Commentationes Mathematicae Universitatis Carolinae

Josef Kolomy
On the differentiability of mappings in functional spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 2, 315--329

Persistent URL: http://dml.cz/dmlcz/105115

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105115
http://project.dml.cz

Cormentationes Mathematicae Universitatis Carolinae
8,2 (1967)

ON THE DIFPERENTIABILITY OF MAPPINGS IN FUNCTIORAL SPACES
Josef KOLMf, Praha

This remark deals with the differentiability of mappings.
in functional spaces. We establish some conditions for the e=
xistence of Fréchet differentials for the mappings acting in
reflexive Banach spaces (Theorem 2,3).

Moreover, the connection between the Gateaux and Fréchet
differentials is derived and also some basic properties of boun-
ded differentials are established. In last section, using the
arguments similar to those of M.M. Vajnberg [1l,chapt.I] we give
some gufficient conditions for the boundedness and continuity

of the Gateaux' differentials.

l. First of all we introduce some well-known notation and
definitions. Let X,Y be linear normed spaces, (X — ¥) the
space of all linear continuous mappings of X into Y. Through-
out this paper by a word "space" there is meant a real space.

» W, » to denote the

We shall use the symbols " — " and
strong and weak convergence in X(Y) , respectively. A mapping
F:X—Y of X into Y 4is said to be strongly (weakly),
[demi-] continuous at X, € X if x“—v-/-* X, , Lo, — x, 1
implies F(x,)— F(x,), [(F(x,) Y, F (x,))1 , respectively.
A mapping F: X*— V¥ is called compact ona: set Mc X

if for every bounded subset Nc M , the set F(N) is compact
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in Y ., Let us recall that F: X — V¥ is said to be com=
pletely compact on & bounded set Mc X if F is uniformly
continuous and compact on M . For an another equivalent defi-
nition cf. El,chqat.IJ. The following result is due to M.M.
Vajnberg [ 1,chapt.I): If X 1is a reflexive Banach space and
F: X— X 1s strongly continuous on Dg= { X € X

I x §~R} , then F is completely compact on Dp .

By VF(x,,h) (vy DF(x,, ) ) we denote the
G8teaux (a linear Giteaux) differential of a mapping F: X — Y
at X, € X , respectively. By d F(x,, A ) we shall under-
‘stand the Fréchet differential of P at X, € X, (K € X),
cf.[1,chapt.1].

The concept of bound~d differentials was proposed by G.A.
Suchomlinov [ 2], His definition is as follows: We shall say that
a mapping F: X = Y has at X, € X a bounded differen~
tial dVF (x, , ) if for any given € > 0 there e-
xists o°(e) > 0 such that if |t/ < 0", then

14 CF(x,+th)-Fix)I-dVF(x, Al < €

uniformly with respect to % € X, lh =1 anddVF(x, &)
is bounded on the unit sphere Il ll = 1.
Suchomlinov [ 2] proved the following assertion: If. F: X—>
—» X 1is a mapping of Banach space X into itself having a boun-
ded uniform differential at %X, € X , then dVF (x,,A) =
= d F(x,, A ) . The result of Ivanov [3] is as follows:
Theorem 1 (Ivanov [3]). Let X be a finite dimensional Ba-
nach space, £ : X — E, a real functional on X . If there e-
xists the Gateaux differential Vf (x,, A) and f is Lip-
schitzian in a neighbourhoed U (x,) of x, € X :
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Q) If(x+h)-F(x)E MInll, X Ul,), x+hellXx,)

(M = const), then f possesses a bounded differentiai
dvVf(x,, n) a x,e X.
Recall that (1) implies '
FVEX,, )= Vi (X, P, )] €M Il -ty ll

for every M1, A1y € X . The Ivanov ‘s theorem gives immedia-~
tely the following consequence: Under the condition of Theorem
1, let there exist D#(x, , A ) at X, € X. Then f
possesses the Fréchet differential ‘o (x, , M) at x, € X.

Let us remark that Theorem 1 does not hold for any Banach
space., The Vajnberg'a result [1,4] states: If there exists the
Gateaux derivative F’(x) in a neighbourhood WU (X,) of
X, 6 X  and is contimious (in norm topology of (X — X ) )
in x,, then F: X— ¥ possesses the Fréchet derivative at
X, € X.

For another result cf. Theorem 2 [ 4,chapt.VIII,§ 31 .
The proof of mentioned theorem depends essentially on uniform
continuity (in norm topology of (X — X) ) of GAtesux deriva-
tive F'(x) 1in some neighbourhood I X -, Il < & of X, .
The .abo;e results were generalized by G. Marinescu [9,th.2,3].
But these assertions also depend on continuity (under the direo-
tion h ) of GAteaux derivative F’ (x) in the norm topology
of (X—+X). ’

Recall that there is a completely another situation in
complex Banach spaces, c¢f.[6,chapt.IV,7] .

2, We shall say that the GAteaux differemtial VF (x,,A),
|°‘o € X is strongly (or weakly) continuous in (x,,#1.),heX
(b is an arbitrary element of X ) jointly if X, —* X, ,
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Ay e imply VF(x,, b, )= VF(x,, b ) (orVF (X, 0,)*
M, VF(x,, 2 N.

