for every $a \in H_{k}(a, b)$ there 1s $\alpha \cdot\left(\mu_{b}=\left(\mu_{a} \cdot(\alpha) \mathscr{P}\right)\right.$. If $\mathscr{P}: k \rightarrow h$ is an isofunctor into and ι_{k} and φl_{h} are naturally equivalent (i.e. all $\mu_{a} \in H_{M}(a,(a) \varphi$) are isomorphism of M, , we shall say that φ is an M-isofunctor into or M-embedding. If φ is a full (or small) embedding and also an M-embedding, we shall say that it is a full (or small respectively) M-embedding.
2. Definition: Let M be a category. A semiamalgam $\langle\ell, \mathcal{K}\rangle$ will be called an M-semiamalgam if all fe ϵ $\epsilon \mathcal{K}$ are subcategories of M.

The definition of M-unglueing of an M-semiamalgam is evident. The definition of an M-amalgam and its M-filling is also evident.
3. Metedefinitions: Let M be a category, W a property of M-embeddings. We shall say that W is categorial if
a) every M-isofunctor onto has W and
b) the composition of any two M-embeddings with W has W.

We shall say that W is monotonically additive if the union of every monotone system of small M-embeddings with W has W.
4. Metadefinitions: Let M be a category, \bar{k} its small subcategory. Let V be a property of subcategories of M, W a property of M-embeddings. The metadefinitions of the following metanotions are analogous to those given before (cf V. 5 and 6):
V is of M-small W-charactex; V is M-amalgamic with respect to $W ; V$ is $\bar{k}-M$-invariant. 5. We recall that a category is called replete (cf [3]) if with each object a it also contains a proper class of objects isomorphic to a.
Relative Metatheorem: Let M be a replete category, \bar{k} its small subcategory. Let W be a categorial property of M-embeddings, which is monotonically additive. Let
V be a \bar{k} - M-invariant property of subcategories of M, which is of M-small W-character and is M amalgamic with respect to W.

Then there exists a subcategory U of M with property
V such that every subcategory of M with V can be fully M-embedded in U. This M-embedding is identical on \bar{b} and has W.

Proof: This is given in the next section.
6. Corollaries: a) Let M be a replete category, \bar{h} the empty category. It is easy to see that the property V of being a subcategory of M and also W of being an M embedding satisfy the requirements of the Metatheorem. Thus
we have the following result: Let M be replete category; then the existe a subeategory U in which ove25 aubeategory of M may be fully M-embedded.
b) There exists a concrete category in which every comcrete category may be fully embedded.
e) There exista a concrete category with a singleton (or coaingleton or null object) in which every concrete category with aingleton (or coaingleton or null morphisme) my be fully embedded.
d) There exists a connected concrete category in which overy connected concrete category may be fully embedded. e) If M is an a-category, then overy $|M|$-isofunetor is an a-isofunctor. Consequently we have the follow ving result:

Let M be replete a-category. Then there existe an a-subcategory in which every a-subcategory of M may be fully a-embedded.
f) Thore exiete a category of (abelian) groups in which every category of (abelian) groups may be fully additiveiy enbedded.
g) If M is a b-category, then every $|M|$-isofunctor ie a b isofunctor. Consequently we have the following result:

Let M be a replete b-category. Then there exiots a b-aubeategory U, which is a good b-eategory, and is such that every b -aubeategory of M, which is a good b-category, may be fully b-embedded in U.
VII. Proef of the Relative Metatheorem.

The proof of the Relative Metatheorem, which is not entirely analogous to that of the bicategorial or additive metatheorem, will be given explicitely.

1. In the following M is a replete category, \bar{h} its small subcategory, W a categorial property of M embeddings, which is monotonically additive; V is a property of subcategorien of M, which is th - M-in variant, M-amalgamic with respect to W and is of M-amall W-character.
Motation: The fact that k, $h \subset M, h(c h e$ and the inclusion functor $L: h \rightarrow h$ has W, will be denoted by $h \underset{C}{W} k$. The conjunction of $h \underset{f}{c} k$ and $h{ }_{c}^{W}$ $\underset{C}{W}$ h, will be denoted by $h{\underset{f}{C}}_{W}^{C}$.
If $\langle\ell, K\rangle$ is an M - (semi) ammalgam with V and such
 med a $W=M$-(semi)amalgam with V.
If $\langle\ell, \mathcal{K}\rangle$ is a $W=M$-amalgam with V, and K is its M-filling with V such that $k C_{4}^{W} K$ for every. $k \in K$, then K will be termed its W - M-pilling with V.
If $\left\{k_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small subcategories of M with V such that $k_{\alpha}{\underset{f}{W} h_{\alpha}, ~ w h e n e v e r ~}_{W}^{W}$ $\alpha<\alpha^{\prime}$, then we shall asy that it is a W - M monotone aystem with V.
If $\left\{h_{\alpha} ; \alpha \in T\right\}$ is a $W-M$-monotone system with V and $K=\bigcup_{\alpha \in T} h_{\alpha}$, then evidently $k_{b c}{\underset{f}{C} K \text { for every }}_{W}$ $\alpha \in T$.
2. Lenma: Let h^{\prime}, h, l be small subeategories of M with $V, h{\underset{f}{W}}_{W_{f}^{\prime}}^{\prime}, \varphi: h \xrightarrow{\text { onto }} \ell$ an M-isofunctor identical on \bar{k}. Then there exists $l^{\prime} \subset M$ with V auch that $\ell \underset{f}{W} \ell^{\prime}$ and that there exists an M-isofunc. tor $\varphi^{\prime}: h^{\prime} \xrightarrow{\text { onto }} \ell^{\prime}$ which extend \mathscr{S}. Moreover, if $l^{\sigma} \cap\left(h^{\prime \sigma}-h^{\sigma}\right)=\varnothing$, then $l^{\prime \sigma}-l^{\sigma}=h^{\sigma \sigma}-h^{\sigma}$.
Proof: First suppose $l^{\sigma} \cap\left(h^{\prime \sigma}-h^{\sigma}\right)=\varnothing$. Let
$\left\{\mu_{a} ; a \in h^{\sigma}\right\}, \quad \mu_{a} \in H_{M}(a,(a) \varphi)$, be natural equiveilence of functors L_{h} and φl_{l}, where $L_{h}: h \rightarrow M$ $\iota_{\ell}: \ell \rightarrow M$ are the inclusion functors and $\varphi: h \rightarrow$ $\rightarrow \ell$. For $a \in h^{\prime \sigma}-h^{\sigma}$ denote by μ_{a} the identity, $\mu_{a} \in H_{M}(a, a)$. ℓ^{\prime} and φ^{\prime} may be defined as followe: $\left.\left(l^{\prime}\right)^{\sigma}=l^{\sigma} \cup\left(h^{\prime \sigma}-h^{\sigma}\right), \mathscr{L}^{\prime \prime} / l^{\sigma}=\varphi / l^{\sigma}, \varphi^{\prime} / h^{\sigma \sigma}-h^{\sigma}\right)$ is identical, for $\alpha \in H_{h^{\prime}}(a, b)$ put $(\alpha) \varphi^{\prime}=\mu_{a}^{-1} \cdot \alpha \cdot \mu_{b}$ and put $l^{\prime}=\left(h^{\prime}\right) \varphi^{\prime}$. If $l^{\sigma} \cap\left(h^{\prime \sigma}-h^{\sigma}\right) \neq \varnothing$, choose some $\bar{h}^{\prime} \subset M$ such that $\bar{h}^{\prime \sigma} \cap \ell^{\sigma}=\bar{h}^{\sigma}$ and that there exists on M-isofunctor $\psi: h^{\prime} \xrightarrow{\text { onto }} \bar{h}^{\prime}$ which is identical on \bar{k}. Set $\bar{h}=(h) \psi, \bar{\varphi}=\psi^{-1} \frac{\bar{h}}{h} \cdot \varphi$ and the first case apply to $\bar{h}, \bar{h}^{\prime}, l$ and $\overline{\mathscr{\rho}}$.
3. Lemma: Let $\left\langle\ell, K^{\prime}\right\rangle$ be a $W-M$-semiamalgam with V, let $k \in \mathscr{K}^{\prime}$. Then there exists its M-unglueing $\langle\ell, \mathcal{K}\rangle$ such that $k \in \mathscr{K} ;\langle\ell, \mathscr{K}\rangle$ is a W - M-amalgam with V.
Pront: This is ovident.
4. Definition: A category H will be called a repletion of a category P if:
1) P is a full subeategory of H and contains some
skeleton of H;
2) for every $a \in P^{\sigma}$, all b $\epsilon H^{\sigma}-p^{\sigma}$ equivailent to a form proper class.
5. Lemma: Let R be an equivalence on a class X such that, for every $a \in X,\{b \in X ; b R a\}$ is a proper class. Then there exists $Y \subset X$ and ane-tomone mapping γ of X onto Y such that for every $a \in X$ there is $a R(a) \gamma$ and $\{b \in X-Y ; b R$ a $\}$ is a pro-. per class.
Proof: Let \prec be an O_{n}-order for X; set $X_{a}=$ $=\{b \in X ; b \not b a\}, S_{a}=\{b \in X ; b \not b a, b R a\}$. Put $y^{*}=$ $=\left\{b \in X\right.$; b is an isolated point of the set $\left.S_{b}\right\}$. Then evidently for every $a \in X$ the class $\left\{b \in X-y^{*} ; b R a\right\}$ is proper. Now let $a \in X$ and let $\left\{\gamma_{b} ; b \in X_{a}\right\}$ be a system of one-tome mappings $\gamma_{b}: X_{b} \rightarrow y^{*}$ such that: 1) if $b \prec b^{\prime}$, then $\gamma_{b}^{\prime} / X_{b}=\gamma_{b}$; if b^{\prime} is a nonisolated, then $\gamma_{b^{\prime}}=\bigcup_{b} \cup_{b} \gamma_{b}$;
2) if $b 孔 b^{\prime}$, then $(b) \gamma_{b}, R b$.

