
Commentationes Mathematicae Universitatis Carolinae

Josef Král
On the Neumann problem in potential theory (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 7 (1966), No. 4, 485--493

Persistent URL: http://dml.cz/dmlcz/105081

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105081
http://project.dml.cz


Commentationes Mathematicae Universitatis Carolinae 

7, 4 (1966) 

ON THE NEUMANN PROBLEM IN POTENTIAL THEORY 

Josef KR&L, Praha 

(Preliminary communication) 

We shall deal with the Fredholm method for solving the 

second boundary value problem in potential theory imposing 

so a priori restrictions on the boundary of the set consi

dered. Let us first briefly recall the classical situation 

assuming that G is an open set in PC* with a sufficient

ly smooth boundary B . We are looking for a harmonic func

tion A in G whose normal derivative has prescribed li

mits at points of B • If we assume A to be represented 

as a newtonian potential of a single layer distributed over 

B then the problem reduces to an integral equation of the 

second kind 

?(*)+fyty) K(Xi*i>)dLHmm4l (y>)» f(x) 
t3 

for the unknown density cp of the single layer 

( H^ A stands for (<m- 1) -dimensional Hausdorff measure) 

and we have the Fredholm theory at our disposal. This met

hod of treating the Neumann problem is well known and wi

dely used in a number of different situations. Let us also 

note that this method does not require boundedness of the 

Dirichlet integral of the harmonic function Jh, • One of 

its disadvantages consists in very strong restrictions on 

ft which are usually connected with the existence and 
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behavior of normal derivatives of single layer potentials. 

It seems therefore to be of interest to know what restric

tions on the boundary are essentially connected with the 

method and which of them are superfluous. We shall descri

be here some results in this direction obtained by methods 

of geometric measure theory. In the classical formulation 

of the Neumann problem some a priori restrictions on the 

boundary are inevitable. At least, there must be some nor

mal if we wish to speak of a norma 1 derivative. These res

trictions may be avoided if we characterize the normal 

BJh 
derivative -r weakly introducing the functional 

cf it 

Л 7ПГ d Hm 

over the class 2) of all infinitely differentiable func

tions <p with compact support in R"*
1
' . Employing the 

Gauss-Green formula one may transform (1) into the integral 

(2) fcyutdJv(x).ty*cLdcf(x)dj< 
e 

involving no restrictions on B at all. From now on we as-

sume that & is an arbitrary open set with a compact boun

dary & • Noting that (2) is meaningful whenever I grad h I 

is sunmable over every bounded portion of G we are led to 

adopt the following definition (compare, e.g., Constantines-

cu-Cornea: Ideale Bander Riemannscher Flachen): 

Definition 1. If Jh, is a harmonic function in 6 such 

that I grad h I is summable on every bounded open subset of 

& 9 we define the distribution N A over 3) by 

<cf,NA>» fcyvcuL Jv(x ) > ytadcf (x)dx, c# e 2) . 

& 

- 486 -



For reasons that are clear from the above remarks the 

distribution N A i s termed the generalized normal deriva

t ive of A . (Similar functionals suitable for characteri

zing the boundary values in connection with the f irs t boun

dary value problem were introduced by L.C. Young.) I t i s 

easily seen that N<h has support contained in B • In

deed, i f Cf e 2) vanishes near B , then there i s a boun

ded open set P with a smooth boundary C such that On 

support <f c P c P u C c (J and we have 

<<y,NM,> = fyujud,H(x)'Cyu^ 0. 
P C 

Let us now consider the Banach space C%(&) of a l l signed 

Borel measures with support in B | total variation i s ta 

ken as a norm in C*f (3) • «Vith every (U e C*(b) we as

sociate the corresponding newtonian potential U(U ~ p> * (U , 

where -ft (* ) * _ or <p, (x ) « l*t}> j-jrj 

according as rfn> > 2. or <m » 2 • Since the gradient of 

A *U/U i s summable on bounded portions of G , the d i s 

tribution N/Pt *t NU(U introduced above i s available 

for every (u, e C * ( B ) . In general, N U(U need not 

be a measure #(in the sense usual in distribution theory). We 

thus arrive naturally at the following question: 

Problem !• What must be the shape of G in order that 

N 1(, (U be a measure for every (US C * ( B ) ? 

We know that support N V, (U c $ , so that NU(UE 

€.C*(B)whenever N %l /U i s a measure. 

