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Commentationea Mathematicae Univereitatie Carolinae 

?, 3 (1966) 

AN UNDECIDABLE THEOREM CONCERNING FULL EMBEDDINGS INTO 

CATEGORIES OT ALGEBRAS 

Z. HEDRliN and P. V0P.ENKA, Praha 

Similarly aa in f3J 9 a category which ia isomorphic 

with a full subcategory of algebras la called boundable. 

In [4] <X«R* Iabell raised a question to find a concrete 

category which ia not boundable. The aim of the present 

note is to show that the boundability of a category de

pends on the used set theory. The category, given as an 

example, is the category of sets with inclusions. It is 

not boundable in a (rather odd) aet theory and boundable 

in m usual one, in which the last result implies e.g. the 

following theorem: to any set A there exists a grupoid 

(graph, topological spaee, rasp.) &(A) such that A c 

C S la equivalent with the existence of exactly one ho-

isomorphism (graph-homomorphiem, local homeomorphiam, reap.) 

from ( H A ) into &(B) and if A 4- 6, then it does not 

exist. ^ 

In any aet theory, the Inclusions aa moronisms and 

sets aa objects form a category, which we designate by #J • 

By a concrete category we mean mo^ category, which is lie-

•cvphie with . rtbe.t.go-7 of set. uA th-ir Uppl-«. T. 

Evidently, 2J is a concrete category. It turns out that 

the boundability of 7]; depends substantially on the 
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following axioms 

(V) There ie one-to-one mapping F of the universal 

claaa V onto the olaas of a l l ordlnala 0/9V . 

We ehall work in the set theory £<, ., i . e . in the Godel-

Bernaya aet theory with the axioms of groupo A fb9C and 

the axiom of ehoiee £ .We shall need alao the following 

axiom: 

(M) There i s a cardinal cT such that two valued sub

additive meaaure on any aet le /y-additive for 

any cardinal qf • 

The main result of this note may be described by two 

theorems: 

JfcejrjiJ..Iit the aet theory Z * + (V)+(M)f 3J i s 

boundable. 

Theorem 2. In the aet theory Z * + (mxnu V), % i s 

not boundable. 

It i s easy to see that, i f 21* i s consistent, 21 *H 

+(M)+(V) i s consistent. Really, i t follows from the con

sistency of S l f that X * ( 21* denotes 2 l f + the aoti-

om of regularity D ) i s consistent. The axiom (V) i s pro

vable in 2 . Denote by (I) the following axiom: 

( i ) There exists an inacceaaible cardinal. 

Then, i f Z * i s consistent, Z * + CM) le consistent, 

as e.g. 51* consistent implies 51 * + (rum I ) i s con

sistent, and in the last theory (M) i s provable even for 

<f - tfe . 

If Z * * CI) i s consistent, then I * + (mm V) 

i s consistent. Really, in the set theory 21 * -*• CI ) It 
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la possible to construct a model of ZL* + (marv V) » 

Thua, we may derive the following corollary: 

Corollary, If (I) ie undecidable in 21 * , then the 

aaaertion " 3J is boundable" is undecidable in .21 * * 

To prove theorem 1, we use a result of [3J and the 

construction defined in [lj. The idea of the proof of theo

rem 2 is very simple. 

Proof of theorem, ;t. 

Denote by *£T the following category: the objects 

are all non-limit ordinals, oi, 7 ot > 1 . On every object -

we remark that, by definition, an ordinal ot is the set 

of all ordinals, fi 7 fi < ot - there is exactly one 

morphiam, namely the identity transformation of ot - and 

there are no other morphisms in *& • 

Lemma 1. Assuming (it), W is a boundable category. 

Hence, W is isomorphic with a full subcategory of 2£ 

(for definition see [2J or £33). 

Proof. We shall show that ^ is i full subcategory 

of VCCP-,{1\)7 (I,ill)) defined in£3J. 