We shall construct $\gamma_{a}: X_{a} \rightarrow Y^{*}$. If a is non-isolated, put $\gamma_{a}={ }_{b} \bigcup_{2 a} \gamma_{b}$. If a succeeds a^{\prime}, it is sufficient to define $\left(a^{\prime}\right) \gamma_{a}$ only. Choose $\left(a^{\prime}\right) \gamma_{a} \in\left\{c \in Y^{*}\right.$; $\left.c^{\bullet} R a^{\prime}, c \notin\left(X_{a^{\prime}}\right) \gamma_{a}^{\prime}\right\}$. Put $\gamma^{*}=\cup_{a \in X} \gamma_{a}, Y=(X) \gamma^{*}, \gamma: X \rightarrow Y$ such that $(a) \gamma=(a) \gamma^{*}$ for every $a \in X$.
6. The notation from item 5 will be used. Moreover, denote by M^{\prime} the full subcategory of M such that $M^{\prime \sigma}=M^{\sigma}-\bar{\hbar}^{\sigma}$. Lemma: There exists a full subcategory P of M^{\prime} and an M^{\prime}-isofunctor of M^{\prime} onto P such that M^{\prime} is a reple-
tron of P.
Prone: Set $X=M^{10}$; let R be the equivalence on X such that $a R$ if if and only if a and br are equivalent in M^{\prime}. Apply lemma 5. Let P be a full subcategory of M^{\prime} such that $p^{\sigma}=Y, \Gamma$ be an M^{\prime}-isofunct or of M^{\prime} onto P such that $\Gamma / X=\gamma$. Then evidently P and Γ have the required properties.
7. Notation: The notation from item 6 will be used.
a) If $Z \subset M^{\sigma}$, denote by (Z) the full subcategory of M such that $(Z)^{\sigma}=Z \quad$ Set $\tilde{k}=\left(\bar{k}^{\sigma}\right), \widetilde{P}=\left(p^{\sigma} u \bar{k}^{\sigma}\right)$. Lett $\tilde{\Gamma}$ be en M-isofunctor of M onto \widetilde{P}, identical on \tilde{k} and such that $\tilde{\Gamma} / M^{\prime}=\Gamma$:
b) Choose some O_{n}-order \mathcal{F} for the class P^{σ}, which will be fixed in the following. Denote by c its first eloment. If $s \in P^{\sigma}$, put $\left.p_{s}=\left\{\left\{t \in P^{\sigma} ; t\right\} s\right\}\right\}$, $\tilde{h}_{s}=\left(\bar{h}^{\sigma} \cup \mu_{s}^{\sigma}\right)$.
c) For $h c_{f}^{c} h^{\prime}$ put $h^{\prime}-h=\left(h^{\prime \sigma}-h^{\sigma}\right)$.
8. Lemma: Let $L \subset M, L$ have V. Then there exists a $H \subset M$ and an M-isofunctor of L onto H, identical on \bar{h} such that $H=\bigcup_{B \in S^{\prime}} h_{s} ;$ here $\left\{h_{s} ;\right.$ o $\left.\in S^{\prime}\right\}$ is - $W=M$ - monotone system with V such that S^{\prime} is - subclass of $p \sigma, c \in S^{\prime}, h_{c}=\bar{h}$, and for every $t \in$ $\in S^{\prime}$, s \& c there is $h_{s}-U_{t \rightarrow} h_{t} \subset \mu_{s}$ Propr: L has property V; consequently $L=U_{\alpha \in A} \ell_{\alpha}$, where $\left\{l_{\alpha} ; \alpha \in A\right\}$ is a W - M-monotone oyster with V^{*} and $l_{\alpha_{0}}=$ 府 with α_{0} the first element of
A. Put $H=(L) \widetilde{\Gamma}, \ell_{\alpha}^{\prime}=\left(\ell_{\alpha}\right) \tilde{\Gamma}$. Now it is easy to find an order-preserving mapping f of A into p^{σ} such that $\left(\alpha_{0}\right) f=c \quad$ and that for every $\alpha \in A$ the category l_{α}^{\prime} is a subcategory of $\prod_{(\alpha) f}$. It is sufficient to choose $(\alpha) f \& \max \left(\sup (\beta) f\right.$, sup $\left.l_{\alpha}^{\prime \sigma}\right)$ where $<$ is the order on A. of course put $S^{\prime}=(A) f$, and for $s \in S^{\prime}$ put $h_{s}=l_{(s)_{f}-1}^{\prime}$.
9. Construction of $U:$ Let $s \in P^{\sigma}, s \& c$ and let $\left\{k_{t} ; t_{\in} P^{\sigma}, t \prec s\right\}$ be a $W-M$-monotone system with V such that:
A) $k_{c}=\bar{k}$;
B) if $t \& c$ then $a) k_{t}^{\sigma} \cap P^{\sigma}=\varnothing$;

$$
\text { b) if } h^{\prime}, h \subset M \text { are small and }
$$

 is a full M-embedding with W identical on \bar{X}, then there exists a full M-embedding with W of h^{\prime} into k_{t}, which extends $\mathscr{\varphi}$.
We construct k_{s} such that $\left\{k_{t} ; t \in P^{\sigma}, t \underline{\underline{Z}}\right\}$ W - M -monotone system with V satisfying A) and B). Put
 the set of all $h \in M$ with V such that $l \underset{f}{\underset{c}{N} h \text { and }}$ $h-\ell \subset p_{s}$. Let $\left\langle\ell, \mathscr{K}_{\ell}\right\rangle$ be an M-unglueing of the $W-M$-semiamalgam $\left\langle\ell, \mathscr{H}_{l} \cup\{k\}\right\rangle$ such that $k \in \mathscr{K}_{l}$, let K_{l} be its $W-M$-pilling with V. Let \mathscr{L} be the
 $\langle k, \mathscr{L}\rangle$ is a W - M-semiamalgam with V; let $\langle k, \mathscr{K}\rangle$ be its M-unglueing. Denote by k^{\prime} its $W=M$-filling
with V. Let kes be a subcategory of M such that $k_{s}^{\sigma} \cap P^{\sigma}=\varnothing$ and that there exists an M-isofunctor of k^{\prime} onto k / s identical on k. (Such a category k_{s} exists because, for every $a \in M^{\sigma}$, $\left\{b \in M^{\sigma}-p^{\sigma}\right.$; b is equivelent in M with $a\}$ is a proper class.) It is easy to see that $\left\{k_{t} ; t \leqq s\right\}$ satisfies A) and B a). To prove B b) it is sufficient to show that, if h^{\prime}, h are small subcategories of $M, h{\underset{f}{c} h^{\prime} \text {, }}_{\substack{w}} h^{\prime}$ h, h^{\prime} have $V, \varphi: h \rightarrow k=\bigcup_{t \rightarrow 1} k_{t}$ is a full M embedding with W identical on \bar{K} and $h^{\prime}-h \subset \mu_{s}$, then there exists a full M-embedding ψ with W of h^{\prime} into h_{p} which extends φ. We shall prove this auxiliary assertion. Put $\ell=(h) \varphi$; then evidently
 and there exists an M-isofunctor $\varphi^{\prime}: h^{\prime} \xrightarrow{\text { onto }} \ell^{\prime}$ with $\varphi^{\prime} / h=\varphi$ and $l^{\prime}-l=h^{\prime}-h \quad$ (because $\left(h^{\prime \sigma}-h^{\sigma}\right) \cap l^{\sigma}=$ $=\varnothing$). Consequently $l^{\prime} \in \mathscr{H}_{l}$. Now it is easy to see that there exists full M-embedding x with W of ℓ^{\prime} into k_{s} identical on ℓ. of course put $\psi=\varphi^{\prime} \cdot \chi$. By transfinite induction one obtains a W - M-monotone syotem $\left\{k_{s} ; ~ s \in P^{\sigma}\right\}$ with V satisfying statemente A) and B).

Put $U=\bigcup_{p \in p_{r}} k_{A}$. Then evidently U has V.
10. Preposition: Let H be a aubeategory of M with property V. Then there exiets a full M-embedding with W of H inte U identical on $\overline{\text { 原. }}$

Proof: Uaing Lemma 8 one may suppose that $H=\bigcup_{S} S_{S}, h_{S}$, where $\left\{h_{s} ; s \in S^{\prime}\right\}$ is a $W-M$-monotone system with $V, S^{\prime} \subset P^{\sigma}, c \in S^{\prime}, h_{c}=\bar{h}$ and for eve$x y$ is $\& c$ there is $h_{s}-\bigcup_{t ; s} h_{t} \subset \mu_{s}$. Now it is easy to construct a full M-embedding Φ with W of H into U. Put $\Phi=U_{s \in S^{\prime}} \varphi_{s}$ where φ_{s} is the following full M-embedding with W of h_{s} into $k_{/ s}$: $\varphi_{c}: h_{c}=\overline{k_{k}} \rightarrow \overline{k_{k}}=h_{c}$ is identical; if $\% \in S^{\prime}, s \& c$, set $\varphi=\bigcup_{t} \bigcup_{0} \varphi_{t}$; then φ is a full M-embedding with W of $h=\bigcup_{\substack{t \in S^{\prime} \\ t \leqslant s}} h_{t}$ into $k=\bigcup_{t \leqslant s} k_{t}$ and derine Ss by bl.

Appendix

I. Minimal univeranl cotegories

a) The following metadefinitions may be given: Let γ be a "system" of categories. A category U will be called universal for γ^{r} if every category from γ^{γ} can be fully embedded into U. A category U will be called counizersal for γ^{r} if it can be fully embedded into every category from γ^{c}. a category U will be called a minimal universal category for γ^{h} if it is universal for γ^{n} and couniversal for the syatem $\gamma^{\prime \prime}$ of all categories universal for $\gamma \gamma^{\prime}$. Evidently if a category from ∂^{n} is universal for γ^{n}, then it is a minimal universal eategory for γ.
b) How show that a minimal universal category for the clase of all small categories does not exist. Definition: Let K^{\prime} be a full subcategory of a category K. We say that K^{\prime} is separated in K if for every $a \in K^{\prime \sigma}$, be $K^{\sigma} \div K^{\prime \sigma}$ there is $H_{K}(a, b) \cup H_{K}(b, a)=\varnothing$. A category K is connected if K is the only full subeategory of K separated in K.

Let \mathcal{K} be a class of amall categories, let ρ be a partial order for \mathcal{K}. We define a category $K=\sum_{\mathcal{\rho}} \mathscr{K}$ as follows:
The clase K^{σ} is the clase of all couples $m=\langle a, k\rangle$, where k $\in \mathscr{K}, a \in h^{\sigma}$. For any $m_{1}, m_{2} \in K^{\sigma}, m_{i}=\left\langle a_{i}\right.$, $\left.k_{i}\right\rangle, i=1,2$, put $H_{K}\left(m_{1}, m_{2}\right)=\left\{\left\langle m_{1}, \alpha, m_{2}\right\rangle ; \propto \in H_{A_{1}}\left(a_{1}, a_{2}\right)\right\}$ whenever $k_{1}=k_{2}$; if $k_{1} \neq k_{2}$, put $H_{k}\left(m_{1}, m_{2}\right)=$ $=\left\{\left\langle m_{1}, \phi, m_{2}\right\rangle\right\} \quad$ whenever $k_{1} \rho k_{2}$; and put $H_{k}\left(m_{1}, m_{2}\right)=\varnothing$ in the other cases. The definition of composition of morphlame in K is evident. (It is defined so that for every he ϵ $\in \mathcal{K}$ the mapping $\varphi_{k}: k \rightarrow K$ with (a) $\varphi=\langle a, k\rangle$ Ior $a \in k^{\sigma}$, $(\alpha) \varphi=\langle\langle\overleftarrow{x}, k\rangle, \alpha,\langle\vec{\pi}, k\rangle\rangle$ for $\alpha \in k^{m}$ is a full embedding of k into K.) If $\rho=\varnothing$, we shall write ΣX instead of $\sum_{\varnothing} \mathcal{K}$.
Theorem: There exists no minimal universal category for the class of all small categories.
Proot: Denote by \mathcal{O} the class of all amall categories. No category universal for \mathcal{V} is small. Put $V=\sum \mathcal{V}$. Let \prec be a total order for the class $\mathscr{V}, W=\sum_{\zeta} \mathscr{V}$. Evidentiy V and W both are universal for V. Every full subcategory of V. which is not small is not connected. Every
full subeategory of W which is not amall is connected. c) Note: We shall s,ay that a category h may be fully separ rately embedded into a category K if there exists an isofunctor of k onto a full subcategory of K separated in K.

The following propertien of the categary $V=\Sigma V$ may be verified:

1) Every fe $\in \mathscr{V}$ can be separately fully embedded into V.
2) If K ia a category such that every he of can be embedded in K, then V can be embedded in K.
3) If K is a category such that every he $\in \mathscr{V}$ can be fully separately embedded in K, then V can be fully separately embedded in K.