Before investigating the above mentioned problem we 

start with the following simpler question: 
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Problem 2. Fix <XL € B and denote by gC * h e u n i * 

point mass ( * Dirac measure) concentrated at /y. • What ne

cessary and sufficient restrictions are to be imposed on G 

in order that H%<f^ c C * ( B ) ? 

In order to be able to formulate the answer in a geomet

r ic fashion we introduce the concept of a hit of a half-l ine 

on 0 . Let us agree to denote by JQ.^ (<i+) the open ball 

of center /y. and radius /i > 0 and let P stand for the 

unit sphere { 0 : 1 0 1 ^ 1 } in R^ . A point z, e H -

<*{<ty + tQ:t > *\\ wi l l be termed a hit of the half-l ine H 

on G provided i l ^ ( x ) r\H r\ G- $ 0 and i l ^ f e ) n 

r* (H - G) has a positive linear measure for every K > 0 • 

The number (possibly zero or infinite) of a l l the hits of 

{<£+t6:t>0} on G wi l l be denoted by V&(<y,, 6 ) • 

For fixed G and /y, f if 6 y , 6) i s a Baire function of 

the variable 6 on T and we are justified to form the in

tegral 

<**(**)» fv>&(y,d)dH^(e) . 
. r 

With this notation we are now in position to formulate the 

following answer to the question raised in Problem 2 : 

PTQPPtiUofl I. Let y. € & . Then NUd^'e C*(b) 

i f and only i f 

(3) nr (<ty) < co . 

Proof of this proposition may be obtained by techniques 

developed in connection with investigations of functions who

se partial derivatives are measures (E. De Giorgi, H. Federer, 

W.H. Fleming, K. Krickeberg, J. Maitfk, Chr. Y. Pauc). 

Bemark. (3) implies that G has a well defined fn -den

s i ty at tyr which wi l l be denoted by 
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(4) ^u^o v (<y,) < °o 

/• wfa/m^ Cil/t(n+-) n G) 
d

S
(^)ai^0 svtt^^Cy.) 

Using the above proposition i t i s not d i f f icult to deri

ve the following theorem which sett les the Problem 1 : 

Theorem 1. N U ! a € C * C B ) for every (Cue 

€ C* C B) i f and only if 

or 

If (4) holds then /U. —± N 7X /U- is a bounded operator 

on C*(b) * 

Before proceeding further we shall describe some conse

quences regarding B which are implied by conditions l ike 

(3) and (4). First of a l l , v/e have the following 

Proposition 2. (4) implies 

/Utfv v (<u.) < OO . 

Let us now recall the notion of the exterior normal in

troduced by H. Federer. Given ty e R!"* and G € P we 

denote by S (ry,, 9 ) the half-space {x 1 (z,-<y,)>6 <- 0} . 

Following H. Federer we term 9 € T the exterior normal 

of & at ty provided the symmetric difference of 6 and 

Sty? 9 ) has m. -density zero at ry. • It i s easi ly seen 

that, for every nf , there i s at most one exterior normal of 

Cr at /If in this sense. The set & of a l l ty. at which the 

exterior normal i s available i s termed the reduced boundary 

of & . Clearly, B C & • For •y, 6 B we shall deno

te by rn (ij>) -* t^(^) the exterior normal of (r at 

r^. . Besides that, we agree to put m, (*ty) -» <Tl (ty) - 0 
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(» zero vector) provided f f 6 • The following propo

s i t ion i s a consequence of known results on s ets with f i n i 

te perimeter due to E. Da Giorgi and H. Federer. 

Proposition 3« If v (ty* ) < oo for a (rtt+l)-

tuple of points { tyj, s A 6 ^ £ nm, + A ] in general 

position ( i . e . , not situated on a single hyperplane), then 

H<m,-1 C h ) < oo and 

V ^Cx ) .4 H n . / B ) -[distance Cz , & > J 

for aoqy ;s 4 & • 

Combining this result with proposition 2 we see that -

H_ A%)<O0 whenever (4) holds. 

Let us now impose (4) on 6 and investigate more close

l y the operator 

(5) (U. - * NU(VL . 

