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Commentationes Mathematicae Universitatis Carolinae 

8, 1 (1967) 

ON TWO PROBLEMS OF W.W. COMFORT 

ZdenSk FROliK, Cleveland 

All spaces are assumed to be separated and uniform! zable. 

A space is called pseudocompact if each continuous function is 

bounded, or equivslently, any locally finite family of non-

void open seta is finite. By an n-cube of a space X , desig

nated by X* 9 we mean the product of n copies of X , more 

preoiaely the product of any family { X I Q, € A} where the * 

cardinal of A is n , and also the n-fold product X x • • * 

...xX ©f X by itaelf if n is finite. The purpose of thja 

note la to exhibit the following two examples• 

A* Given a positive integer n there exists a space X 

such thaft X**ia pseudocompact but X<n"1"1 is not. 

B. There exist a a apace X such that each finite cube X* 

of t la pseudocompact but X*# i8 not. 

To accomplish the picture and alao to simplify the proof of 

Proposition £ below we shall prove, see alao [4,p.3703. 

G* The product of a family of spaces is pseudocompact pro

vided that the product of each countable subfamily is so. (if 

the product ie non-void, then evidently the converse holds.) 

To prove C observe that if 4 U^ | is a locally finite 

sequence of canonical open sets in a product space P-X-C fj I 

la e A } then there exists a countable A 1 c A such that 

the projection of the sequence { U^ } into the space X i P& I 

I a C A J la also locally finite. It should be remarked that 

this provea C in a more general setting, namely 
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with pseudocompact replaced by countably H-closed, see [3J. 

Sej^l£&# According to the Glicksberg theorem, see [4J or 

[2], the properties of X in A can be formulated as follows: 

(jlX)'* is a Stone-Cech compactification of X*1 , but(fiX)"** 

is not any Stone-Cech compactification of Xm"l'/1 ; or equivsr 

lently (using the Stone-Weierstrass theorem), each continuous 

function of "n variables" admits arbitrarily close approximar-

tions by polynomials in bounded continuous functions of "one 

variable" but there exists a bounded continuous function of 

*n+l variables", which does not. The same applies to B . In 

the case A there is also the following restatement: C*(X ) 

is the n-fold tensor product of C*(X) by itself but 

C * f X * t M ) is "larger" than the (nH)-fold product otC*(X) 

by itself. 

First we shall show that the exhibition of A and B re

duces to the following examples A ' and B ' . It should be no

ted that A' for n » 2 and B* answer the original problems 

of W.W. Comfort. Then we state proposition D, and prove A 

and B ' using D • Finally D will be proved; this is the main 

step in the proof* 

A ' • Given a positive Integer n there exist spaces 

X(M,)f Jk~ 4, ***) M>+ 4 f such that any cube of any product 

X (<k<i ) x . . 0 x X (M/^ ) is pseudocompact, but the pro-

duet X (4)x *.. X A (sri + 4 ) is not pseudocompact* 

B V There exists a sequence {Y(h)] of spaces such 

that the product of any finite subfamily is pseudocompact but 

the product of every infinite subfamily is not pseudocompact* 

•ftroof of .4 (using A*)* For X take the sum of the family 
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{ A(ft)i ,where X(k) are spaces with properties in A • 

Proof of B (using B ' ) . Similarly l e t the sum Z of a f a 

mily { y(A)} with propertiea in B* be an open subspace of a 

space X such that X - Z la a singleton, say (z) 9 with 

neighborhoods of z defined to be a l l U 3 z which contain 

a l l C 4 f ) x YCA,) except for a f i n i t e number of n • 

B» Proposit ion» There ex i s t s an in f in i te disjoint co l l ec 

tion ® of subsets of /3N ( (5N designates a St one-

fiech compactification of the discrete space N of natural num

bers) such that every cube af N U A; A € <£} , ia pseudocompact. 

Exhibition of X(k) in k \ Choose a one-to-one family 

\A ($ )\$*4r:1 /ru + A I in A and put 

U»u) - UiAC#)\?+ A3,XC**)-N UBCk) 

for Jk * 47 >*<> tu + 1 • The product of { X(h)} ia not pseu

docompact because Pi { B (h) I ** (J) and so the diagonal 

ia closed, which implies that the family {C{% I <k* * 47 ••• 9 

nn+/1})lJl€Nl of non-void open se ts i s loca l ly f i n i 

t e . On the other hand i f M^i 4s h for l * 4,***, <rv, than 

Pi { b Chi ' D A (A*,) 7 and so any partial produot la 

pseudocompact because i t contains a cube of some N U A (M>) 

as a dense subspace, and every cube of N U A(Jk>) ia pseudo-

compact. 