II. Propertien of properties.

Now we prove some propositions about some natural properties V.
a) Let \bar{K} be a small category, $a_{0} \in$ K $^{\prime} \sigma$ itagenerator ${ }^{x}$. Lat V be the following property: a category K has V if and only if it contains th as a full qubcategory and a_{0} is a generator of K. We shall prope that V
x) We recall that a_{0} is a generator of a category h if it is true that if $\mu, \nu \in H_{h}(b, c), \mu \neq \nu$, then there exista an $\alpha \in H_{h}\left(a_{0}, b\right)$ such that $\alpha \mu \neq \alpha \nu$.
is amalgamic. The following proposition is true: If $\langle\ell, \mathscr{K}\rangle$ is an amalgan, $a_{0} \in \ell^{\sigma}$ a gonerator co every h $\in \mathcal{K}$, then there existe ite filling K such that a_{0} is generator of K.
We prove the proposition only for the case that $\mathscr{K}=$ $=\left\{k_{1}, k_{2}\right\}, k_{1}^{\sigma}-l^{\sigma}=\left\{a_{1}\right\}, k_{2}^{\sigma}-l^{\sigma}=\left\{a_{2}\right\}, a_{1} \neq a_{2}$. Let \tilde{k} be the aum of categories k_{1} and k_{2} with the amalgamated unbeategory $l,[11]$. Let $\{i, j\}=\{1,2\}$. Let Z_{i} be the following equivalence on $H_{\boldsymbol{k}}\left(a_{i}, a_{j}\right)$:
$\mu Z_{i} \mu^{\prime} \quad$ if and only if $\alpha \cdot \mu=\alpha \cdot \mu \prime$ for every $\alpha \in H_{k_{i}}\left(a_{0}, a_{i}\right)$.
Now it is eaey to see that if $\mu Z_{i} \mu^{\prime}$, then $\mu \cdot \sigma Z_{i} \mu^{\prime}: \sigma \quad$ for every $\sigma \in H_{\tilde{f}}\left(a_{j}, a_{j}\right)$; $\mu \cdot \sigma=\mu$ ' σ for every $\sigma \in H_{j}\left(a_{j}, b\right), b \neq a_{j} ;$ $\sigma \cdot \mu Z_{i} \sigma \cdot \mu$. for every $\sigma \in H_{\tilde{\mu}}\left(a_{i}, a_{i}\right)$; $\sigma \cdot \mu=\sigma \cdot \mu \cdot \quad$ for every $\sigma \in H_{\tilde{j}}\left(b, a_{i}\right), b \neq a_{i}$. Let now K be a category such that $K^{\sigma}=k_{1}^{\sigma} \cup k_{2}^{\sigma}, k_{1}$ and h_{2} are full subcategories of K and $H_{K}\left(a_{i}, a_{j}\right)=$ $=\left\{a_{i}\right\} \times\left(H_{\tilde{j}}\left(a_{i}, a_{j}\right)_{Z_{i}}\right) \times\left\{a_{j}\right\}$.
The definition of the composition in K is evident. It is easy to see that he has the required properties.
b) Now noove that the property of being an a-category is a-emalgamic. The following proposition holds: Let $\langle\ell, \mathscr{A} \backslash\rangle$ be an a-amalgam. Then there exists ite a-fililing K such that if H is an a-category, \mathscr{H}_{e} : $k \rightarrow H$ an a-functor such that $\varphi_{k} / l=\varphi_{k} / l$ for every $k, k^{\prime} \in \mathscr{K}$, then there exista exactly one
a-functor $\varphi: K \rightarrow H$ such that $\varphi_{k}=L_{k} \cdot \varphi$ where
$L_{\text {m }}: k \rightarrow K$ is the inclusion a-functor.
(K will then be called an a-sum of a-categories
with amalgamated a-subcategory l.)
We prove the proposition only for the case that $\mathscr{K}=\left\{k_{1}, k_{2}\right\}$, $\left|k_{1}\right|^{\sigma}-|\ell|^{\sigma}=\left\{a_{1}\right\},\left|k_{2}\right|^{\sigma}=\left\{a_{2}\right\}, a_{1} \neq a_{2}$. If $|\ell|^{\sigma}=\varnothing$ then put $\mid K 1^{\sigma}=\left\{a_{1}, a_{2}\right\}, k_{1}, k_{2}$ are pull a-subcategories of K and $H_{K}\left(a_{1}, a_{2}\right)=\left\{\omega_{a_{1}}, a_{2}\right\}, H_{K}\left(a_{2}, a_{1}\right)=\left\{\omega_{a_{2}}, a_{1}\right\}$. Then evidently K has the required properties. Consequent-' Iy we may suppose that $\mid \ell 1^{\sigma} \neq \varnothing$. Let $\tilde{\pi}$ be the sum of categories $\left|k_{1}\right|$ and $\left|k_{2}\right|$ with the amalgamated subcategory $|\ell|,[11]$. Let $\{i, j\}=\{1,2\}$. We recall that eveг于 $\mu \in H_{\tilde{R}}\left(a_{i}, a_{j}\right)$ may be expressed as $\mu=\alpha \cdot \beta$, where $a \in H_{e_{i}}\left(a_{i}, b\right), \beta \in H_{p_{j}}\left(b, a_{j}\right), b \in|\ell|^{\sigma}$; and if also $\mu=\alpha^{\prime} \cdot \beta^{\prime}$, where $\alpha^{\prime} \in H_{{f_{i}}^{\prime}}\left(a_{i}, b^{\prime}\right), \beta^{\prime} \in H_{\beta_{j}}\left(b^{\prime}, a_{j}\right), b^{\prime} \in|\ell|^{\sigma}$, then $\langle\alpha, \beta\rangle R^{*}\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$, where R^{*} is the smallest equivalence on the set $\cup_{b \in l \ell / \sigma}\left\{H_{A_{i}}\left(a_{i}, b\right) \times H_{l_{j}}\left(b, a_{j}\right)\right\}$ containing the following relation $R:\langle\alpha, \beta\rangle R\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ if and only if there exists a $\lambda \in|\ell|^{m}$ such that $\alpha=$ $=\alpha^{\prime} \cdot \lambda$ in $k_{i}, \beta^{\prime}=\lambda \cdot \beta$ in $k_{j},[11]$. Then, as is easy to see, \tilde{K} has a system of null morphisms. Let G_{i} be a free abelian group with $\omega_{a_{i}}, a_{j}$ as zero and $H_{n}\left(a_{i}, a_{j}\right)-\left\{\omega_{a_{i}}, a_{j}\right\}$ its sét of generators.
Let h be a category defined as follows: $h^{\sigma}=\left|k_{1}\right|^{\sigma} \cup\left|k_{2}\right|^{\sigma}$, $\left|k_{1}\right|$ and $\left|k_{2}\right|$ are to be full aubcategories of h, put $H_{f}\left(a_{i}, a_{j}\right)=\left\{a_{i}\right\} \times G_{i} \times\left\{a_{j}\right\}$, if $\mu, \nu \in G_{i}$, set $\bar{\mu}=\left\langle a_{i}\right.$, $\left.\mu, a_{j}\right\rangle, \bar{\nu}=\left\langle a_{i}, \nu, a_{j}\right\rangle$ and put $\bar{\mu}+\bar{\nu}=\overline{\mu+\nu} ;$
consequently if $m \in H_{h}\left(a_{i}, a_{j}\right)$, then $m=\bar{u}_{1}+\ldots+$ $+\bar{\mu}_{s}$ where $\mu_{1}, \cdots, \mu_{p} \in H_{n}\left(a_{i}, a_{j}\right)$; now put $\sigma \cdot m=\overline{\sigma \cdot \mu_{1}}+\ldots+\overline{\sigma \cdot \mu_{s}}$ for every $\sigma \in H_{\mu_{i}}\left(a_{i}, a_{i}\right)$; $\sigma \cdot m=\sigma \cdot \mu_{1}+\cdots+\sigma \cdot\left(\mu_{s}\right.$ for every $\sigma \epsilon H_{\mu_{i}}\left(b, a_{i}\right), b \in|\ell|^{\sigma} ;$ $m \cdot \sigma=\overline{\mu_{1} \cdot \sigma}+\cdots+\overline{\mu_{j} \cdot \sigma} \quad$ for every $\sigma \in H_{h_{j}}\left(a_{j}, a_{j}\right)$; $m \cdot \sigma=\mu_{1} \cdot \sigma+\cdots+\mu_{j} \cdot \sigma \quad$ for every $\sigma \in H_{k_{j}}\left(a_{j}, b\right), b \in|\ell| \sigma_{;} ;$ and if $n \in H_{h}\left(a_{j}, a_{i}\right), n=\bar{\nu}_{1}+\cdots+\bar{\nu}_{z}$, put $m \cdot n=$ $=\sum_{t=1}^{0} \sum_{w=1}^{\infty} \mu_{t} \cdot \nu_{u}, \quad n \cdot m=\sum_{u=1}^{\pi} \sum_{t=1}^{\infty} \nu_{m} \cdot \mu_{t} \cdot$

The composition in h is associative because the composiion in \tilde{h} is associative. Moreover, if $m, n \in H_{h}\left(a_{i}\right.$, $\left.a_{f}\right), \sigma \in H_{h}\left(b, a_{i}\right), \tau \in H_{h}\left(a_{j}, c\right)$, then $\sigma \cdot(m+m) \tau=$ $=\sigma \cdot m \cdot \tau+\sigma \cdot n \cdot \tau$.

Now let T_{i} be the following relation on $H_{k}\left(a_{i}, a_{j}\right)$:
$m T_{i} n \quad$ if and only if either
$m=\overline{\left(\alpha_{1}+\alpha_{2}\right) \cdot \beta}$, where $\alpha_{1}, \alpha_{2} H_{\mu_{i}}\left(a_{i}, b\right), b \epsilon$ $\in \mid \ell 1^{\sigma}, \beta \in H_{\beta_{j}}\left(b, a_{j}\right), m=\overline{\alpha_{1} \cdot \beta}+\overline{\alpha_{2} \cdot \beta}$, or $m=\overline{a \cdot\left(\beta_{1}+\beta_{2}\right)}$, where $\alpha \in H_{k_{i}}\left(a_{i}, b\right)$, b $\in|\ell|^{\sigma}$, $\beta_{1}, \beta_{2} \in H_{h_{j}}\left(b, a_{j}\right)$ and $n=\overline{\alpha \cdot \beta_{1}}+\overline{\alpha \cdot \beta_{2}}$.
(*) $\begin{cases}\text { Evidently, if } m T_{i} n, ~ t h e n ~ \\ \sigma \cdot m T_{i} \sigma \cdot n & \text { for every } \sigma \in H_{h}\left(a_{i}, a_{i}\right) ; \\ \sigma \cdot m=\sigma \cdot n & \text { for every } \sigma \in H_{h}\left(b, a_{i}\right), b \neq a_{i} ; \\ m \cdot \sigma T_{i} n \cdot \sigma & \text { for every } \sigma \in H_{h}\left(a_{j}, a_{j}\right) ; \\ m \cdot \sigma=n \cdot \sigma & \text { for every } \sigma \in H_{h}\left(a_{j}, b\right), b \neq a_{j} .\end{cases}$

Let S_{i} be the following relation on $H_{h}\left(a_{i}, a_{j}\right)$:
$m S_{i} n$ if and only if $m=p+q, n=p+q^{\prime}$, where $p \in H_{h}\left(a_{i}, a_{j}\right), q T_{i} q^{\prime}$.

