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Commentationes Mathematicae Universitatis Carolinse

8,2 (1967)

THE SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS
Josef KOL(M{, Praha

l. In this remark we continue the investigations [1l] omn
solutions of nonlimear integral equations. In [1] we gave some
conditions for the solvability of Hammerstein integral equa-
tions in L, -space. The purpose of this mote is to investi-
gate the oquation « - Ah . =0 where A: Lz - L,
(1<g9<2, 2’ Q" = 1) is a linear continuous mapping of
L‘Z into Lp amd A () = g ((x),X) 1s an operator of
Nemyekij such that /A 1is a mapping of L, into Ly .To the
end of this note we shall also consider Urysohn integral equa-
tions in L1 -gpace. Some recent works in this subject are
cited in [1].

First, I must correct the misprint from [1]. In theorem 7
and remark 3 [1) must be meb G =00 ( instead of mes G <o),
The Golomb-Vajnberg theorem also holds for the domains G with
mw G = co, ef, [2].

The theorems 5,7,8 and corollaries 1,3 [1]hold in more ge-
meral form. We can suppose only that N & g5 (x, t) & M,
N,M=const ana AMIAL & 1 or AMIAL <1 (or
MRAN £ 1 ) is satisfied if M >0 . If M < 0 , then
these assumptions are unnecessary. Moreover, we can consider
in theorems 5,8,9 [1] the following more general equationst
X -AAG(X)=f, X=AP(X)=0 AP(x) =0 instead
o x(e)-A[K(s,t)g (x (), t)dt=F(s), x(s)-

G . . .

o -



-/K(s,t)g,(x(t),t)dt-o,fK(s,t)g.(th),t)dt = 0, respectdvely .
[
é

2. Let X, Y be real Banach spaces. A mapping
F: X =Y 1is said to be bounded if F transforms bounded
sets in X into bounded sets in Y . It is well known that
an uniformly continuous (nonlinear) mapping F : Dy — Y ,
De={ueX:luuls R} is bounded on D . A map~
ping F: X — Y 1is said to be quasi-bounded [3] (or li-
nearly upper bounded [4] ) if thefe exist two constants
o >0, ¥ >0 such that I F(w)l £ 2 4|l for all
4 € X with sl 2 o« ., 1In particular, s mapping
F: X Y is asymptotic close to zero 1:;‘1«/"» «'—’m—&i)—'—= 0.

w0

Denote by E, the euclidean s-space.

Lemgpe ). Let ¢ (&, Xx) be a N =functon [5,chapt.
VII(uw € (o0, +0), Xe G, G denotes a measurab-
le subset ¢ E, with mes G < 00 ) such that an opera-
tor of Nemyekij A () = g (u (x), x) maps L, into
Ly (p>2, "¢ g "2 1), If lg (u, x) | & @ (Xl ™%
+y(x), (v € (~00, +00 ), X € G) , where @(X)€ Loty s,

y(x)6 Ly, O0< @ < 41, then /o is bounded continuous
1A (w)lieg 0

ﬂ“" ~>a0 ' 7 “L.’,,

and asymptotic close to zero, i.e.
- v

Proof. In fact o
) WAl = (flq(u(-x),x)l d.x) €

£ (/(gp(.x)lu«(x” ey N dx )i &
(]

) 1-& %
é(/(g(.x)lu(.x)l Wdx) ¥+ lyl,, .
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- . 4 =2 1_ &
Applying the HOlder s inequality with fy = e U= n

we obtain
- 1= '
2) !cpw’ ‘"Lg' S “Cf”‘_#/ﬁ_z Iw ”Lfv

Py . -1 -
Using the.Holder s inequality with f4y = o, g1’= 1-
(0 < o <1), then

() 1wl & (e &) Nt "
From (1),(2),(3) it follows that
' %y
(4) ﬁh(u)ll,_i & Clg:ﬂ;__‘%l!ullL” +hvl
C= (men GOE . Homoe , fim I ()l el = 0.
From (4) we conclude that - is bounded. Since hr: L,— L,
A is also continuous [ 6,chapt.I] . This completes the proof.
Lemga 2. Let X, VY, Z be Banach spaces, A : X —» V¥
a linear continuous mapping of X into Y .+ Assume that a
mapping F : ¥ — Z  is nonlinear bounded and asymptotic clo-
se to zero. Then the mapping FA : X — Z is bounded
and asymptotic close to zero.

