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NON-PROVABILITY OF SOUSLIN'S HYPOTHESIS
Tomé&8 JECH, Praha

1, Introduction
The ordering of the real line is uniquely characterized
by the following properties:

(1) 1t is continuous;

(i1) it has no first and no last element;

(i1i) it has a denumerable dense set;

From (1ii) follows

(iv) every family of non-overlapping intervals is at most
denumerable.

It has been conjectured that (iii) can be replaced by (iv).
This question was raised in 1920 by Souslin [13].

Souslin’s problem: Is every orderring satisfying (1),(11),
(iv) isomorphic with the ordering of the continuum? .

Souslin’s continuug is such a set which satisfies (i),
(11),(iv) and is not isomorphic with the continuum.

The existence of Souslin’s continuum has been neither pro=-
ved nor disproved. There are known the following results con-
cerning Souslin’s hypothesis:

Jesenin-Vol ‘pin (1954) [61: Souslin’s hypothesis (i.e.
the non-existence of Souslin’s continuum) is not deducible from
the axioms A, B, C of set theory (Godel-Bernays set theory,
cf. [21, without the axioms of regularity and of choice).

Héjek and Vop&nka (1965) [3]: Souslin’s hypothesis is
not deducible from the axioms A, B, C, D of set theory.
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The main result of the present paper is

Theorem 1. Souslin’s hypothesis is not provable in set
theory. )

Exactly speaking, if Godel-Bernays set theory > * is
consistent, then it remains consistent, if the existenge of
Souslin’s continuum is sssumed. It remains the problem, whether
the assumption of non-existence of Souslin”s continuum is con-
sistent as well.

‘ In section'2, some theorems are mentioned, which are .
connected with Souslin’s problem'. B.g., theorem 1 implies the
non=-provability of Kurepa ‘s ramification hypothesis. Miller’s
l theorem enables to transfer the problem of existence of ,Souslin's
continuum to the problem of existence of an uncountable ramified
graph of certain type. This theorem is used in construction of
the model (section 4).

THe intuitive intention is, to construct the required ra—-
mified graph as a limit of some countable ramified graphs orde-
red by inclusion. Using Vopdnka's or Cohen’s methods, cf. [14~-
18, 1], she construction of corresponding topology of of cor-
responding set of sets of conditions is a matter of skill. The
;;roblem ia; howevé;', what conditions the countable graphs must
satisfy, in order to converge to Souslin’s continuum. It appears
that the countable regﬁiar ramified graphs (2.3, 4.2) are the
right graphs. .

The construction 4is done with help of Vopdnka’s method
of V -models, as described in [18]. It is not essential that

V -models are ,modelu of Z"‘ in S* . An analoguous
construction can be done in ZF*, ¢/ -models are briefly des-
eribed in section 3. For the reader who knows better Cohen-ty-
pe models than V -models the remark 4.15 is added.
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The section 5 is devoted to standard V -models given
by free ultrafilters. The whole section (which is not neces-
sary for othér considerations), is based on the méthod from
[18]. The rélation is shown between this method and Hajnal=-
Lévy-Shoenfield s modification of Gddel s function. Especial=-
ly, if ()Qq)L (i.e. constructible R, ) is denumerable,
the non-provability of Souslin’s hypothesis can be establish-
ed by Lévy’s ad junction of a non-constructible set.

The question is, whether an analogous model as in sec-
tion 4 can be constructed for larger cardinals. In connection
with [5), it would give an interesting result on measurable

cardinals.

2 ivalence th
In 1943, Miller proved the following theorem, cf. [15]:
2.1, Theortm. Souslin’s continuum exists if and only if
there exists a partially ordered set P of power X, such
that
a)if Q@ € P eand card @ = x4, , then Q comtaim
at- least two comparable and at least two incomparable elemanta;
b) if X, 6 P  are incomparable, then there is z ¢ P
with X <2z &and % < =2 .
In 1948, Sierpinski stated in [12] the following theorem
(weaker than Miller s):
2.2+ Theorem. Souslin’s hypothesis is equivalent '1th
the following hypothesis: '
Let F be a family of sets satisfying. .
a) a, ¥eF = (anb=0vast v-b'sa.)
b) every disjointed subfamily is at most dennlerable;
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P ¢) every monotone subfamily has the maximal element
and is at most denumerable.
Then F 1s at most denumerable.

For the sake of completeness it is to be mentioned that
in 1936 Kurepa [ 7] formulated his ramification hypothesis,
which implies Souslin’s hypothesis and is therefore not
provable.