Evidently ($*$) remains true if we replace T_{i} by S_{i}. Let S_{i}^{*} be the smalleat equivalence on $H_{h}\left(a_{i}, a_{j}\right)$ which contain S_{i}. Then S_{i}^{*} is a congruence on the group $H_{h}\left(a_{i}, a_{j}\right)$, and ($*$) remains true on replacing T_{i} by S_{i}^{*}.
Let now \bar{K} be a category such that $\bar{K}^{\sigma}=h^{\sigma},\left|k_{1}\right|$ and $\left|k_{2}\right|$ are full subcategories of \bar{K} and $H_{K}\left(a_{i}, a_{j}\right)=$ $=\left\{a_{i}\right\} \times\left(H_{h}\left(a_{i}, a_{j}\right) / S_{i}^{*}\right) \times,\left\{a_{j}\right\}$.

Using (*) with T_{i} replaced by S_{i}^{*}, the definition of the composition in \bar{K} is evident. Now it is also easy to define th a-category K such that $|K|=\bar{K}$, and k_{1}, k_{2} are a-subcategories of K. Let now H be an a-category, $\varphi_{1}: k_{1} \rightarrow H, \mathscr{L}_{2}: k_{2} \rightarrow H$ be $a-$ functor such that $\mathscr{L}_{1} / l=\mathscr{L}_{2} / l$. Then there exists exactly one functor $\tilde{\psi}: \tilde{f} \rightarrow H$ such that $\varphi_{1}=\tilde{L}_{1} \cdot \tilde{\psi}$, $\mathscr{s}_{2}=\tilde{\tau}_{2} \cdot \tilde{\psi}$, where $\tilde{L}_{1}:\left|k_{1}\right| \rightarrow \tilde{\hbar}, \tilde{L}_{2}:\left|k_{2}\right| \rightarrow \tilde{h_{2}}$ are inclusion functore. Let $\psi: h \rightarrow H$ be a functor such that $\psi /\left|k_{1}\right|=\varphi_{1}, \psi /\left|k_{2}\right|=\varphi_{2}$ and that if $m \in H_{h}\left(a_{i}, a_{j}\right)$, $m=\bar{u}_{1}+\cdots+\bar{\mu}_{1}$, then $\left.i m\right) \psi=\left(\mu_{1}\right) \tilde{\psi}+\cdots+\left(\mu_{s}\right) \tilde{\psi}$. If $m S_{i}^{*} n$, then evidentiy $(m) \psi=(n) \psi$. Consequently there exists an a-functor $\varphi: K \rightarrow H$ such that $\varphi_{1}=L_{1} \cdot \varphi, \varphi_{2}=c_{2} \cdot \varphi$, where $L_{1}: k_{1} \rightarrow K$, $l_{2}: k_{2} \rightarrow K$ are inclusion functors. The unicity of φ is evident.
c) Let V_{1} (or V_{2}) be the following oroperty of a -categorica:
an a-category K has V_{1} (on V_{2}) if and only if $H_{k}(a, b)$ is atorsion group (or a finite grouperese
pectively) for every $a, b \in|K|^{\sigma}$. Then it is $a-\infty-$ mingmic.

If $\langle\ell, \mathscr{K}\rangle$ is an a-amalgam with V_{1} (or V_{2} respectively), then the a-sum K of a-categories from \mathcal{K} with amalgamated a-subcategory ℓ has V_{1} (or V_{2}); this follows immediately from the construction of K (of Appendix, II b).
d) Let \bar{k} be an a-category, $\left.a_{0} \in\right|_{k=1} ^{\sigma} \quad$ be its generator, let V be the following property of a-eategories: an a-category K has V if and only if it contaipe \bar{k} as a full a-gubcategory such that a_{0} is a generator of K. Then V is a-emalgamic. We prove only that if ℓ is a full a-subcategory of a-categories k_{1}, k_{2} such that $\left|k_{1}\right|^{\sigma}-|\ell|^{\sigma}=\left\{a_{1}\right\},\left|k_{2}\right|^{\sigma}-|\ell|^{\sigma}=\left\{a_{2}\right\}, a_{1} \neq a_{2} \quad$ and $a_{0} \in|\ell|^{\sigma}$ is a generator of both k_{1}, k_{2}, then there existe an $a-f i l l i n g$ of the a-amalgam $\left\langle l,\left\{k_{1}, k_{2}\right\}\right\rangle$ such that a_{0} is a generator of k.
Let h be an a-sum of k_{1} and k_{2} with amalgamated a subeategory l. Let $\{i, j\}=\{1,2\}$. Let Z_{i} be the following relation on $H_{h}\left(a_{i}, a_{j}\right)$, $\mu Z_{i} \mu^{\prime} \quad$ if and only if $\alpha \cdot \mu=\alpha \cdot \mu$ ' for every $\alpha \in H_{h}\left(a_{0}, a_{i}\right)$. Then it is easy to see that Z_{i} is a congruence on the group $H_{h}\left(a_{i}, a_{j}\right)$, and that if $\mu Z_{i} \mu^{\prime}$, then , $\mu \cdot \sigma Z_{i} \mu^{\prime} \cdot \sigma$ for every $\sigma \in H_{h}\left(a_{j}, a_{j}\right)$; $\mu \cdot \sigma=\mu ' \sigma \quad$ for every $\sigma \in H_{h}\left(a_{j}, b\right), b \neq a_{j}$; $\sigma \cdot \mu Z_{i} \sigma \cdot \mu \prime$ for every $\sigma \in H_{h}\left(a_{i}, a_{i}\right)$;
$\sigma \cdot \mu=\sigma \cdot \mu^{\prime}$ for every $\sigma \in H_{h}\left(b, a_{i}\right), b \neq a_{i}$. of course put $H_{k}\left(a_{i}, a_{j}\right)=\left\{a_{i}\right\} \times\left(H_{h}\left(a_{i}, a_{j}\right) / Z_{i}\right) \times\left\{a_{j}\right\} ;$ the rest is evident.

Evidently, if $H_{k_{m}}(c, d) \quad$ is a torsion group (or a finite group) for every $c, d \in\left|h_{n}^{\sigma}\right|, n=1,2$, then $H_{k}(c, d) \quad$ is too for every $c, d \in \mid h 1^{0}$.
e) Let k be an a-category. We recalle[1], that k can be fully a-embedded into an additive caterory K. We shall sketch this construction to chow that the inclusion functor has several required properties. Every $a \in \mid K 1^{\sigma}$ is a finite collection of elements of 1 k 1^{σ}. If $a=\left\{a_{i} ; i=1, \ldots, n\right\}, b=\left\{b_{j} ; j=1, \ldots m\right\} \in \mid K I^{\sigma}$, then $H_{K}(a, b)$ is the set of all $\alpha=\left\langle a,\left\{\alpha_{i, j} ; i=1, \ldots\right.\right.$ $\ldots, n, j=1, \ldots, m\}, b\rangle$ where $\alpha_{i, j} \in H_{k}\left(a_{i}, b_{j}\right)$. The triple $\left\langle a,\left\{\alpha_{i, j} ; i, j\right\}, b\right\rangle$ will be denoted simply by $\left\{\alpha_{i, j} ; i, j\right\}^{*}$. If $\alpha=\left\{\alpha_{i, j} ; i, j\right\}^{*}$,

$$
\begin{aligned}
& \beta=\left\{\beta_{i, j} ; i, j\right\}^{*} \in H_{K}(a, b), \text { then } \alpha+\beta= \\
& =\left\{\alpha_{i, j}+\beta_{i, j} ; i, j\right\}^{*} . \text { If } \alpha=\left\{\alpha_{i, j} ; i, j\right\}^{*} \in H_{k}(a, b), \\
& \beta=\left\{\beta_{j, l} ; j, \ell\right\}^{*} \in H_{k}(b, c) \text {, then } \alpha \cdot \beta=\left\{\sum_{j} \alpha_{i, j} \cdot \beta_{j, \ell} ; i, \ell\right\}^{*} .
\end{aligned}
$$

It is easy to see that k can be fully a-embedded into K and K is additive; and also that if for any $c, d \in$ $\in|k|^{\sigma}$ the group $H_{k}(c, d)$ is a torsion group (or a finite group respectively) then for every $a, b \in|K|^{\sigma}$ the group $H_{k}(a, b)$ is also such.
Now prove that if c is a generator of k, then $\{c\}$ is a generator of K. Let $a, b \in|K|^{\sigma}, \alpha, \beta \in H_{K}(a, b)$, $\alpha \neq \beta, \alpha=\left\{\alpha_{i, j} ; i, j\right\}^{*}, \beta=\left\{\beta_{i, j} ; i, j\right\}^{*}$. Then there exist i_{0}, j_{0} such that $\alpha_{i_{0}, j_{0}} \neq \beta_{i_{0}}, j_{0}$. Hence there, exists a $\mu \in H_{h}\left(c, a_{i_{0}}\right)$ such that $\mu \cdot \alpha_{i_{0}, j_{0}} \neq \mu \cdot \beta_{i_{0}, i_{0}}$. Take $\rho=\left\{\rho_{i} ; i\right\}^{*}, \rho_{i} \in H_{k}\left(c, a_{i}\right)$ such that $\rho_{i_{0}}=\mu$,
$\rho_{i}=\omega_{0}, a_{i}$ for $i \neq i_{0}$, where ω denotes the null morphism. Then $\rho \cdot \alpha \neq \rho \cdot \beta$.
f) Non prove that the property of being a focategoris is not b amalgamice Let l, k_{1}, k_{2} be b-categorises from the following diagram e (identities are not indicated):
all diagrams ante commutative and
$P_{l}=\{$ identities $\} \cup\left\{\pi_{x}, \pi_{x^{\prime}}\right\}, I_{l}=\{$ identities $\} \cup\left\{c_{\xi}, c_{x}, \rho, \xi_{\xi}, c_{x^{\prime}}, \rho^{\prime}\right\} ;$
$P_{R_{1}}=\{$ identities $\} \cup P_{l} \cup\left\{\alpha, \alpha^{\prime}, \pi_{\xi}, \pi_{\xi}, \pi_{\varphi}\right\}$,
$I_{k_{1}}=\{$ identities $\} \cup I_{\ell} \cup\left\{L_{s}\right\}$,
$P_{R_{2}}=\{$ identities $\} \cup P_{l} \cup\left\{\pi_{\mu}, \pi_{2 l}, \pi_{\mu^{\prime}}, \pi_{\Omega^{\prime}}\right\}$,

$\iota_{\xi} \cdot \pi_{2} \cdot \iota_{21}, c_{\xi} \cdot \pi_{20} \cdot c_{2}, \rho \cdot \mu, \rho^{\prime} \cdot\left(\mu^{\prime}, L_{\xi} \cdot \pi_{\vartheta} \cdot L_{\vartheta}, L_{\xi}, \cdot \pi_{\vartheta} \cdot L_{\vartheta} \cdot\right\}$. $\ell:$

It is easy to see that l is a full br -subcategory of both k_{1} and k_{2}. Let h be a b-category such that h_{1} and k_{2} are both full b-subcategories of k.
Then necessarily $\alpha, \alpha^{\prime} \in P_{\text {兄, }}$,
$\rho \cdot \mu, \rho^{\prime} \cdot \mu^{\prime} \in I_{k} \quad$ and $\alpha \cdot \rho \cdot \mu=\alpha^{\prime} \cdot \rho^{\prime} \cdot \mu^{\prime}$.
But then necessarily there exfists an isomorphism $\sigma \epsilon$ $\epsilon H_{f}\left(a, a^{\prime}\right)$. But l is a

full b-subeategory of k, s n that $\sigma \in H_{l}\left(a, a^{\prime}\right)$; this is a contradiction, because $H_{l}\left(a, a^{\prime}\right)=\varnothing$.
g) Nor we prove that the property W of being a b-embed ding onto a good b zanbcategory is categorial and monotonically additive.