This assertion is a slight generalization of George s re-
sult [7].

Theorem 1 [1l1. Let F: X > X , P: X=X, T: X~ X
be mappings of a Hilbert space X into X , P, T be li-
near continuous meppings onto X  having the inverses p-1 ’
T-" . Let the inequality i

FPFu) - PFlw,)~ Tug-at,)ll € o et = 2 1l .

hold for every ALy, 4, € X with « 1T & 1.
If there exist two positive constants «, ¥, ¥< I T 7l
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such that ﬂT(w)—PF(u)IIé“-%' e i for all « € X

with f 4 | 2 oc , then the equation F(w«)= 4 has at
least one solution 4, € X  for every 4 € X .
From theorem 1 it is easy to deduce the following
Gorollary 1 [1]. Let F: X — X be a mapping of a
Hilbert space X into X which has the Giteaux derivati-
ve F'(u) far every « € X . Let PF/(«) be a nor
mai operator for every 4« & X and such that (PF/(w)v,v)2
20 for every w« € X, v e X , Where P is a linear
mapping of X into X  having an inverse P~7  and
1P & (pup l FrCuwr .

If there exist two positive constamts «, 9y, 7 < 1
susrthat D4 = PF (W)l & 9 law I for all .« € X with

fwll 2 « , then F 1is onto.

An another result concerning the solution of functional
equations with quasi-bounded operators has been obtained by
W.V. Petryshyn (8], His assertion is as follows: Suppose that
A is P -compact quasi-bounded mapping (with constant 3~ )
of a real Banach space X into itself., If & > 75 then
(A-kul) is onto.

A linear bounded operator As X — X  is said to be
atriétly positive in a Hilbert space X , if « += (0 im-
plies (Aw, <) > 0.

Lempa 3 [6,chqa.I;l . Let K : LQ’—) LT‘ be a linear
contimuous mapping of qu, into L, (1< g, < g < 2,
fb-4+ q:A = 1) . Suppose that K acts as a continuous
strictly positive self-adjoint mapping from Lz. into L, .
Them K can be represented in the form K = AA* | where
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A= K'1 : L, — Lfv is continuous and A* denotes the -

adjoint of A , so that A* : Lo — L, -
In lemnm& 3 Ki denotes the positive square root of

K . Moreover, it is easy to prove that A/ s K H
quLw < L

4
z
and 5AI’L2_'L16 ﬂKﬂL!_’L‘ , where 'A”L,_»L,,

(or I K ll,_"_, L ) denotes the normof A (or K )
considered as a mapping of Lz into Lﬁ (or from L"

into L, ).
Under the assumptions of lemma 3, let - (&)= g (u(X),X)

be an operator of Nemyckij having the property that f1s L, —»
— L% . Consider the equation

(5) g = Kh(y) .
Then the equation (1) investigated in L, is equivalent to
(6) m-A*h (Aw)= 0

cors idered in L, 1in the following sense: If 4, is a so-
lution of (6) in L, , then ¢, = A, is a solution of
(5) 4n L, . Conversely: if ¢,  1s a solution of (5) im
Lp » then 4, = A*.h (¢ ) 1s a solution of (6) in L, .
Theorem 2. Under the assumptions of lemma 3 let the fol-

lowing conditions be fulfilled:
1° niw) = 9:“, (o (x), X ) 4s a continuous mapping from

Ly tnto Lp/n.z , N & 9w (£,X) & M for every
s €(-00,+0c0) and almost every X € G, where G 1is a
measurable subset of E, with meo G < co amd

MIKD,

2° 1g (i, x ) & ¢ (x4 ey (x), (we (-0, +0), XEE),

where g€ Ln/y.o, W 6 Lg and O < x < 1.
Then the equation (5) has at least one solutiva ¢, im 4.