First we state the following 
n <TL(CC ).(z,-* y*) 

PgopojinQfi ,4* For any fixed <# 6 bf — j x - / u r " » 

i s a summable ( H ^ ^ ) function of the variable x on ft 

and 

Denoting by C ( & ) the Banach space of a l l real-va

lued continuous functions on B with the usual norm, we are 

thus justif ied to associate with every f 6 C (&) the 

integral 

corresponding to the classical double layer potential. 
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Theorem 2. Let A * H^ ^ C V ) . Then, for every 

* € C C B ) , 

W f ^ ) ~ AĈ  r^ ) - {Hr^ ) - W+fy) 

i s a continuous function of the variable fa on B and the 

operator (5) i s adjoint to the operator 

acting on C C & ) ; here, as usual, we denote by I the 

identity operator• 

Now we shall be concerned with the Neumann problem in 

the following formulation: Given i3 e C*C fi>) determi

ne a (VL 6 C* C & ) with UU (U* - >> • 

Theorem 2 shows that this problem reduces to solving 

the equation 

(6) ({ A I + W ) * < « . - v . 

In order to be able to apply the Riesz-Schauder theory to 

the equation (6) we are naturally led to investigate the 

Fredholm radius of the operator W . 

Letting T range over a l l compact operators acting on 

C C & ) we put 

o>W m im* HW -T I 9 

so that the Fredholm radius of W equals the reciprocal 

of cuW. l»et us also introduce the following 

Pgf*iattOrfl ?- For fixed ^ 6 R ^ f 6 e P and * > <? 

denote by a^ C«f , 0 ) the number (possibly zero or 

infinite) of those hits of the h a l f - l i n e | / y 4 1 0 .* t >• 0} 

on (J that are contained in XLK C<y ) . Then vK C<y,, 0 ) 
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la a Baire function of the variable 6 and we are Justi

fied to define 

<ir%*>- J*vf(<y^d)dH«»-i ™>-
r 

This notation enables us to formulate the following 

theorem describing relations between the analytic quanti*-

ty co W and the geometric structure of B . 

Theorem 3. Let Bj stand for the set of a l l isolated 

points of B and put E *=• B - Bj or E * B accor

ding as Bj i s f in i te or not. Then 

co W ~ Mm, /tup {A\d (a+)-\\+ <vf (ty) ] • 
tvb 0 <ҷ,б £ 

It i s interesting to observe that the smaller ±B coWy 

the nicer must be B . If co W fe 4 A > then H (2>)=> 
JL iH-f 

*00 i s possible. If co W < \ A , then H ^ CB) < OO 

and, moreover, there is a closed set F c B with H^.^F)-

* 0 such that every point in B - F has a neighborhood in 

ft which i s a non-parametric l ipschitzian 9urface. If coW< 

< 1+ A , then every point in £ ha3 a neighborhood in 

B which i s a non-parametric lipschitzian surface; hence i t 

follows, in particular, that (r has only a f in i te number of 

components. Finally, co W — 0 (which means that W i s a 

compact operator) implies that E i s a surface of class C , 

Proofs of the last assertions rely on investigations 

concerning regularity of sets with f in i te perimeter due to 

E. Be Glorgi and M. Miranda. 

Let us now return to the adjoint equations 
(7) (j / U + W)*<a m V (over C*(E>))7 



(8) ({ A1 + W ) f1 - fr (over C CB>) ) . 

If co W i s sufficiently small, then W i s close to a 

compact operator and the Fredholm alternative applie8 to 

(7),(8)# Besides that, & has only a f in i te number of com

ponents* If B.p-" > %>Q are the boundaries of the bounded 

components of Gr and XJ designates the characteristic 

function of 3v on ft , then {^1 ? • *•? <£^ J i s a basis 

in the space of a l l solutions X of the equation 

C\Al + W)jf m 0 

and we obtain the following theorem on the Neumann problem: 

In order that V (e C* (&)) belong to the range 

of the operator IN 11 i t is necessary and sufficient that 

•» CB.f> - 0, 1 6 i -* £ • 
Detailed proofs of the above results together with fur

ther related investigations and corresponding references may 

be found in the author's paper "The Fredholm method in po

tential theory" (supported by the National Science Foundar-

tion, United States of America) which will appear in the 

Transactions of the American Mathematical Society. 

Remarfc* The above text is an abstract of a lecture pre

pared originally for the conference Equadiff held in Bratis

lava (September 1-7,1966)• Since the talk was scheduled for 

September 5 when the author was not able to participate in 

the conference, the lecture could not be delivered* 
f 

(Received September 14, 1966) 
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