First prove that W is categorial. It is sufficient to prove that if K is a good b-subcategory of $R, R=$ good b -subcategory of S, then K is good b-subcategory of S. Let $\left.\mu \in\left|S I^{m}, \vec{\mu} \in\right| K\right|^{\sigma}$. Since $|K|^{\circ} \subset|R|^{\sigma}$, there exists $\pi \in P_{s}, \iota \in I_{s}$ such that $\overleftarrow{L} \in|R|^{\sigma}$ and $\mu=\pi \cdot L$. But then $\vec{l}=$ $=\vec{\mu} \in|K|^{\sigma}$ and consequently $L \in I_{R}$. Thus there exist $\sigma \in P_{R}, \rho \in I_{R} \quad$ such that $\vec{\sigma} \in|K|^{\sigma}$ and $L=\sigma \cdot \rho ;$ then $\mu=(\pi \cdot \sigma) \cdot \rho$. The proof is analoguous in the case that $\overleftarrow{\mu} \in|K|^{\sigma}$. Now prove that W is monotonically additive. Let $\left\{\%_{\alpha} ; \propto \in T\right\},\left\{b_{\infty} ; \alpha \in T\right\}$ be monotone systems of small b-categories such that, for every $\alpha \in T$, $乃_{c}$ is a good b-aubcategory of bc. We shall prove that then the b-category $S=\propto_{\kappa \in} S_{\infty}$ is a good b-subcatego ry of $B=\bigcup_{\alpha} \bigcup_{\infty}$. Let $\mu \in|B|^{m}$ and let $\vec{\mu} \in \mid S 1^{\sigma}$. Choose $\alpha \in T$ such that $\mu \in\left|b_{\alpha}\right|^{m}, \vec{\mu} \in\left|\delta_{\alpha}\right|^{\sigma}$. Evidently there then exlists $\pi \in P_{b-} \subset P_{B}, L \in I_{b_{\delta c}} \subset I_{B}$ such that $\mu=\pi \cdot \iota, \vec{\pi} \in\left|\delta_{\infty}\right|^{\sigma}$.
h) Let V be the property of being a good b-category

Let W be the property of being a b-embedding onto a
good b asubeategoryce
Nov prove that V is b-amalgamic with respect to W. The following proposition holds: Let $\langle\ell, \mathcal{K}\rangle$ be a b-amaigam such that l is a good b-subcategory of every $k \in \mathscr{K}$. Then there exists its b piling K such that every $k \in \mathcal{K}$ is a good of -subcategory of K, and that if H is a b-category and $S_{k}: k \rightarrow H$ are b-functors with $\varphi_{k} / l=\varphi_{k \prime} / l$ for every $k, k^{\prime} \in \mathcal{K}$, then there exists exactly one b-functor $\varphi: K \rightarrow H$ with $\mathscr{S}_{k}=L_{k} \cdot \mathscr{\rho}$, where $L_{k}: k_{k} \rightarrow K$ is the inclusion b -functor.
We prove the proposition only for the case that $K=\left\{k_{1}, k_{2}\right\}$.

1) Set $P_{n}=P_{k_{n}}, I_{n}=I_{n}, n=1,2$. Let h be a sum of the categories $\left|k_{1}\right|$ and $\left|k_{2}\right|$ with the amalgamated subcategory $|\ell|,[11]$. Put $P_{n}^{*}=\{\alpha \cdot \beta$; $\alpha \in P_{n}, \vec{\alpha} \in|\ell|^{\sigma}, \beta$ is an isomorphism of $\left.\dot{h}\right\}, I_{n}^{*}=$ $=\left\{\beta \cdot \alpha ; \alpha \in I_{n}, \overleftarrow{\star} \in|\ell|^{\sigma}, \beta\right.$ is an isomorphism of $\left.h\right\}$ put $P=P_{1} \cup P_{1}^{*} \cup P_{2} \cup P_{2}^{*}, I=I_{1} \cup I_{1}^{*} \cup I_{2} \cup I_{2}^{*}$. Then evidently $P \subset h^{m}, I \subset h^{m}$.
2) Now prove that if $\mu, \nu \in P$, $\mu \cdot \nu$ is delined in h, then $\mu \cdot \nu \in P$.
Let $\{i, j\}=\{1,2\}$. If $\mu, \nu \in P_{i} \cup P_{i}^{*}$, then evidently $\mu \cdot \nu \in P$.
Consequently let $u \in P_{i} \cup P_{i}^{*}, \nu \in P_{j} \cup P_{j}^{*} ;$ if $u \in P_{i}, \nu=\alpha \cdot \beta, \propto \in P_{j}, \vec{\infty} \dot{\epsilon}|\ell|^{\sigma}, \beta \quad$ is an isomorphism of h, then $\overleftarrow{\alpha}=\vec{\mu} \in\left|k_{i}\right|^{\sigma} \cap\left|k_{j}\right|^{\sigma}$,
thus $\alpha \in P_{l}$ and therefore $\mu \cdot \alpha \in P_{i}$ and then $\mu \cdot \nu \in P$. Let $\mu \in P_{i}, \nu \in P_{j}$. Then $\overleftarrow{\varkappa} \in|\ell|^{\sigma}$. Since l is a good b-subcategory of k_{j}, there exists a $\tau \in P_{l}$ and an isomorphism φ of k_{j} such that $\nu=\tau \cdot \varphi$. But then $\mu \cdot \tau \in P_{i}$ and therefore $\mu \cdot \nu=(\mu \cdot \tau) \cdot \varphi \in P$. Let $\mu=P_{i}^{*}-P_{i}$, $\mu=\alpha \cdot \beta$, where $\alpha \in P_{i}, \vec{\alpha} \in|\ell|^{\sigma}, \beta$ is an isomorphism of h; and let $\nu \in P_{j} \cup P_{j}^{*}, \nu=\gamma^{-} \cdot \sigma^{\prime}$, where $\gamma \in P_{j}$ and σ^{r} is an isomorphism of $h\left(\sigma^{\gamma}\right.$ may be also identity of course). Then $\overleftarrow{\beta} \in|\ell|^{\sigma}, \vec{\beta} \in\left|k_{j}\right|^{\sigma}$, consequently β is an isomorphism of k_{j} and therefore $\beta \cdot \gamma \in P_{j}$. Since l is a good b-subcategory of k_{j}, there exists a $\tau \in P_{l}$ and an isomorphism φ of k_{j} such that $\beta \cdot \gamma^{-}=\tau \cdot \varphi$. But then $\alpha \cdot \tau \in P_{i}$ and $\varphi \cdot \sigma^{\sim}$ is an isomorphism of h; thus $\mu \cdot \nu=\alpha \cdot \beta \cdot \gamma \cdot \sigma^{2}=(\alpha \cdot \tau) \cdot\left(\varphi \cdot \sigma^{2}\right) \in P$.
3) Similarly one may prove that if $\mu, \nu \in I$ and $\mu \cdot \nu$
is defined, then $\mu \cdot \nu \in I$.
4) Now we prove that if $\mu \in h^{m}$, then there exist $\alpha \in$ $\in P, \beta \in I \quad$ such that $\mu=\alpha \cdot \beta$. If moreover $\vec{\mu} \in\left|k_{n}\right|^{\sigma}$ or $\overleftarrow{\mu} \in\left|k_{n}\right|^{\sigma}$, then $\vec{\alpha} \in\left|k_{n}\right|^{\sigma}$ $(n=1,2)$. This is evident whenever $\mu \in \mid k_{n} 1^{m}$. Now let $\{i, j\}=\{1,2\}, \mu \in h^{m}$ such that $\overleftarrow{u} \in$ $\epsilon\left|k_{i}\right|^{\sigma}, \vec{\mu} \in\left|k_{j}\right|^{\sigma}$. Then there exiat $\varphi \in\left|k_{i}\right|^{m}$, $\psi \in\left|k_{j}\right|^{m}$ with $\mu=\varphi, \psi$. Then $\varphi=\pi_{\varphi} \cdot L_{\varphi}$, $\psi=\pi_{\psi} \cdot L_{\psi}$ where $\pi_{\varphi} \in P_{i}, L_{\varphi} \in I_{l}, \pi_{\psi} \in P_{l}, c_{\psi} \in I_{j}$, and thue there exist $\pi \in P_{l}, L \in I_{l}$ with $\pi L=L_{\rho}$. . π_{ψ}. Now put $\alpha=\pi_{\rho} \cdot \pi, \beta=L \cdot L_{\psi} \cdot$ Evidently
$\alpha \in P, \beta \in I, \mu=\alpha \cdot \beta$ and $\vec{a} \in|\ell|^{\sigma}$.
5) Let $\{i, j\}=\{1,2\}$. We recall, $[11]$, that if $\mu \in$ $\epsilon h^{m}, \overleftarrow{\mu} \in\left|\mathbb{R}_{i}\right|^{m}, \vec{\mu} \in\left|k_{j}\right|^{m}$, then $\mu=\alpha \cdot \beta$, where $\left.\alpha \in\left|k_{i}\right|\right|^{m}, \beta \in\left|k_{j}\right|^{m}$. If also $\mu=\alpha^{\prime} \cdot \beta^{\prime}$ with $\alpha^{\prime} \epsilon$ $\epsilon\left|\kappa_{i}\right|^{m}, \beta^{\prime} \in\left|\ell_{j}\right|^{m}$, then $\langle\alpha, \beta\rangle R^{*}\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$, where R^{*} is the smallest equivalence on the set
$\bigcup_{b \in \text { lev }}\left\{H_{k_{i}}(\bar{c}, b) \times H_{n_{j}}(b, \vec{\mu})\right\} \quad$ which contains the following relation $R:\langle\alpha, \beta\rangle R\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ if and only if there exists a $\rho \in|\ell|^{m}$ with $\alpha \cdot \rho=\alpha^{\prime}$, $\rho \cdot \beta^{\prime}=\beta$.
6) Now let $\langle\alpha, \beta\rangle R\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$. Choose $\pi_{\alpha} \in P_{i}$, $L_{\alpha} \in I_{l}, \pi_{\beta} \in P_{l}, L_{\beta} \in I_{j} \quad$ such that $\pi_{\alpha} \cdot l_{\alpha}=\alpha, \pi_{\beta}$. $. L_{\beta}=\beta$. Then choose $\pi_{\alpha, \beta} \in P_{l}, L_{\alpha, \beta} \in I_{l}$ such that $\pi_{\alpha, \beta} \cdot l_{\alpha, \beta}=L_{\alpha} \cdot \pi_{\beta} \cdot$ Analogously choose $\pi_{\alpha^{\prime}}, L_{\alpha^{\prime}}, \pi_{\beta^{\prime \prime}}$ $L_{\beta^{\prime}}, \pi_{\alpha^{\prime}, \beta^{\prime}}, L_{\alpha^{\prime}, \beta^{\prime}}$ (i.e. $\pi_{\alpha^{\prime}} \cdot L_{\alpha^{\prime}}=\alpha^{\prime}, \pi_{\beta^{\prime}} \cdot L_{\beta^{\prime}}=\beta^{\prime}, \pi_{\alpha^{\prime}, \beta^{\prime}}$.

- $\left.L_{\alpha^{\prime}, \beta^{\prime}}=L_{\alpha^{\prime}} \cdot \pi_{\beta^{\prime}}, \pi_{\beta^{\prime}}, \pi_{\alpha^{\prime}, \beta^{\prime}} \in P_{l}, L_{\alpha^{\prime}}, L_{\alpha^{\prime}, \beta^{\prime}} \in I_{l}\right)$.