L2ﬁ4 it M>0 (N, M= econst).
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Proof. The proof of theorem 2 depends on lemma 1 - 3 and
corollary l. Since 1< @, < @ < 2, f > 2 . In view of
1° and [5,§ 20] the operator 4 acts from L, into L,
and has a linear GAteaux differential

Db (uyv)=gl (u(x), x)v(x), 4, € Ly -
Since g, (4, X ) is bounded,

I.D/h(u-,'lf)ﬂl_zé I, Bl & N T,
by}

Ny= N, (mes G), Ny=Mac(IM([, INIY, Thus D (w,v)
is bounded in L, and continuous in « € L, for an ar-
bitrary (but fixed) v € L,,, . Comsider the equation (6) in
Lg. .
is a continuous mapping of L, into L, . Set & («w)=
= A*# (A4). Then the mapping @ : L, - L, has ali-
near bounded Gateaux differential
DO (u,v) = A%, (Aw (X)) X)Ar=0"(w)v, v; e L,

Using lemma 3, we have that K = A A* , where A

on the space L, ( @°C«) denotes the GAteaux derivative
at the point .« € L, ). Furthermore, assuming 1°
1O (w1t = 1A*G/, (A (x), %) A (x)II? &

ﬂAl - /Iga,(Au.,.x)Av' I*dx £

2 2 2 z
N IIAH,’ L IAILz_’LtlIv—ﬂ €N, IIKIL_,L”IIKIL‘L

%
H”‘"‘k‘“’:‘tﬁ’" WRF g 1+ N, | KII‘_"_,,% L I

2

where F(u) = 4«4 -Q (). Suppose M < 0, then‘
(F/u) vy lvi?, u,vel,

It M > (, we have
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(Q W) v v)=(A¥g,, (Au,x)Av, v)=6fg«'“(Au,.x YA dx

« MIAVE S MIAR W I} € MIK
2

2
ll?L‘livsz .
Thus (F7(w) v, v )2 0 gop every € L, endve L,
Moreover, A* h (Aw) = qgrad f(Aw) , where

-F(u.)aﬁ,fé/‘dx b/'“q.(v,.x ydv .
Using theorem 5.1 [5] we see that

(D (uw,vy),7; ) = (Db (e, ;)5 )

for every 4; , 1, € L, and « € L, . Hence

(D@ (m,15),v; )= (A* D (Aw,Av;), 1) =
=(Dq (Aw, Av;), Ay )= (DR (Au, Ay), Aty ) =
= (A*Dh (Au, Avy ), v ) = (v, DB (w, 1)) -

Hence (‘(4) 4is self-adjoint mapping in L, fo every
M € Lz .

According to lemms 1,2 /2 A: L, — L,  and obvious-
ly A*.h A are asymptotic close to zero. Set P= 1% 1 ,
where 1% is a fixed number satisfying the inequality

'i h -1
0< %< (1+N 1K ‘Lg'ﬁl.ﬁnKﬂL,_ﬁLz) )

there exists a positive number Nz such that for every« € Lz
with lav ll 2 N, [ we have 1 IA*p (Al < € N ll ..
Clearly, for every s € L, with luc Il 2 N, there is

Taking O<e<1,

lw -2 Fludll € ¥ law ll y where = 1~ + € < 1 .
Using corollary 1 we see that the eugation (6) has at least oxe

solution «* in L, . Hence ¢ = Ak is a solutidn of
(5). This concludes the proof.




Remark 1. Recall that the condition 1° of theorem 2 im=
plies the boundedness of 1 : L”-y Lg, on L_,ﬂ .

Moreover, 41 1is Lipschitzian on L, . Indeed, from the
equality (4, v € L, )
(i)~ () = (ah (X)- v(%))fg“(v(.x)+t(u,(a<)~1r(.x))o<)da<

it follows [5, § 20] that
W (Y- (), & Nlaw=-v 0, -
% n 2 m2
4 2
(fdt [1g r )+t - (), do) T
0 &
Since g, (4, X )  1is bounded,
“/h«(%)—/h-(’v")” € N, luw- 'U"”ﬂ ,
where N, = N, mes G, NsMu(lMl INI) .
Assume that K  is an operator determined by

(m Kw)= [K(s,t)uwt)dt,
[ 4

where K(s,t) 4is definedon G =~ G, G 4is a mea-
surable subset of E; with mwo G < o0 -

Theorem 3. Under the conditions of theorem 2 let K be
an operator defined by (7), where the kernel K (s, t) is
such that%fgfull((s,t)l = d® < 00 . Then the
equation (5) has at least one solution ¢, such that

wveal mupe | ¢, (XD < o .
X€6

Proof. According to theorem 2 the equation (6) has at
least one solution A, € L,. Then ¢¢ = A, 1is a so=
lution of (5). By the Vajnberg-Golomb theorem (A = l<I )

we obtain
1
Vel mups I K, | £ d N, ”’-z . This concludes the
¢
proof.