Really, in [3J it has been proved that the category 

Tf)p - the trivial category of ordinals - is a full subca

tegory of ff(?~7 {2 } ) by introduction of a binary re

lation n, on P~(oc) 7 oc an arbitrary ordinal. If ot 

is a non-limit ordinal, define on P~(ot) the binary re

lation n, , and a unary relation on ot "to be the grea

test element ot ot * . It ot7 fi are non-limit ordinals, 

f f <*, _ y fi f then P~(f) i* compatible with the rela

tions ft if and only if ot as fi and -f is i natural 



inelueioa. How, i -. a -* fi ia a morphias in T((?~,it}))} 

ilfi1iyy * i f and only i f oc £ fi 7 f ia a natural 

incluaion and the laat element in oc ia aent by 4 into 

the laat element of /$ . Hence, oc ~ fi * By [31, 

TKP^il}) ( I , { 4 $ ) ) ia boundable, and by £2] f <CT can 

be fully embedded into M • 

PtfIniUoa of atff.Mat §m of ggtg ana retaUoai* Let 
K be a claaa of ordinals. For every <X6 K, let X<-c 

be a set , R^ a binary relation on X^ • If A la a set, 

A c K , we define a set 5 1 (a die joint union) 
* USA <** 

by: 
D X = { č . x , * ) | o c e /., X f i X ^ } 

вč*A > 

and a binary relation J Rrf on P X^ by: 

CC x,<.c), Cy>9fl)* J> R^ ***> o c . / 3 , CX,<&)e R^ . 

We deeignate by Ka the claaa of a i l non-limit ordlnale 

cf, , oO > i » 

Lemma 2» There exists a elaaa of couples C X^ , R^),*^ 

a aet, R^ a binary relation on X^ , oc e K9 , with 
the following property: 

i f A , B c K f are sets, * % D X . - ^ T> XA eueh # oC€A •*- >$#& /• 

that 

(1) <Cxf*c), C ^ , * ' ) ) ^ } ^ - * Cf C C x , * » , * % / * ' W ^ 0 V 

then A c B and f CC x ,oC))« Cx,o&) for every 

£E£o£. By lemma l f V i s isomorphic with a fu l l sub

category of f£ # I t means that, with every oC € K0,we 

may aaaociata a aet %c and a binary relation S^ on >̂  

•noli that if <*f fi * K0 , * t ^ —* >^ **&& i s 
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%,S» -compatible, then oC ~ A and f it the identity 

transformation. We remark that these sets and relations 

need not fulfil the condition of lemma 2« 

If R is a binary relation on a set X , we define a 

relation % on X by: (x9x) 6 R if and only if one 

of the following conditions holds: .x - . x S ^ ;0(')€ R ? 

Cx% x)€ R . k couple (x , X') is called to belong to 

the same component according to R - we write (xf *') € 

€ CCR) - if there exists a finite sequence X17XZ,.~,*„, 

such that x « ̂ , x'* x^, (x±9 X^A) e R for i * 1, £,.*•,"*-1. 

The relation C < R ) is an equivalence relation and their 

equivalence classes are called components of R * Evident

ly, every compatible mapping sends each component into a 

component. A relation R on A la called connected, if the-
A 

re is only one equivalence class according to C C R ) , na

mely X • 

Observe, that if all relations S^ on ^ , <x e K0 7 

are connected, then they fulfil the condition of lemma 2* 

Really, by definition of ^ ^ , Cx,oc) and (<y>,fi) cannot 

be in the relation C ($A S^ ) for cC 4 A . Hence, the 

componenta according to ^J^ §-c •*• *»etly the seta 

{ (x , cC ) | oC fixed, «X arbitrary in ̂  ? • By defini

tion, the relation 3) S«-c reatrlcted to the component of 

D S^ defined by oC is isomorphic with the relation 4c 

on XL • How, let -f fulfil the implication (l) of the, 

lemma* Then -f must map every component of jp Xc accor

ding to D £L into a component of J YA according to 
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D S^ . Aa the componente are iaomorphic with ( %c ? S^), 

wa get ihat, for every cC €. A 9 there ia fi e 0 such 

that the restriction of -D* «§c onto a component defi

ned by oC - say ^ - i s a mapping from ^ into >Ji 

which ia S^ SQ -compatible• But i t ia poaaible i f and 

only i-f cC » fi and f̂  ia the identity* Hence, lemma 

2 would be proved, i f a l l the relatione ^ on Xc a r e c o n " 