How prove that there exists an isomorphism τ of ℓ such that $\pi_{\alpha} \cdot \pi_{\alpha, \beta} \cdot \tau=\pi_{\alpha^{\prime}} \cdot \pi_{\alpha^{\prime}, \beta^{\prime}}, \tau^{-1} \cdot \iota_{\alpha, \beta^{\prime}} \cdot \iota_{\beta}=L_{\alpha ; \beta^{\prime}} \cdot \iota_{\beta}$. Since $\langle\alpha, \beta\rangle R\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ there exist e $\rho \in|l|^{m}$ with $\alpha \cdot \rho=\alpha^{\prime}, \beta=\rho \cdot \beta^{\prime}$. Choose $\pi_{\rho} \in P_{l}, L_{\rho} \in I_{l}$ with $\pi_{\rho} \cdot L_{\rho}=\rho$. Choose $\pi_{\alpha, \rho} \in P_{l}, L_{\infty, \rho} \in I_{l}$ with $\pi_{\alpha, \rho} \cdot L_{\alpha, \rho}=L_{\alpha} \cdot \pi_{\rho}$. Then $\pi_{\alpha^{\prime}} \cdot L_{\alpha^{\prime}}=\alpha^{\prime}=\alpha \cdot \rho=$ $=\pi_{\alpha} \cdot \iota_{\alpha} \cdot \pi_{\rho} \cdot L_{\rho}=\left(\pi_{\alpha} \cdot \pi_{\alpha, \rho}\right) \cdot\left(L_{\alpha, \rho} \cdot \iota_{\rho}\right)$; consequently there exists an isomorphism φ of k_{i} such that $\pi_{\alpha} \cdot \pi_{\alpha, \rho} \cdot \varphi=$ $=\pi_{\alpha^{\prime}}, \iota_{\alpha, \rho^{\circ}} L_{\rho}=\varphi \cdot L_{\alpha}$. Since $\vec{\varphi} \in|\ell|^{\sigma}, \xi_{\in} \in|\ell|^{\sigma}, \varphi$ is an isomorphism of l. Now choose $\pi_{\rho, \beta^{\prime}} \in \mathcal{P}_{l}, \varphi_{\rho, \beta^{\prime}} \in I_{l}$ such that $\pi_{\rho, \beta^{\prime}} \cdot l_{\rho, \beta^{\prime}}=l_{\rho} \cdot \pi_{\beta^{\prime}} ;$ then $\left(\pi_{\rho} \cdot \pi_{\rho, \beta^{\prime}}\right)$.
$\cdot\left(c_{\rho, \beta^{\prime}} \cdot L_{\beta^{\prime}}\right)=\pi_{\rho} \cdot c_{\rho} \cdot \pi_{\beta^{\prime}} \cdot L_{\beta^{\prime}}=\rho \cdot \beta^{\prime}=\beta=\pi_{\beta} \cdot L_{\beta}$, so that there exists an isomorphism ψ of \boldsymbol{k}_{j} such that $\pi_{\beta} \cdot \psi=$ $=\pi_{\rho} \cdot \pi_{\rho, \beta^{\prime}}, \psi \cdot l_{\rho, \beta^{\prime}} \cdot L_{\beta^{\prime}}=L_{\beta} \cdot$ Now $\left(\pi_{\alpha, \rho} \cdot \varphi_{\rho} \cdot \pi_{\alpha ; \beta^{\prime}}\right) \cdot L_{\alpha ; \beta^{\prime}}=$ $=\pi_{\alpha, \rho} \cdot \varphi \cdot\left(\pi_{\alpha^{\prime} \beta^{\prime}} \cdot L_{\alpha^{\prime} ; \beta^{\prime}}\right)=\pi_{\alpha, \rho} \cdot \varphi \cdot L_{\alpha^{\prime}} \cdot \pi_{\beta^{\prime}}=\pi_{\alpha, \rho}$. $\cdot L_{\alpha, \rho^{\prime}} L_{\rho} \cdot \pi_{\beta^{\prime}}=L_{\alpha} \cdot \pi_{\rho} \cdot L_{\rho} \cdot \pi_{\beta^{\prime}}=L_{\alpha} \cdot \rho \cdot \pi_{\beta^{\prime}}$ and $L_{\alpha} \cdot \rho \cdot \pi_{\beta^{\prime}} \cdot L_{\beta^{\prime}}=$ $\iota_{\alpha} \cdot \rho \cdot \beta^{\prime}=L_{\alpha} \cdot \beta=\iota_{\alpha} \cdot \pi_{\beta} \cdot \iota_{\beta}=L_{\alpha} \cdot \pi_{\beta} \cdot \psi \cdot \iota_{\rho, \beta} \cdot L_{\beta}=\pi_{\alpha, \beta} \cdot \iota_{\alpha, \beta} \cdot \psi \cdot L_{\rho, \beta} \cdot \iota_{\beta} ;$ but all the considered morphisme are morphisms of k_{j} and $L_{\beta^{\prime}}$ is a monomorphism of k_{j}; then $L_{\alpha} \cdot \rho \cdot \pi_{\beta^{\prime}}=\pi_{\alpha, \beta} \cdot c_{\alpha, \beta}$. $\cdot \psi \cdot \iota_{\rho, \beta^{\prime}}$. Consequently $\left(\pi_{\alpha, \rho^{\prime}} \cdot \varphi \cdot \pi_{\alpha_{j, \beta}}\right) \cdot \iota_{\alpha, \beta^{\prime}}=\pi_{\alpha, \beta} \cdot\left(\iota_{\alpha, \beta} \cdot \psi \cdot l_{\rho, \beta^{\prime}}\right)$. $\Delta 11$ the considered morphisms are olements of $|\ell|^{m}$ and therefore there exists an isomorphism τ of l such that $\pi_{\alpha, \beta} \cdot \tau=\pi_{\alpha, \beta^{\prime}} \cdot \varphi \cdot \pi_{\alpha_{;}, \beta^{\prime}}, \tau^{-1} \cdot \iota_{\alpha, \beta} \cdot \psi \cdot \iota_{\rho, \beta^{\prime}}=\iota_{\alpha^{\prime}, \beta^{\prime}}$. But then evidently $\pi_{\alpha} \cdot \pi_{\alpha, \beta} \cdot \tau=\pi_{\alpha} \cdot \pi_{\alpha, \rho} \cdot \varphi \cdot \pi_{\alpha^{\prime}, \beta^{\prime}}=\pi_{\alpha} \cdot \pi_{\alpha, \beta^{\prime}}$, $L_{\alpha^{\prime}, \beta^{\prime}} \cdot L_{\beta^{\prime}}=\tau^{-1} \cdot L_{\alpha, \beta} \cdot \psi \cdot L_{\rho, \beta^{\prime}} \cdot L_{\beta^{\prime}}=\tau^{-1} \cdot \iota_{\alpha, \beta} \cdot L_{\beta} \cdot$
7) Now it is easy to see that if $\langle\alpha, \beta\rangle R^{*}\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$, $\pi_{\alpha}, \pi_{\alpha} \in P_{i}, \iota_{\alpha}, l_{\alpha^{\prime}} \in I_{l}, \pi_{\beta}, \pi_{\beta^{\prime}} \in P_{l}, L_{\beta}, \iota_{\beta^{\prime}} \in I_{j}, \alpha=$ $=\pi_{\alpha} \cdot L_{\alpha}, \alpha^{\prime}=\pi_{\alpha^{\prime}} \cdot l_{\alpha^{\prime}}, \beta=\pi_{\beta} \cdot L_{\beta}, \beta^{\prime}=\pi_{\beta^{\prime}} \cdot L_{\beta^{\prime}}, \pi_{l, \beta}, \pi_{\alpha ; \beta} \in P_{l}$, $L_{\alpha, \beta}, L_{\alpha ; \beta} \in I_{l}, \pi_{\alpha, \beta} \cdot L_{\alpha, \beta}=L_{\alpha} \cdot \pi_{\beta}, \pi_{\alpha, \beta} \cdot L_{\alpha, \beta^{\prime}}=L_{\alpha}^{\prime} \cdot \pi_{\beta^{\prime}}$, then there exists an isomorphiam τ of l such that $\pi_{c c} \cdot \pi_{\alpha, \beta} \cdot \tau=\pi_{\alpha} \cdot \pi_{\alpha}, \beta^{\prime}$, $L_{\alpha^{\prime}, \beta^{\prime}} \cdot \iota_{\beta^{\prime}}=\tau^{-1} \cdot \iota_{\alpha, \beta} \cdot L_{\beta}$. Consequentiy if $\iota, L^{\prime} \in I, \pi, \pi \pi^{\prime} \in P$ $\vec{\pi} \in|\ell|^{\sigma}, \vec{\pi} \vec{\pi}^{\prime} \in|\ell|^{\sigma}$ and $\pi \cdot L, \pi^{\prime} \cdot L^{\prime}$ are defined and equal, then there exists an isomorphism τ of l such that $\pi \cdot \tau=\pi^{\prime}, \tau \cdot L^{\prime}=L$.
8) Let now $\mu \in h^{m}, \mu=\pi \cdot L=\pi^{\prime} \cdot L^{\prime}$, where $\pi_{1}, \pi^{\prime} \in P$, ι, $l^{\prime} \in I$.
We shall prove that
(*) there exists an isomorphiam τ of h such that $\pi \cdot \tau=\pi^{\prime}, \tau \cdot \iota^{\prime}=\iota \cdot$
Let $\{i, j\}=\{1,2\}$. Let $\mu \in\left|k_{i}\right| m$. Then there exist isomorphismes $\varphi, \varphi^{\prime}$ of h such that $\pi=\rho \cdot \varphi, L=\varphi^{-1} \sigma, \pi^{\prime}=\rho^{\prime} \cdot \varphi^{\prime}, L^{\prime}=\varphi^{\prime-1} \cdot \sigma^{\prime}$, where $\rho, \rho^{\prime} \in P_{i}$, $\sigma, \sigma^{\prime} \in I_{i}$. Thus there exista an isomorphian τ of k_{i} such that $\rho \cdot \tau=\rho^{\prime}, \tau \cdot \sigma^{\prime}=\sigma$, and then $\pi \cdot\left(\rho^{-1} \cdot \tau\right.$. - $\left.\varphi^{\prime}\right)=\pi^{\prime},\left(\varphi^{-1} \cdot \tau \cdot \varphi^{\prime}\right) \iota^{\prime}=し$.