In order to avoid technical difficulties we reformula-
te Miller-Sierpiﬁski equivalence theorems and introduce some
notions which simplify further considerations. h

2.3. Defipition.

0 ) 3 —> @, Further, the set <, = @, will

be considered. The elements of

that set are {mad (me w ,

o < @,;). The o -th row A is
the set @, x {a } . The ramified
graph is the relation r on

&), x w, satisfying the follo-

«— LN
1
<

wing conditions:

(1) r 18 reflexive and transitive;

(11) 4f (x, 4> en oend x € h, , yeh thenagp;

(ii1) if « < f8 }mdzy_él:h then there is x € A
with <X ¢ > € A

(1v) if X #4 are from the same row, then there is no
z with {xx>€n and <yp 2Td>e n .
Two elements x, y are r-gomparable, if (X a4)€x or
(q, X>en and are r-incomparable, if the converse is true.
A relation A & A satisfying (1) = (iv) and being a 1li-
near ordering is called a chain.of a ramified graph.
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A subset a of the domain D (x)  of r is called an apti-
chain of r , if it contains pairwise incomparable elements on-
ly.

The following theorem is a simple modification of Miller-
Sierpinski theorem:

2+4+ Theorem. The necessary and sufficient condition for
the existence of Souslin’s continuum is the existence of an un-
countable ramified graph, which has no uncountable chains or

antichains.

3. V czmodels
Y -models are parametric syntactic models of the theory
S* of Godel=Bernays in the theory 3. * and depend on two
parameters B, z ; B being a variable for complete Boolean al~-
gebras and 2z being a variable for ultrafilters on B , The
author of the present paper preserves the denotation both of pa-
pers [14~1Y7) and of the later version of V =-models [18].

F 1is the sheaf over B on (C(B) and for every set-
formula g the value F"gle¢ B  can be computed
(Frg&y'= Fg'A FTy™, FRg'=-F'y" etc.). The model V(B,z)
is the model dete;‘mined by the class of functions C(B) and
the predicate €* (x€*y = F(xa)ezxz ) . For any set-
formula ¢ , the following holds:

¥ * = FgTe z .
To every set x there is a corresponding function Je'x e C(B).
It is no danger of confusion, if we identify k, with x .

There are two important characteristics of complete Boo-

lean algebras which enables to investigate the properties of
V -models.
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3.1. Definition. , (B) 1is the least 4, such that
no disjointed family A< B  of power 14, exists.

3.2, Definjtion. & (B) 1is the least 4, such that
there is no basis b of B having the property that « >
DUyl >... €& implies Ny + 0. ’

Bed,

3.3. Theorem. If‘co“ € 6(B) or @ > &« (B),then
@x 18 a cardinal number of V (B, 2 ) .

4. The model

4.1, Now, we construct a complete Boolean algebra B
in such a way that there is a Souslin’e continuum in the model
V(B,z), x being an ultrafilter on B . The Boolean algebra
B 1is the algebra of all open regular sets of some Hausdorff
topological space.

4.2. Definition. A ramified graph r is regulap, if
(v) there 18 o € @; (the length of the graph) and

D(n) 1s the whole ), x ot ;
(vi) if x € A, , A<y <o , then there are 7, ,
npyeh , gy * Y, with (xay, deEn, <Xy >€n .
4.3. Definition. ¢ 1is the set of all regular ramified
graphs of length @, -
b 1is the set of all regular ramified graphs of countable
length. For every & € A, 44, 1s the set of all ¢ € ¢,
Q, 2 /t ., (Further, the lower~case letter r is the variable
for elements of b .) .
4.4 Lepma. If 2 2 #° then «, S 4, -
4.5. Lemms. If n, n' € £, then either # = £’ or
x 2n" or r and r’ have no common extension; i.e.
leither My, 2 Abys 4 OF Ay S 4, or u, and u,. are
a1is joint.
’ - 296 -



4.6, Lempa, If X € & (2 ) and the length of r is o,
then there is a chain » € 2 of length o containing
the point x (i.e. x € D (») ), Moreover, if & 1is a
l:‘u'ﬁit number, then there are uncountably many such chains.

Proof. We can assume that o¢ is a limit number. There

is a sequence o, < x, < ... < &, < ... confinal with
x (x € h(,,.),and we can easily construct a subgraph of

r of the following form:

N
NERYAWAN
Ll AVAYA

o
The assertion is then obwious.