Exhibition of Kk) i n B ' . Let { A(4t)\ be a disjoint s e 

quence in A and l e t 

B ( 4 0 » U<A(4)\4 * A3, V(Jh) » N U BCli*)-

Clearly the intersection of any inf in i te subfamily of 

4&C40J I s empty, and the intersection of every f in i t e subfa

mily contains soma A(k) • Thus every cube of the product of any 

f i n i t e subfamily i s pseudocompact because It contains s cube of 
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some N U /4(4t) as a dense subspaee. To prove that the pro

duct Z of an inf in i te subfamily { V (Jk) I Jk e K J i s 

not pseudocompact we shal l show that the family of the canoni-. 

cal open seta 

l^« l<X«\x(i>}\*eZ,*($)*& f o r ^ 6Jkl, Jke K , 

i s local ly f i n i t e . Pick a /^ « {^(A) I M, e K J in Z . 

I f some y(k) belongs to N then the set t{x \x e Z , 

X (Jk) * <ty (&,) } i s a neighborhood of y which intersects 

no U^ with #1 > n+(to>). I f no y(k) belongs to N 9 

then /if (i) 4* *+ (fr ) for some i •& $, in K be

cause the intersection of f B (A) I <4t> e K $ Is empty. 

Choose disjoint neighborhoods U of y ( i ) and T of yCj) 

in fl N . Clearly the neighborhood 
L{xlxeZ9x(i)eU,x<4)eVt 

of y intersect no U^ with A > i 9 £ . This concludes 

the proof* It should be remarked that one could show that each 

cluster point of { U (A) } i s a cluster point of the diago

nal of Z , and use the fact that the diagonal i s closed. 

Proof of D * Call a mapping f : N —-> X eventual

ly one-to-one (eventually constant) i f -f : C N - M ) —• X 

i s one-to-one (constant) for some f in i t e set M . Consider the 

set P of a l l eventually one-to-one mappings of N into i t 

self* For f in P l e t f* denote the unique continuous ex

tension of f to a mapping of /J N into i t s e l f . Write x p y 

i f f * , /y. € /3 N - N and - f*x - ty for some f 

in P . I t i s easy to verify that p i s an equivalence re la -

t ion on /3 N - N . I t should be remarked that the equivalence 

classes are the smallest P* -invariant non-void subsets of 

/IN - N .We shal l prove that the col lect ion © of a l l e<|ui-
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vaXence ciasses has the properties stated in B , 

£• Proposition* The coiXection ® has the p r o p e r t y 

stated in D , ocuod ® m Uf^ JtXjv H0 ., and &axd> A m 

*€M{V K0 for any A in ($) • 

i£SJSL* ̂ he cardinai of any A in (£) i s at most 

^fu 7G0 because the cardinai of P i s vcfi t£0 and 

aXX the points of A are images under mappings from P of a n y 

fixed point of A • On the other hand, A i s dense in {IN -/V 

and so the cardinai of A i s at Xeast Vcfi ei0 • The cardi

nai of fiN i s JUfi 4Xft> tC0 ., and so the cardinai of 

g ) i s jucp, JUfV fc0 * 

According to C to prove that any cube of (N U A ) ±3 

pseudocompact i t wiiX suffice to prove that Z •» (N U A)N 

i s pseudocompact* We shaXX prove that every sequence { oc CM,) j 
H 

in N has a cluster point in Z ; i t wiXX foXXow that Z i s 

pseudocompact since N i s dense* Given {xCM,)} choos , 

& subsequence { ty (M ) J such that each coordinate sequence 

y(k) i s either eventuaXXy one-to-one or eventuaXXy constant* 

Pick any a in - A and consider the point z * {z(Jk,)} in 2 

such that z(k) i s the vaXue of ( <y.(M,))* at a i f y(k) 

i s eventuaXXy one-to-one, and the eventuaX constant value of 

y(k) otherwise* We shaXX prove that z i s a cXuster point of 

{ <y, (M ) I , and* so certainiy of { x CM* ) \ • Let U be a ca-

nonicaX neighborhood of z determined by neighborhoods 

U(0), U M ) , < " , U(/n) of x(0)f z(1),...,z(<n), respectively* 

Since any f* , with f i n P , defines a homomorphism on /3N-

— N , there exis ts a neighborhood V of a in fi N such that 

(<y(M,))*-lVl n (N U A) c U (m) 
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if M, * m, and n+ (A*, J e P . I f Jk, 6 <n and y(k) 

ia eventually constant then we choose a residual set N^ in 

N sucn that y(k) i s constant on N^ • The intersection N ' 

of V ft N and a l l the N(k) i s a non-void ( inf in i te ) 

subset of N and clearly <y.(i ) e U i f i € Nl 

The proof i s complete. 
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