Now let $\mu \in h^{m}$, $\sqrt[\mu]{\in}\left|k_{i}\right|^{\sigma}, \vec{\mu} \in\left|k_{j}\right|^{\sigma}$. If $\vec{\pi} \in|\ell|^{\sigma}$, $\overrightarrow{\pi^{\prime}} \in|\ell|^{\sigma}$, then $(*)$ is proved in 7). The following four cases are possible: ($\left.\vec{\pi} \in\left|k_{i}\right|^{\sigma}, \vec{\pi}^{\prime} \in\left|k_{i}\right|^{\sigma}\right)$ ar $\left(\vec{\pi} \in\left|k_{i}\right|^{\sigma}, \vec{\pi} \in\left|k_{j}\right|^{\sigma}\right)$ or $\left(\vec{\pi} \in\left|k_{j}\right|^{\sigma}, \vec{\pi} \vec{\pi}^{\prime} \in\left|k_{j}\right|^{\sigma}\right)$ or finally ($\left.\vec{\pi} \in\left|k_{j}\right|^{\sigma}, \vec{\pi}, \overrightarrow{r^{\prime}} \in\left|k_{i}\right|^{\sigma}\right)$. Only the first will be considered, the remaining are analogous. If $\vec{\pi} \in\left|k_{i}\right|^{\sigma \sigma}, \vec{\pi} \overrightarrow{r^{\prime}} \in\left|k_{i}\right|^{00}$, then $\pi, \pi^{\prime} \in P_{i}$ and there exiat isomorphism $\varphi, \varphi^{\prime}$ of k_{i} and $\sigma, \sigma^{\prime} \in I_{j}$ such that $\iota=\varphi \cdot \sigma, \iota^{\prime}=\varphi^{\prime} \cdot \sigma^{\prime}$. But then $\vec{\pi} \cdot \varphi \in$ $\in|\ell|^{\sigma}, \overrightarrow{\pi^{\prime} \cdot \varphi^{\prime}} \in|\ell|^{\sigma}$ and there exists an isomorphiam τ Q l with $\pi \cdot \varphi \cdot \tau=\pi^{\prime} \cdot \varphi^{\prime}, \tau \cdot \sigma^{\prime}=\sigma$, and then $\pi \cdot\left(\varphi \cdot \tau \cdot \varphi^{\prime-1}\right)=\pi^{\prime},\left(\varphi \cdot \tau \cdot \varphi^{\prime-1}\right) \cdot L^{\prime}=L$.
9) How we must prove that every $\pi \in P$ is an opimorphlem of h, every $L \in I$ is monomorphism of h. It 1s aufficient to prove thia for $\pi \in P_{1} \cup P_{2}, \iota \in I_{1} \cup I_{2}$ only. Let $\{i, j\}=\{1,2\}, \pi \in P_{i}, \mu, \nu \in h^{m}, \pi$. - $\mu=\pi \cdot \nu$. Then ovidently $\vec{\mu}=\vec{\nu}$. If $\vec{\mu} \epsilon$ $\epsilon\left|k_{i}\right|^{\sigma}$, then $\mu=\nu$. Let $\vec{\mu} \in\left|k_{j}\right|^{\sigma}$. Since花 $\in\left|k_{k_{i}}\right|^{\sigma}$, thore exiot $\pi_{\mu}, \pi_{\nu} \in P_{i}, L_{\mu}, L_{\nu} \in I_{j}$ auch that $\mu=\pi_{\mu} \cdot L_{\mu}, \nu=\pi_{\nu} \cdot L_{\nu} \quad$ and $\vec{\pi}_{\mu} \in|\ell|^{\sigma}$,
$\overrightarrow{\pi_{\nu}} \in|\ell|^{\sigma}$. Since $\left(\pi \cdot \pi_{\mu}\right) \cdot L_{\mu}=\left(\pi \cdot \pi_{\nu}\right) \cdot L_{\nu}$, there existe an isomorphism τ of ℓ with $\pi \cdot \pi_{\mu} \cdot \tau=\pi \cdot \pi_{\nu}$, $\tau \cdot L_{\nu}=L_{\mu}$. But π is an epimorphiam of $k_{i}, 00$ that $\pi_{\mu} \cdot \tau=\pi_{\nu} \quad$ and consequently $\mu=\pi_{\mu} \cdot L_{\mu}=$ $=\pi_{\mu} \cdot \tau \cdot L_{\nu}=\pi_{\nu} \cdot L_{\nu}=\nu$. If $L \in I_{i}$, then L is monomorphism of h, as may be proved malogousiy. 10) Now prove that $P \cap I$ is the set of all isomorphieme of h. Let σ be an isomorphism of h; we ohall prove that $\sigma \in P \cap I$. This is evident whenever $\sigma \in k_{1}^{m} \cup k_{2}^{m}$. Let $\{i, j\}=\{1,2\}, \overleftarrow{\sigma} \in k_{i}^{\sigma}, \vec{\sigma} \in k_{j}^{\sigma}$. Then evidently $\sigma=\pi \cdot L$, where $\pi \in P_{i}, L \in P_{j}$. It may be then shown that $L \cdot \sigma^{-1}=\pi^{-1}, \sigma^{-1} \pi=L^{-1}$ in h, consequently $\sigma \in P \cap I$. Conversely let $\sigma \in P \cap I$, we shall prove that σ is an isomorphism of h. This is evident if $\sigma \in\left(P_{1} \cup P_{2}\right) \cap\left(I_{1} \cup I_{2}\right)$ Let $i, j \in\{1,2\}, \sigma \in P_{i}^{*} \cap I_{j}^{*}$. Then $\sigma=\alpha \cdot \beta=\beta^{\prime} . \alpha^{\prime}$, where $\alpha \in P_{i}, \vec{\pi} \in\left(\left.\ell\right|^{\sigma}, \alpha^{\prime} \in I_{j}\right.$,灾 $\in|\ell|^{\sigma}$ and β, β^{\prime} are isomorphiams of k. Thus $\alpha \cdot \rho=\alpha^{\prime}$, where $\rho=\beta \cdot\left(\beta^{\prime}\right)^{-1}$. It is easy to see that $\overleftarrow{\rho} \in|\ell|^{\sigma}, \vec{\rho}=\overleftarrow{\delta}=\overleftarrow{\propto} \in k_{i}^{o}$. Consequently ρ is an isomorphiem of k_{i} and therefore $\alpha \cdot \rho \in P_{i} \cap I_{j}$. Consequently G is an isomorphism of h.
The proof of II g) is complete, and [h, P, I] has the required properties.

1) Moll prove that the property of being e f-category is of b =amil character. Evidently if $\{b ; \alpha \in T\}$ is a monotone system of small b-categories, then $B=\bigcup_{\alpha \in T} b_{o c}$ is a b-category.

Conversely, let there be given ab -category B. Then $|B|=\bigcup_{\alpha \in T} c_{\alpha}$, where $\left\{c_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small categories. Let $\alpha \in T$ and let there be already constructed a monotone system $\left\{b_{\beta} ; \beta \in T\right.$, $\beta<\alpha\}$ of small b-categories such that every $b_{B} \quad$ is a full b-subeategory of B and $c_{\beta} \subset\left|b_{\beta}\right|$. We shall construct b_{α}. Denote by γ_{0} the smallest delemont of the class $\left\{\gamma \in T ; c_{\alpha}^{\sigma} \cup_{\beta<\alpha} 1 b_{\beta} 1{ }^{\sigma} c \dot{c}_{\gamma}^{\sigma}\right\}$; for every $\mu \in c_{\gamma_{0}}^{m} \quad$ choose some $a_{\mu} \in|B|^{\sigma}$ such that there exist $\pi \in P_{B}, l \in I_{B}$ such that $\mu=\pi \cdot L$, $\vec{\pi}=a_{\mu}$. Choose $\gamma_{1} \in T, \gamma_{1} \geqq \gamma_{0}$, such that $a_{\mu} \in c_{\gamma_{1}}^{\sigma}$ for every $\mu \in c_{\gamma_{0}}^{m}$. For every $\mu \epsilon$ $\in c_{\gamma_{1}}^{m}$ choose some $a_{\mu} \in|B|^{\circ}$ such that there exist $\pi \in P_{B}, l \in I_{B}$ with $\mu=\pi \cdot L, \vec{\pi}=a_{\mu}$. Choose $\gamma_{2} \in T, \gamma_{2} \geqq \gamma_{1}$ with $a_{\mu} \in c_{\gamma_{2}}^{\sigma} \quad$ for every $\mu \in c_{\gamma_{1}}^{m}$, and $s 0$ on. Let b_{∞} be full b-subeategory of B such that $\left|b_{c}\right|=\bigcup_{n=1}^{\infty} c_{\gamma_{n}}$.
III. Universal category for categories with a structure.

It is easy to see that the idea of the metatheorem and its proof is the same for a-categories and for br -categories. Now we shall apply it to obtain a corresponding metatheorem for categories with a structure.

For the definition of categories with a structure the ideas given in [2] are used.

1. In the Bernaya-Gödel aet-theory one may not form the
category of all categories (not necessarily small) and all their functors, nor the category of all classes and all their mappings.

Thus we shall suppose that there exists a strongly inaccessible cardinal \mathcal{N}_{τ}, i.e. an uncountable regular cardinal such that if $H_{\alpha}<H_{\tau}$, then $2^{K_{\alpha}}<H_{\tau}$; and let U be a set such that

1) card $u=\alpha_{\tau}$;
2) if a set A is an element of U, then card $A<\mathcal{H}_{\tau}$;
3) if card $A<H_{\tau}$ then $A \in U \Leftrightarrow A \subset U \quad x$.

Every category K such that K^{σ} y $K^{m} \subset \mathscr{U}$ and that for every $a, b \in K^{\sigma}$ there is $H_{K}(a, b) \in \mathscr{U} \quad$ will. be called a U-category.
A U-category K will be called small if $K^{\sigma} \in \mathscr{U}$.
2. Denote by \mathbb{M} the category of all sets $A \subset \mathscr{U}$ and all their mappings. Denote by \mathbb{C} the category of all
\mathscr{U}-categories and all their functors. Denote by $\mathcal{C}: \mathbb{C} \rightarrow$ $\rightarrow M_{\text {- }}$ the forgetful functor, i.e. the functor which to e-
x) As is well-know n, the existence of a strongly inaccessib Le cardinal is not provable from the axioms of the BernaysGödel set-theory. But if we suppose it, then a set \mathscr{U} with properties 1) to 3) may be easily constructed.

In [4] the ordered couple $\langle x, y\rangle$ is defined to be $\langle x, y\rangle=$ $=\{x,\{x, y\}\}$, where $\{x, y\}$ denotes the set consiating of x and y. Thus if \mathscr{U} satisfies 1) to 3) then A, $B \in U$ implies $A \times B \in \mathscr{U}$.
very U-categary K assigns the set K^{m} of all its morphisms.
3. Let \mathbb{S} be category, let $\mathcal{S}: \mathbb{S} \rightarrow \mathbb{M}$ be a functor with the following properties:

$$
\begin{aligned}
& \alpha) \mathscr{Y} \text { is faithful, i.e. if } \alpha, \beta \in \mathscr{S}^{m}, \overleftarrow{\alpha}=\overleftarrow{\beta}, \vec{\alpha}=\vec{\beta} \text {, } \\
& \text { (}) \mathscr{y}=(\beta) \mathscr{S} \text {, then } \alpha=\beta \text {; }
\end{aligned}
$$