Theorem 4. Under the assumptions of lemma 3 let the
following ¢bnditions be fulfilled:
1° K 1s defined by (7) ana ”:%e/?‘ﬂ IK(s,t)=d? oo
2° n(aw) = g«’“(w(-x ), X ) 1is a continuous mapping from
Lp dnto Lp/n_a ,where g («,x ) is such that for
every w € <-¢, ¢ >, (¢ > 0) and almost every x € G
there 18 N € g (4, x)& M, (N, M= const ).
If either Al M< 0, O< A < RHAAK (0)II"" ,  where
R-cd"’, orbd) M> 0,

fal < Min ( Rm )

1
WAL ’

MﬂKﬂl’_ﬂz’ FAL©N

where m = 1-12A | M HKll“'.,‘l , then the equation
@(s)-2r [K(s,t)g (aCt), t)dt = 0.

nes at least one solution <, € A(Dy ) such that

«’?j‘mlq, (X)) < +00 , where I =

~{fuel,:luls R, Rcd’s.

Proof. Instead of the equatiom
(8) 9-1K4\.€q3- 0

we shall solve the equation

(9) w - AA* R (A )= 0

in L, . By the Golomb-Vajiterg thecren we have that
veacpiupy |Auwlbd lwl —Sor every w e L, . Thus for eve-
Ty M.‘ch{uei..; flulid R,Reccd7} there is
m:«‘i;mp [Aw lc amd

(10 N £ g, (Au,x)& M.

By 2°, (10) and according to[5, § 20] we see that the mapPing
Q)= A (Aw), Q: Ly~ L, , has for everyuely, vely,
& linear bounded GAteaux differential D@ (w,v) =
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= A¥gL (Au, x)Av .

Suppose a), then (F’(w)v, »)3 v I £8 every
4 €Dy amd ve L, , where Flu)s #-2 6 () -

We shall apply theorem 3 [1) with E = Dg ,» ‘%= 0, m=1,
B = I ( I denotes the identity mapping of Lg, )

3 1 -
and,k-M-HIUMHKHLz*LﬁllKll_{,L’) ,N,-MM(IMI,INI).
It remains to prove that D%s {uely; lu-4y II-#R,,’}C.DU
where ,

iy =BAAR (), Ryg=ag, (1=, Y BNy 1,

%
= HI-BFlulle (=209 %) < 1 .
acd-“fs;g: F/Ce)N 1 +

A number 1% satisfies
(11) 0 < ¥ < Min (&7, 2Rat™),
where @ = R~ IA®A (0)ll, £-= R3e -2 I A% (0)I* .
For the verification of this assertion cf. the proof of theo-

rem 6 (1].

Assuming b) we have (F’(u)vy v )2m vl for every
wel, re L, witn m-s-'i-l.llMI(K//,_g_,,_z .
It is easy to show that

Doy = fwelysle-u, 06 R; Dy
where .« = B$A A*h (o), R;-— x,: (1-o) 724 Ny Il
664’; s (1~ 2»»7,1}“'-1}"/&,)i < 41 .In this case a number
satisfies the inequality

(12) ,0<4}<Man(%,—27i~“—4) ]

where @, = Rm - IAAXL (0N, &7 = R4e - |2 AX . OO N? .

Therefore, according to theorem 3 [1] the equation (9) has a
unique solution «* in DR“’ C.DR‘ eDy e L,) for
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in DR: )o Hence ¢, = Aw™ € A(Dy ) 1s a solution
of (8) in' Ly . Moreover, by Vajnberg-Golomb theorem

wac pup 1, | < + o . This completes the proof of theo-
XeG

Trem 4.

Remark 2. If the conditions of theorem 4 are satisfied,
then <, —> ¢,  in the nomm topology of L, , where
o= Al 4, (1-)t,, +AVAY D (A, ), w,=0 amd
<, denotes a solution of (8)s A poditive number 7% is
determined according to the condition a) or b) by (11), or
by (12). Suppose for instance a), then the equation (9) has
a solution «* in D c L, axﬂn{t'bg llag, ~ *"L,' 0.