4.7 Lemmge If r is of length &« , them there is
#' > A of length o + 1 . .
Proof. The proposition is obvious, if oc is not a limit
. number, Let o¢ be & limit number. Let us enumerate all mem-
bers of D (2 )=, < & by natural numbers: €,,-L,,..., &, -
For every m € &  we choose a chain s, of length &« ocon-
taining the point e, and extend this chain by adding the
point {m & > in the ot -th row. Thé graph obtained in
this way is regular ramified and has the length oc + 1 .
4.8, Lemmg. If 41, & X, S ... S &, ©... are elements

of b, then 41 = U 2« belongs to b .

w0 m
Broof.
The only mon-trivial condition, which is to be verified

is (vi) of 4.2, Let @B < 9 < (the length of r ). Then
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7 is less than the length of some r, and thus (vi) is
satiafied.

4.9. Lenmg. If 2 € £, then there is g € ¢ with
92 2.

Proof. By induction up to w, -

4.10. Conseguence. Every u, 1is non-void; the inter-
section of a sequence 4Ly 2 by 2... 24y 2... 1s again
an u,

4011, Lemmg. The collection {4, : 2 € £ ¢ is a clo-
pen bagls for a Hausdorff topology t on the set ¢ .

4.12, Now, B is defined as the Boolean algebra of all
open regular sets of the space {eX 7. Theset b can
be embedded into B in such a way that every r is identi-

fied with u, . The set is then a basis for B (i.,e. for
4 any non-zero 4 € B there is # € & with . s « ),
n, € X, 18 the same as x, 2 n, , the meet £, A 2, is
r, fr, 24 ,r, if 4,4, and O Ifr UA, ¢4,

and the meet A %, of a monotone sequence %, > /£, > -.-
m e W

we> n,>.,. 48 U a_ . Further, we choose an ultrafil-
mew "M

ter 2 on B,

4.13. Lemmg. ), if the first uncountable cardinal in
the model V (B, = ). Moreover, is the construction is done
in the theary with the axiom of constructibility, cardinals
o V(B,x) are absolute.

Proof. The assertion follows from 3.3. 6(B)= ¥, ac-
cording to 4.10, w (B) = (2*)* (1.e. #, ,if Val),

4.14, Now; let ‘us define the function f € C (B) ,which
ia to be the required ramified graph in V(B,x).Let x, ¥
be elements of @, > &y
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F(Kx = V{n:<xy>eni .

1t follows that for any r of length o ,
Frep(w=xw)=n' = n .

Now it is obvious, how the definition of the Boolean algelbra

satisfies the intuitive intention to obtain f as a "limit of

countable regular ramified graphs".

4.15., Remapk. If the corresponding Cohen-type model were
constructed, then countable regular ramified graphs should be
the sets of conditions, the symbol

n s FrgT
should be replaced by
nk*$
( é\: being a formalization of the formula <&¥ ) and the equa-
lity from 4.14 should be replaced by
F* (FMN(wxa)=n) .
4.16. It remains to prove that £ has in V  the fol-
lowing properties:
a) f 1s an uncountable ramified graph;
b) every chain is countable;
¢) every antichain is countable.
In the proof, we use the fact that, firstly, if F g7 =1, then
@ holds in V , and secondly

a4 SFrYx)g(x) i (Vnea)(VxeC(BIr&Fpix)'l;

& Fr(Ix) g (x) 128 (Vo< )(3nsv)3xeCBIn <
€ Fro(x)'1 .

4.17. Lemmg. £ 1is an uncountable ramified grapH in
Vie,z) .



m. The proof of the fact that f 1is a ramified graph
is & matter of skill. As for the second part of the assertion,
1t follows from the fact that FrD(f) = al < @ = 1.

4.18. _Lepma. Every chain of f is countable (in V ).

Proof. We prove the following:

Fré3m)g (») = 0
where <& () is the formula
S f &A 1isachainof £ & (Vo< ay)IxehxeDs)l.
Let, on the contrary, there be A € C(B) with Frg(s)V+ 0.
There are X, € b, and x, & F'g 22N such that
K, & F.'.x, e D(») .
We can continue by induction. For any 8 < @, there are

X, € »hﬁ and 7, E'ryfs A, such that

r -1
nnsF.xﬂe.‘D(/a) .

