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Commentationes Mathematicae Uniteraitatis Carolinae 

7,3 (1966) 

NOTES OS QUOTIENT U4FS 

Otomar HXjEK, Praha 

Summary: The relations between several properties of 

quotient maps are studied; in particular, an internal cha

racterization of commutativity with formation of products 

i s exhibited (Proposition 2 ) . 

Let P , Q be topological spacei, and e * fi -* P a 

continuous map onto* (These assumptions wil l be preserved 

throughout this paper; the terminology and notation i s u-

sually that of [2J.) The following properties and appella

tions are quite current: 

(closed) e i s a closed map, i . e . elV} i s closed 

in P whenever Y i s closed in d ; 

(open) e i s an open map, i . e . e £Y1 i s open in P 

whenever V i s open in " Q, '9 

(sectionable) there exist® a section to e , i . e . a 

continuous map S : P —* Q with & • s * 1p (the identi

ty map of P ) ; 

(quotient) e i s a quotient map, i . e . X is closed in 

P if eT1 [ X 3 i s closed in fl . 

Also consider the following properties: 

Ы ) X» e le-* L Xlì for aål X c Pj 
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(int) M X ^ eibde'UXn for all XcPy 
(limit l i f t ing) Whenever x^ ~+ X in P . there 

exists a subnet { &J \ and also <y,> —> <y. in Q> with 

I t is a simple exercise to verify the implications in 

the following diagram: 

(closed) (sectionsble) (open) 

i \ / \ 
(cl) 4 - (limit l i f t ing) ( m i ) 

(quotient) 

We proceed to present several s l igh t ly less, elementary 

interrela t ions ((it i s s t i l l assumed that e : £ -* P i s 

continuous onto). One of these, namely (c€ ) et (int )** 

«•**> (open)la contained in Proposition 1 below; th is 

yields, in ter a l i a , that in general (c€ ) *4"*> (int ) , 

since a closed map need not be open, etc* The example in 

[ 1 | I , § 9 , l l )J shows that e can be closed and not limit 

l i f t i n g . 

.frjaoositiom l . Each of the following properties i s 

equivalent with (open): 

1° a t ) «* Lint) i 

2° e ^ m - «FUX] for all X c P j 

3° e - * [ ! * * X ] - Ui^tXl for a l l A c P ; 

4° (limit covering) Whenever X4 —• X i a P and 

X * €iy , there exis ts a subnet (X^? and ^ in 



5° (bi-open) For every topological space K , the 

map e x 1R J fi^ R - ^ P x R is open. 

Proof. Obviously (bi-open) «-# (open); the opposite 

implication is well-known [1,1,§ 9, prop.9j . Next, (open)# 

»»» (limit covering) may be established similarly as 

(open) —# (limit l i f t i n g ) ; and the opposite implication 

i s easi ly obtained e.g. by contradiction. Obviously 2°*-> 

$«-> 3°; and (open) *-==-> 1° i s in the diagram above. 

Thus i t only remains to prove that 

1 ° — • 2° , 3° - + (open). 

Assume 1°, and take any X c- P •, then 

In. tCP-X)= P - X - P - e C e - C X J J 

eíШe-ЧP-XП-eíQ-Q-e-ЧP-ЊetQ-eЧKll, 

so that the set y * eT* C XI has 

P - e m « e[Q~Yl . 

Now take complements and inverse images: 

yce^re[y33-a-e^ro-y3 3ca-^«-y)- y> 

thus y * e M C e C y 3 J and returning to X r 

e-UXJ« e ^ C e Cc~*CX33J* e 1 f X J 

having applied (c£ ) again. This establishes 2° as required. 

To prove that 3° «-*--.» (open), f i r s t note that for amy 

& open in Q there i s 

erGJ~en*ite-*Eer<S-JJJ (1) 
since & c Ird emi I e r & J 1 J from openness of &, and 

erinte^reC&3J3 c e Cê Ce CGJJJ« mtQL 

321 -



lTow, using 3°, the set 

tZbd e-"ter(xJ31 - e Ur'Lto e Z&lU- to ft tCr] 

i s open in P-, with (i ) this yields that indeed e i s 

an open map, and this completes the proof. 

Proposition 2. Assume that P is a Hauadorff space; 

then each of the following properties i s equivalent to 

(limit l i f t ing) : 

1° For every topological space R ? the map 

e x 1R t Q x R --> P x R 

e-

i s limit l i f t ing; 

2° (bi-quotient) e x 1 R i s ft quotient map for ev 

ry topological space R «? 

3° e x 1g i s a quotient map for a l l compact Haua

dorff spaces R with a unique non-isolated point* 

Eroof. Easily or obviously, (limit l i f t ing) - » 1 ° — » 

**. 2°«—£ 3°j thus i t remains to prove that, e.g», non ( l i 

mit l i f t ing) *-•-• non 3°. Assume the premiss; thus there 

i s a convergent net «£ Xiji € If in P , say x^ —* .X, 

such that for every subnet i Xj \ one has that e~J Lxjl 9 

.3 sy,. ._% n§» implies e ^ -4* # . Moreover, since P i s 

fiausdorff, i t even follows that no net <tyy m or*1 LXJI con

verges^ 

How take for R the one-point compact i f ieat ion R » 

«r X u Cao ) of the directed set I ., topologissed in the ob

vious manners a l l % € I are Isolated, each neighbour

hood of oo Intersects I in a residual subset.7or A 

take the set iC^i^Dt i i l [ c P x R j obviously 

f x f 00 ) € X - X* 

322 -



To prove non 3° i t ia only needed to terify that 

{ f e x l Yi t X l ia cloaed. 

Thua, l e t 

Cex\T*tKl 3 (ty $ij.1-*(%,-*> *>* 

Due to the apecial topology in R f one haa the follow

ing alternative. Either eventually ij m i 4. oo , so 

that /J^ « *~* Lx^ 1 and hence alao nf. e e~* t x ^ l j 

tyt + leCex^Y* I XI . Or i » oo > but then < ^ ? i s 

a aubnet of i ^ l , and by assumption the ifee em1 £ Xj, 1 

cannot converge. Thua only the f irst case obtains, and 

hence (e x 1 )~* C X 1 ia cloaed but X ia not. This 
ft 

concludes the proof. 

Corollary 3 . If P ia a Hauadorff apace with count

able character, then (quotient) <***> (c€ )<?**& (limit l i f 

ting) 4—^ (bi-quotient). , 

Proof. On using the diagram and the preceding propo-

a i t ion, i t auffices to prove that (tfuotient) *•* (limit 

l i f t i n g ) . Take any X^ —»• <x in P ^ and then a (countab

l e ) sequence ix^] which ia a aubnet of {x^J , If no 

subsequence of any nfa e e - 1 £ x ^ ] converges, then 

the 8et X of terms of i x ^ ? would be non-closed with 

closed e"* CX 3 y and hence e could not be a quotient 

map. 
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