β) if $\alpha \in H_{\mathbb{S}}\left(S, s^{\prime}\right)$ is an isomorphiam of \mathbb{S}, $s_{0} \in \mathbb{S}^{\circ},(s) \varphi=\left(s_{0}\right) \varphi$, then in \mathbb{S} there exists exactly one isomorphism β such that $\overleftarrow{\beta}=s_{0}$ and $(\alpha) \mathscr{Y}=(\beta) \mathscr{S} ;$
γ) if $m \in \mathbb{M}^{\sigma} \cap u$, then all $s \in \mathbb{S}^{\sigma}$ such that $(s) \mathscr{Y}=m$ form a set the power of which is less than H_{τ}.
The objects of \mathcal{S} will be called structures, \mathcal{S} will be called a category of structures.
4. Definition: Let $s, S^{\prime} \in \mathbb{S}^{\sigma}$. We shall say that s^{\prime} is a substructure of s if:
a) (かノ $\mathcal{Y} \subset(b) \mathscr{\rho}$;
b) there exists an $L \in H_{S}\left(s^{\prime}, S\right)$ such that (L) $\mathcal{Y}:\left(s^{\prime}\right) \mathscr{Y} \rightarrow(s) \mathscr{S}$ is the inclusion mapping;
c) if $s^{\prime \prime} \in \mathbb{S}^{\sigma}, \rho \in H_{\mathbb{S}}\left(s^{\prime \prime}, s\right)$ are such that $\left(s^{\prime \prime}\right) \mathscr{f} \subset\left(s^{\prime}\right) \mathcal{Y}$ and $(\mathbb{O}) \mathscr{P}:\left(s^{\prime \prime}\right) \mathscr{Y} \longrightarrow(s) \mathscr{S}$ is the incluaion mapping, then there exista exactly one $\alpha \in H_{S}\left(s^{\prime \prime}, s^{\prime}\right)$ such that $\rho=\alpha \cdot L$ and that $(\alpha) \mathscr{S}:\left(s^{\prime \prime}\right) \mathscr{Y} \longrightarrow\left(s^{\prime}\right) \mathscr{Y}$ is the inclusion mapping.
It is easy to see that L from the definition is unique. It will be called an inclusion morphism (of s^{\prime} into s in $\$$). It is easy to see that if $s^{\prime}, s^{\prime \prime}$ are both sub-
structuree of s and $\left(s^{\prime}\right) \mathscr{Y}=\left(s^{\prime \prime}\right) \mathcal{Y}$, then $s^{\prime}=s^{\prime \prime}$; and that if $s^{\prime \prime}$ is a substructure of s^{\prime} and s^{\prime} is a subw structure of s, then s " is a substructure of s.
5. Let \mathbb{C}_{b} be a fixed subcategory of $\mathbb{C} \times \mathbb{S}$ such that:
a) the objects of \mathbb{C}_{s} are some $\langle k, \Delta\rangle$, where k \in $\in \mathbb{C}^{\sigma}, s \in \mathbb{S}^{\sigma} ;(k) \mathscr{C}=(s) \mathscr{S}$; the morphisms of \mathbb{C}_{s} are some $\langle\varphi, f\rangle$ where $\varphi \in \mathbb{C}^{m}, f \in \mathbb{S}^{m}$, $(\varphi) \ell=(f) \varphi$;
b) if $\langle\varphi, f\rangle \in \mathbb{C}_{b}^{m}$ and φ is an isomorphisa of \mathbb{C}, f is m isomorphiam of \mathbb{S}, then $\left\langle\varphi^{-1}, f^{-1}\right\rangle \in \mathbb{C}_{s}^{m}$. The objects of \mathbb{C}_{s} will be called s -categories, morphiems of \mathbb{C}_{s} will be called s-functors. If $K=\langle k, s\rangle$ is an s -category, put $|K|=k$ and call it the underlying category of K. If $\Phi=\langle\varphi, f\rangle$ is an s-functor, put $|\Phi|=\varphi$ and call it the underlying functor of Φ. If $\Phi=\langle\varphi, f\rangle$ is an s-functor such that φ is an inclusion functor, f is an incluaion morphism in \mathbb{S}, call Φ an inclusion s-functor; moreover if φ is full, call Φ a full inclusion s ffunctor: If K^{\prime}, K are s-categories, we shall say that K^{\prime} is a (full) sub- s -category. of K whenever there exists an (full) inclusion p-functor from K^{\prime} to K. If K is an s-category, we shall say that K is small whenever $|K|$ is amali \mathscr{U}-category (i.e. $\left.|K|^{\sigma} \in \mathscr{U}\right)$. Every isomorphisu of \mathbb{C}_{s} will be called an s -isofunctor onto. If Φ is an s-functor, $\Phi=\Phi^{\prime} . L$, where Φ^{\prime}
is an s-isofunctor onto, L is an (full) inclusion s functor, then Φ will be called an (full) s -embedding or an so-isofunctor into (onto a full sub - s-category).
6. Let $\left\{k_{\alpha} ; \alpha \in T\right\}$ be a system of small s-categories, T is an O_{n}-ordered set, $T \subset Q$ and if $\alpha<\alpha^{\prime}$ then k_{α} is a full sub - s-category of $k_{c} k^{\prime}$. Then we shall sas that $\left\{k_{\alpha} ; \alpha \in T\right\}$ is monotone system of small s categories. If there exists exactly one th $\epsilon \mathbb{C}_{s}^{\sigma}$ such that 1 be $1=\bigcup_{\alpha \in T}\left|k_{\alpha c}\right|$ and that every $b_{\alpha c}$ is a full subw s-category of k, then we shall say that $\left\{k_{\alpha} ; \alpha \in T\right\}$ is summable and k is its union, and denote by $k=\bigcup_{\alpha \in T} k_{\alpha}$. Let $\left\{k_{\alpha} ; \alpha \in T\right\},\left\{h_{\alpha} ; \alpha \in T\right\}$ be monotone systems of small s-categories. Let $\Phi_{\alpha}: h_{\alpha} \rightarrow k_{\alpha}$ be an s-embedding for every $\alpha \in T$ such that $\Phi_{\alpha} \cdot k_{L_{\alpha}}^{\alpha^{\prime}}=$ $=h_{\alpha}^{\alpha^{\prime}} \cdot \Phi_{\alpha \prime}$ for every $\alpha<\alpha^{\prime}$, where by $h_{\alpha} L_{\alpha}$: $h_{\alpha} \rightarrow h_{\alpha}, \quad k_{\alpha} \alpha^{\prime}: h_{\alpha} \rightarrow k_{\alpha} \quad$ are denotes the inclum sion-s -functors. Then we shall say that $\left\{\Phi_{\alpha} ; \alpha \in T\right\}$ is a monotone system of s-embeddings. Let te or h be an u nion of $\left\{k_{\alpha} ; \alpha \in T\right\}$ or $\left\{h_{\alpha} ; \alpha \in T\right\}$ respectively. If there exists exactiy one s-embedding $\Phi: h \rightarrow$ $\rightarrow k$ such that $h_{\alpha} \Phi=\Phi_{\alpha} \cdot{ }^{k} L_{\alpha}$ for every $\alpha \in T$, where $h_{L_{\alpha}}: k_{\alpha c} \rightarrow k, h_{L_{\alpha}}: h_{\alpha} \rightarrow h$ are inclusion s -functors, then we shall say that $\left\{\Phi_{\alpha} ; \alpha \in T\right\}$ is summable and that Φ is its union, and denote it by $\Phi=$ $=\bigcup_{\alpha \in T} \Phi_{\alpha}$.
7. Let W be a properts of o-embeddinge.

We shall say that W is categorial if:
a) every s-isofunctor onto has W;
b) if Φ and Φ^{\prime} have W and $\Phi \cdot \Phi^{\prime}$ is defined then it also has W.

We shall say that W is full if it has the following property:
if Φ is an s-isofunctor onto, L full inclusion s functor with W, both from the same small s -category, both to small s-categories, then there exists an s-isom functor Φ^{\prime} onto and full inclusion b-functor l^{\prime} with W such that $\Phi L^{\prime}=L \Phi^{\prime}$. We shall say that W ismo= notonically additive if every monotone system $\left\{\Phi_{\alpha} ; \propto \in T\right\}$ of s-embeddinge with W such that $\left\{\overleftarrow{\Phi_{\infty}} ; \alpha \in T\right\}$, $\left\{\overrightarrow{\Phi_{\alpha}} ; \alpha \in T\right\}$ are summable, has a union with W. 8. We shall say that $\langle\ell, \mathscr{K}\rangle$ is an β-aemiamalgem if \mathscr{K} is a set of small $\boldsymbol{\rho}$-categoriea, cakd $\mathcal{K}<\mu_{\tau}$ and ℓ is a full sub-s-category of every $k \in \mathcal{K}$. If moreover $|k|^{\sigma} \cap\left|k^{\prime} 1^{\sigma}=|\ell|^{\sigma}\right.$ whenever $k, k^{\prime} \epsilon \mathcal{K}$, $k \neq k^{\prime}$, then we shall say that $\langle\ell, \mathscr{K}\rangle$ is an $ふ-$ mangam.

The definition of an s-unglueing of an s-semismalgam, and of an s.filling of an s-amalgam is evident. 9. Let W be a property of s-embeddings, V a property of s -categories.

We shall say that V is s managanie with respect to W if every $力$-amalgam $\langle\ell, K$, auch that ℓ has V, that every $k \in \mathcal{K}$ has V and that,for every $k \in \mathscr{K}$ the
inclusion s-functor $L_{l}^{k}: \ell \rightarrow$ he has W, has an s -pilling K with V such that far every $k \in \mathscr{X}$ the inclusion s-functor $c_{k}^{K}: k \rightarrow K$ has W.
We shall say that V is of s-emall W-character if it has the following property:
a) if $\left\{k_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small scategories with V such that the inclusion $s-f$ unctor $c_{\alpha}^{\alpha^{\prime}}: k_{\alpha} \rightarrow k_{\alpha}$, has W for every $\alpha<\alpha^{\prime}$, then its union exists and has V;
b) if an p-category K has V, then $K=\cup_{\in T} k_{\alpha}$, where $\left\{k_{\alpha} ; \alpha \in T\right\}$ is a monotone system of small s -categories with V such that for every $\alpha<\alpha^{\prime}$ the inclusion s -punctor $\alpha_{\alpha}^{\alpha^{\prime}}: k_{\alpha} \rightarrow k_{\alpha}$, has W. Let 度 be a small is-category. We shall say that V is \bar{R} -s-invariant if the following obtains:
a) \bar{k} has V;
b) every s -category with V contains \bar{h} as a full sub- s-category;
a) if k is a small s-category with V, φ is an isofunctor of lhi onto a category l identical on $|\bar{k}|$, then there exists a small s-categary h with V and an s isofunctor Φ of h onto h such that $|h|=\ell,|\Phi|=\mathscr{\rho}$.
10. Motatheores for s-categcries. Let W be a property of b-embeddings, which is categorial, full and monotonically adaitive. Let he be smalls-category. Let V be - property of s-categories, which is $\overline{\text { L }}$ - s -invariant, s -amalgamic with reapect to W and is of s -small

W-character .
Then there exists an s-category U with V such that every is -category with V can be fully s-embedded in U. This embedding has W and its underiging functor is identical on $|\bar{k}|$.

The proof is left to the reader.

References
[1] И.Е. вУРМИСТРОВИЧ : Вложение аддитивной категории в категориш с прямвми ироизведенияии, ДАН СССР T 132,1960, N: 6,1235-1237.
[2] CH. EHRESMAN: Categories structurees, Ann.Scient.Ec. Norm.Sup., 3 série,t 80(1963),349-426.
[3] P. FREYD: Abelian Categories, New York, 1964.
[4] K. GODDEL: The Consistency of the axiom of choice and of the generalized continuum hypotheais with axioms of set theory, Princeton, 1940, Annals of Math.Studies No 3.
[5] J.R. ISBELL: Categories and aubspaces, Canad.J.Math. 9(1957),563-577.
[6] M. KATEITO: Allgemeine Stetigkeitsstrukturen, Proc. Int. Congr. Math. 1962, 474-479*
[7] А.Г. КуРоШ, А.Х. лившиц, Е.Г. іУлГЕЙфЕР: Основы меории категорий, Успехи мат.наук $15(1960)$, валा.6, З-58.
[8] S.mACLANE: Homology, Berlin-Göttingen-Heidelberg, 1963.
[9] A. PULTR: Concerning universal categories, CMUC 5, 4 (1964),227-239.
[10] А. пультр, З. ГЕцрлин: О представлении мальх категории, ДАН СССР Т 160(1965), 284286.
[11] V. TRNKOVA: Sum of categories with amalgamated subcategory, CMUC 6,4(1965),449-474.
[12] P. VOPENKKA; A. PULIR, Z. HEDRLfN: A rigid relation exists on every set, CMUC 6,2(1965), 149-155.
(Received January 31, 1966)

[^0]: x) The question whether there exiets such a category also formulated A. Pultr in a conversation.