Let us denote as 8, the chain determined by the sequence
r % ’
{x :y<p}.Since x, ¢ Ffep () | it is easy to be
shown that '
(1) f‘tn‘F'—/af‘(G)xﬁ)sb; ;

(2) Ny S Ry

Let g be the following ordinal funetion from ), into a)y
- 9, (0) = 0 9

q(B) ... the supremum of lengths of Kypsr ¥< s .
The function g 1is increasing and continuous, and hence there
is a limit ordinal o < &, with @ (&) = o . It follows

that n, and s, have the same length o and that
(1) x4 € Fraoblaoxa)= s

.
]

2) A, € 1
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Now, we construct an extension 1’ 2 ,i” having the pro-

perty that the chain s, cénnot be extended in \r' (and

hence in no extension of r ). Then
(x) #' ¢ Fradx)lxe h & x e D(»)I7

which contradicts to A’< Frg (5)7 , (If (x) did not hold,
there would be an extension &7 2 &’ and an extension

A’ 2 A, of length ot + 1 with £”<FloMwx+el)=4"
and A’ € 4" )

The extension x’ 2 4 is defined in the following way:
Let us enumerate all members of &, X oo by natural numbers:
€, €490 €y,... . For every m € @), , we choose a
chain 8, of length ov different from s, and containing
the point e, @and extend this chain by adding the point

{m o« » in the & -th row., The obtained graph is regular
and the chain g, cannot be extended in it.

4.19. Lemm. Every antichain of f is countable (in

v .

Proof. Every antichain of a ramified graph can be exten-
deﬁ to a maximal antichain (i.e. such antichain which cannot
be extended). Let us suppose that there is @ € C (B) with

Fry ()’ + 0  where W (@) 1is the formla
a sap, x & &cardas# &a is a maximal antichain of f .

Let A4s, Y220y 4gr+-+- 3 (3 < W , be all the elements
of &) X &, 1in lexicographic order (i.e. first the O-th row,
then the l-st, etc.). There are x, and %4, s F "y (a)? such
that

n,eFrx ea & X, is f-comparable with ¥, .

We can continue by induction. For any 3 < @, there ade x,



ad 2, 2 U »n such that
n ry<p ¥

ry $ F'"xﬂ ea & X, is f-comparable with 5;;'.
Using the same argument as in 4.18 we can find a limit or=-
dinal o¢ having the following property:
(1) r,,  has the length ov ;

(2) {yp i B < K § = @ X X3
(3) {X,: B < x}c Do X .

Let us denote as a, the set {x,: A < § . Since

K< FTy(a) 1t is easy to be shown that

{4) a, 1is a maximal antichain in g ;

(5) n, € Flran(a,xa)=a .

Now, we construct an extension A’ 2 x_  of length ot + 1
having the property that a, is a maximal antichain in r°
(and hence in every extension of r ). Then ‘
(x) R € Fla = qg'
which contradicta to 4’ $ F Ty (@)’ . (If (k) did not
‘hold, there would be an extension % =2 £’ and x ¢ @,
with % € FCx € a’. But in this case we could £ind an ex-
tension X 2 X with x 6 D (&) and hence @ U {x}
would be an antichain in T )
The extension 4’ 2 x is defined in the following way:
Let us enumerafe all the members of <, > o by natural
numbers: €,, €,,---, €, ,--- « Forevery m & @ there
is €, € a comparable with e, . Hence we can choose a
chain s, of‘length o containing the points <€, , €, and
extend this chain by adding the point (m o« > _in the oai~th
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row, Obviously, a, is a maximal antichain in this regular

extension.

Rem. free ultrafilters
5.1 This chapter is devoted to construction of standard
V -models with help of free ultrafilters. The reader is
supposed to be familiar with sections 8, 9 of [ 18] gnd the
denotation from it is used without reference. The significan-
ce of free ultrafilters is, that if B is a complete Boolean
aglgebra in a model-class P and 2z is a free ultrafilter,
then V (B, x) is standard model (isomorphic with the mo-
del-class \¢\/a,'B e The existence of free ultrafilters is
guaranteed, if <, .is sufficiently large cardinal of A(P).
5.2, If P is as;umed to be the class L of all con=-
structible sets, then we can easily prove the following
Theorem. W2 = L, (L, being the class of z-con=
structible sets, cf. [ 4, 8, 11,.9].
Proof. 1. L, s V{: . It suffices to prove x € h‘f .
It holds that = & B € L. and the identity function I on
B is a (B,B)-function such that =z = T{x :I(x)ez -
2. WP s L, . This follows from the fact that every
w (£2) can be obtained by Godel s operations from z and
congstructible asets.
5+.3. Using the result from [18] and computing the power
of the Boolean algebra defined_ in section 4, ‘we can prove the
following S
Theorem. If ®, > (H‘, > , then there is a set z such
that Souslin’s hypothesis does not hold in. A (L, ) -
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1. Remark.As P.Vopénka informed the authar, A. Hajnal

from Budapest heard during his stay in the U.S.A. in 1964
that S. Tennenbaum obtained a similar result as the presént

(by Cohen’s methods). However, the author does not know ei-

ther of any published paper concerning this problem, or of

any abstract announcing this result.
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