Sothat ¢ = Au™ € A (Dg ) 1s a solution of (8) and
le, - <, ”‘-r-- TAu*-Au, ll£IlA Ing_’L; llu”—u*ll,'z—? 0
whenever m. —> 0o , Since Al = | A*|| and

NAL g IKiE
Lz"’Lr Lg,""r- N \we have that

2
ﬂAlle_,L? IA*4h (0 & IIA{I‘*L*ﬂh(o)llﬁ IlKlLl‘”Lﬂuh(o)lng .
Hence

-1
14~ I & 2Bl (1-2,) AN, NARK )1 &

£aday (1- )7 ) Kul!“” ol .

Similar assertions also hold for the case b).

3. Consider Urysohn integral equation

(13) ()~ SK(s,t,«w(tNdt = 44 (s)
[

in a real space L,_ (G), where a function K (s, t, « )
is defined for S, t € G, we(-o,+a0 ), G is a mea-

surable subset of E. with mer & < 00 amd g € Ll'
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Assume that K (s, t, 4 ) defines an operator
(14) Adl= [K(s,t,a(Ct))dt ,
[

which mps L, into L, . Let @:L,— L, be a conti-
nuous mapping from Lx_ into LEL defined by

(15) Q)= [Q(s,t)uct)dt,
[

where @ (s, t) is determined on G > G . Set
T=1-2A@Q (1 denotes the identity mapping of L, »
A a real number). Suppose that A is a regular value of
el « Under these conditions, using theorem 1, we shall pro-
ve the following
Theorem 5. Let the following conditions be fulfilled:
1° for every u,, 4ty € (-0, +0), 5, t€ G
IK (s, t,u,)~ K(S,t,4,)-AQ (3,8 ) (y-aty) | £ g (5,80 | itym44y |,
where oo = () S¢?(s, t)dsdt )’1' & ;l—:l—,"T’-lI
& 6

20 | K(s,t,4)-00 (5,8 )0e 16,3 g (5,8 I | N uCs, 8

(s,te G, A e(-,+00)), yhere O< %, < 1,

(R=1,2,..,m), (5,1 )e LzG“ G ©°nd the functions g, (s,t),
(k=1,2,00m ) are such that

-4_ o«
(16) S (S 1g(s,8)] = dt )%ds < o ,
e €

Then the equation (13) has at least one solution 4, € L,
for every Y4 & L, -
Proof. Assuming 2°, then for every i € L2

I T =Fla=120(w) - Al &

- 4
£ ccmé fau 174 NYT



where M= mav [ ([lge(s,t)™*dt) " ds ,
¢ .

=12 M G

Ne S/ h'(s,t)dsdt, Flw)zae-Aw),C=mes G .
& &

Hence Lom M T)=Fledl _ o.
|l e K oo [N |

In view of 1° for every Ay, My € Lz
I Fay) = Flay) - TCaq=aty M= N A (eag) - Altty)-AQ(e-40 )l £

g o -, |

1 _
with oc & WT=7] - Thus all the assumptions of ‘theorem 1

are satisfied. This completes the proof.
Theorem 6. Let K(s,t,4« ) be a function satiafying
the following conditions:
1° For every Mgy A€ (~00,+ ), (5,€ € G ) there is
IKCs,t,aus) - K(s,t, )& cp(s, )l ~u,l.

2° [K(s,t, )l % /smuafhg 9a (5, 8)1l™ pcs, ¢,

(s,t € G, €(-20,+ a0 )), whereO<oy<1(het,2,...;m)
M (s, t)e Lz&x& y A is a number sufficiently

small (0£ A £ €& < 1) and the functions @, (s, ¢t )
(k=1,2,..., ™) satisfy (16).
o) e —1

e i
¢ L’.Gxﬁ

then the equation

a(s) = A [K(s,t,a(t))dt = (s)
e

has at least one solution 4, € L, for every € L, -
Proof. The proof is similar to the proof of theorem 5.
In next we suppose that A 1is defined by (14), where
K(s,t,« ) is a function given on G x G x (- a0, + 00)
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and G s a bounded closed subset of £, .