nected. But, generally, the relatione need not be connec

ted. It ia the re aeon, why we use the cone traction from 

L13, which wi l l change a l l the relations into connected 

onesf leaving them a l l the useful properties* 

If 4c - 8 a relation on a set Xc » we define m 

set X^ and a* relation R^ on X^ by the construction in 

f l ] putting X»Xcfim19^
m^c <***s i s the 

reason why we have assumed oc e Kc implies oc > 1 ) , 

fe, m 1, XT « X^ , RT » R^ # Using the same method 

as.in [ l ] i t i s easy td prove that f t X^~+ X^, acf fi e Kp , 

ia • ^ RA -compatible mapping i f and only if cC - /3 and 

f i s the identity* Moreover 9 by definition, i t i s evi

dent that B^t9ry R̂  - cK € K0 fla m connected relation* 

Hence, the relations R^ on X^ fu l f i l the requirements 

of lemma 2* 

How, we can complete the proof of theorem 1* 

Itat F be a one-to-one mapping of the univeraal class 

V into the claea of a l l non-limit ordinals K0 - oc e Ka 

implies oC > 1 , Henee, for any set X t we get an ordi-

nml <*, * F(X>, <*, e K0 . Put <x(X)m %m)> H(X). Rrw, > 
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where X^ and R^ have the properties from lemma 2* How, 

if y is a set, put 

SfY) - D G O O , R(V)* D H(X) 
x*y,x*0 x*y,x»0 

(if we consider only non-void seta, the void set in the 

union may be omitted). It follows from lemma 2, that, if 

yn and yz are sets, then there exists • R C ^ ) R (y^)-

compatible mapping from S(TX,) into S C)£ ) if and only 

if y^ c yz ., which is then the natural inclusion of 
SCY . ,) into S(yz). We have constructed a full embed

ding of 9J into TR, • It has been proved in [2J, that 

% can be fully embedded into the category of algebras 

with e*g* two umary operations* The proof of theorem 1 is 

completed* 

-frWf 9* tftettTCffi 2* First, we shall prove a lemma* 

Lemma 3. In the set theory S * , a«y class of mu

tually non-lsomorphle algebras of an arbitrary fixed type 

can be mapped by a one-to-one mapping into the class of 

all ordinals 0^, • 

proof. Let A be the type of the algebras. As any al

gebra., is isomorphic with an algebra defined on a cardinal 
at f we may consider only algebras defined on cardinals* 

If oc is a cardinal, then there is only a set MCoc) of 

algebras of the type A defined on oG • If oc -f* fi > 

then M foe) n M ((h) » 0 # Denote by S<-c the set of 

all well orderinge of M ^ - S * U S^ , where the sum 

is taken over cardinals* By the axiom of choice, there ex

ists a function A S associating with every cardinal cc 
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a *#U ordering KC«t) of the sat MC©t), P a t M « U ( ^ . 

If ^ € M there i s exactly oat cardinai cc auch 'that ^ € 

€ MC«t) . Wt dtaignate thia cardinai by ^ fct) . Row, de

fine on M • lexicographical ordering ^ by: 

X 4<y>9 xf tye M i f and only i f xCcc) < tf(cc) or 

xC<C) « ^Cot) « oo and X < ^ im the ordering KC<?t>. 

the ordering H i0 evidently a weXX ordering, and, for 

•vary X , the claaa of a l l ty, *+ 4 x , i a a set . Hence, 

the cimaa M can be napped by a one-to-ome mapping into 

0^ . The Xemma folloiaf. 

Lemma 3 enabXea ua to concXude the proof of the theorem 2. 

Conaider the ciaea of a i l one-element sets Z • there la 

one-to-one mapping Gr of the universal claaa V onto Z ? 

namely G-(X) ** { X j , for etery X e V . Bj aeeumption, 

there la no one-to-one mapping of V into (X^ . 

If V4 ia boundable, than for any one paint set (XJ we gat 

an algebra; ACX) of % fixed type A . If X , V are 

eete, X + Y, *I**a {X} # {Y} *M <V/ £ f * / . ffcere-

fore ACX) and /A Cy)nu«t.xrt be isomorphic By lemma 3 , 

any claaa of non-laomorphic algebraa of a given type may 

be mapped by one-to-one mapping into <X^ . Hence, Z can 

be mapptd by a one-to-one mapping into (X^ - • contradic

tion. The proof of theorem 2 i s finished. 

fiajMsck. If Ob and «£ are aubcategories of the ca

tegory of seta and mappinga T, F s 41 -*> i f a functor 

which mape Ob onto a ful l aubcategory of kf, F i s cal

led limited, i f for every cardinal ot , there ia a cardi

nal 0 such that aa/td X - 00 impliea so*** FCX) 4 /2 -
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Evidently, 1% may be considered as a subcategory of T . 

On the other hand, it is easy to see that T^ cannot be 

fully embedded into #t by a limited functor. Thus, the 

functor which maps Tj onto a full subcategory of 7Z> in 

the set theory 210 + ( V) + (M) is an example of a func

tor which is not limited. 
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