Lezgs 4. Let X be a Banach space, A: X = X a
completely continuous mapping of X inte X, Q¢+ X ¥ X

& linear mapping such that
IA)-28 )l -0

el a0 fach

If A # 0 is not a characteristic number of & ,

then the equation
(17) a-Alu)=ny
has at least one solution 4, € X for every 4 € X
Proof. By L6,chapt.IV,lemma 3.1] the operator @ 1is
completely continuous. Since A is a regular value of & ,
Q;1= (I-2@)" exists, 1s bounded and everywhere defined.
The equation F(w) = 4 with F = I - A 1is equivalent
to
-1
(18) u =R+ 43 %,
-1 -
where R(w)= @ (@ Cu)-FluN=@;' (A(u)-2 8 Cu)) -
-1
Furthermore, since &) is continuous and A~-14 com~

pletely continuous, R is completely continuous., In view of
BRGIN £ N @ NACL)-AG )l

IR ()l =0

. U th
Hazll-¥a0 Tall sing the theorem of

we have that

Dubrovskij L9,chapt.IIj we see that (18) has at least one so-
lution in X . Thus the equation (17) has at least one solu-
tion «, € X  for every 44 € X. This concludes the proof.
Theorem 7. Let one of the following conditions be ful=-
filled:
1° The operator A (« ) defined by (14) is completely
continuous in L, =-space and the function K (s, ¢, «) is

narc



such that
(19) IK(s,t, )= A @ (s,t, !l Qe trlul®

(s, te ¢, 4 € (~0,+ ®), where 2,4 >0, 0&x<1,
Q(s,t) is a kernel of (15) and A #+ 0 1s not a charac-
teristic value of { .

2° K(s,t,0)=0,(3,teG),K(s,t,4 ) has a bounded
derivative K (s,t,«) and K, (s,t,«u)— Q(s, t)
a8 AL — 0© uniformly with respect to §, £ € G , where
Q (5 5 £) is either identically equal to zero, or defines
a linear operator (15) having the property that 1 is not
& characteristic value of § .

Then the equation (13) has at least one solution Aty €
€ L, forevery ¢4 € L,

Proof. The proof of theorem 7 depends on lemma 4., Assu-
ming 1°, it is sufficient to prove that ”‘ﬂ}r—“ll Alw) -

“AQwM N ' 0. 1In fact, using (19)

(20) NAGL)-A@(w)l & (mes G2 Lames G+t [l (£t ],
X é

Applying the Holder s inequality with 4 Ld,, g"a I~k we

obt ain that '

21) [l t)*dt & (mes G ) ([ 1wt AdE) .
-4 &

According to Cauchy=-Schwarz inequality
(22) ([l ct)dt) & (mes GYF Na 1%
¢

By (20),(21) ana (22)

HAG)-28Cu)t 1 o , Lmn&)E
Heellyao flac ll ‘(MG) mf”“” N hi® =0,

Assuming 2°, we see that IK(s,t,« )l & Mlwl pop
every 8,t€ G, wue(-a,+) M= cot .

LS
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According to [6,chapt.I,th.3.2] the mapping A (« ) acts
from Lz into Lz and is completely continuous. Further-
more, A is asymptotic close to a linear mapping G [cf.6,
chapt.V,§ 3] . Thus all the assumptions of lemma 4 are satis-
fied. This completes the proof.

Remark 3. Some results concerning the solutions of homo-
geneous Hammerstein integral equations being asymptotic clo-

se to linear ones has been established by M.A. Krasnoselskij
[6,chapt.III,§ 4,51,

4. Theorem 8. Let F: X = X be a mapping of a uniform=
1y convex Banach space X into X such that for every Ay,
iy € Dy ={weX:lwll £ R} there is

| PFlity) = PF(iy)~ K(uy~seg )l & o g~ ae, 1,
where P: X =5 x K: X ofs X ape linear mappings having
the inverses P~7, K-7, Let F be a Fréchet-differentiab-
leat 0 ,F(0)=0, a=IK-PF(0)l<1 andalKN&1.
Let € be an arbitrary positive mumber such that £ < /- @.

Then there exists a positivé number o% such that for

any ¢4 e X with llylle _‘Z(ui%(%vLﬁ.«_’? the equation F(«)= 2

hae at least one solution in the ball D.={« & X:llull®d¢.

Progf. To prove the theorem 8, use the same arguments as
in [10] and the Browder s fixed point theorem [11].
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