Now we shall prove the following

Theorep 2. Let X be a reflexive Banach space, F : X—
—» X a mapping of X into itself. Suppose that P possesses
the GAteaux differential VF (X, ) in a convex neighbour—
hood U(Xx,) of X, € X. If VF (x,,H) is strongly
continuous in (X, ,# ), /o € X Jointly, then F posses-
ses the Fréchet derivative F'(x,) at x, and VF(x,,6 k) =
= dF(x,h) = F/(x,) R . '

Broof. Let € be an arbitrary positive number, h a

fixed (but arbitrary) element of X . Then there exists a con-
stant o, (¢) > 0 such that if |t | < o[ (€) , then

(2) u-t"-a)(.x,,th,)u< €,

where @ (X,, th )= F(x,+th)~ F(x,)= VF(x,,th) .

To prove our theorem, we need to show that the numbers o (€ )
have a positive lower bound d(E) for he X, Il =1
and that the inequality (2) is valid for these h . Suppose
contrary, there exists a positive number €, with the follow-

ing propertyt for every n (n = 1,2,...) there exist .y, e X
1

(lh, I=1) and t, suchthat It, | < .  and
3) I E @y )l > €,

Since X is reflexive space and || 4, | = 1 , passing
to a subsequence { /hg,,* 3 we have that h”’h X, A X.

Since €,  and f, € X are given, there exists a positi-
we Tumber O] (€, ) such that it It| < o (g, ) , then
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(+) 1@ tnol <5 -

Since {lv”hf is a subsequence of {4, ¥ and if

L - oy (g,) , then there exists t"“&, such that

e

It,, | & % < % (g) aa
1
(5) I —t:ha) (X., t,,*/hw‘)' > g, .

Let us note that x, + t,m}z,%e UX,), %, + t,, M€ U(x,)

for sufficiently large k . But by assumption

Flx,+ by M, )~ F(x)= VFCx,, 8, My )+ @ (%, 8, b, ),
(6)
F'(x,+t,,%h°)— F(x)= VF(X,, by, A, )+ (X, Ty, H, ).
Now let €« € X* be any linear continuous functional on
X such that el = 1. By the mean-value theorem
(Flx,+t, M) - F(x,), €)= (VE(X 4t L, #,,0€),

)]
(Flxot tpy 4ry) = F(x,), €)= (VF(X,# By by P s Ty 11, ), € )

where (X ,€ )  denotes the value of e at the poimt = € X,
0<aw<i1, 0< B, <41 andoy=oce) B= B (e) .
Adding and substracting (VF (x,, ta, 4, ),€) and accor-
ding to (6),(T)

(@ (Xoy by ¥,

)-ad (x,, tn, A0 ), € )=(VF(X,+ o t, H,, , tmhm),e)-
- (VFX,, to, de ), €) + (VF (x,, b, 4, )€) -

- (VF Gt fo by M 1, ) ) + (VF (X, Ey ) =

-~ VF (x,, t,%h' ), e) .
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From Hahn-Banach theorem it follows the existence of <, € X
such that €, =1 and

Km(xo7twhhm«h) - @ (‘xo’to\-* ‘h‘v )7‘3.)1 =

)- a)(x,,t,,,hh‘,n

=l (X, ta, #ny,

Hence
1
I f;h[GJ Xy, bng Prmg ) = @ (Ko g 4, )11 £

£ UV F (X0 + oy by Puny , A, )= VE(X,, B, ) I+

+ WVF (Xo, #5) = VF (Xo, Bng )l + I VF (X, , 41, ) -
- VF(‘XO + Bk tﬂ*,'h'ai ’ho )I .
Since t"‘h—’ 0, ,h*m)—"—) 4, , we have that X, +
+dy t, ’h.w‘:w—’ X, and x,+ ﬁﬂwto»,.""a —» X, . Hence
Xo + By tng Mo > X, a0d VF(x+ L, P, , H, )+ VF(x ),

VE(X,, A ) YFCX,, ), VR (X + Ba by, A2, ) —> V(X , P ) -

Thus, there exists an integer &, (€,) such that

@ | {'f-%[om,,t%h%)- @ (X, by 4, 010 < 22

for every &, R = Ak, () .0n the other hand

(o) 4 f;“w(«x,,tw,,h%)n £ 1L @t )+

+|é:w(x.,t%/hwh)-a)(xa,t%%)_”l
In view of (9),(8) and (4)

(10) ! 72:,,“’ (X, trg Mg ) I < €,

for every Ik = J@, and some ‘t,,,_‘, lt%l & 7’1“4‘ dp (g, ) .
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But (10) contradicts (3),(5). Accarding to Vajnberg’s theorem
01,5 3,the3:11 VF(x,,h) = DF(x,, A )= F'(x,) A , Where
F'(x, ) denotes the Gitesux derivative of F at x, . Thus
F'(x, ) 1o the Fréchet derivative of F at x, amd this com-
pletes the proof,

Corollary l. Let X be finite-dimensional Banach space,
F: X — X a mapping of X into itself. Suppose that F
possesses the GAteaux differential VF (X, /2 ) in a convex
neighbourhoed % (x,) of X, € X . If VF (x, A ) is
continuous in (X, 4 ), 4 e X jointly, then F posses-
ses the Fréchet derivative F'(x,) at x, and VF(x,, &)=
=d F(x,,#) = F/(x,)H .

Reparke. Let us note that Corollary 1 does not hold for more
general Banach spaces even if we impose on F more restrictive
conditions. A, Alexiewicz and W. Orlicz [8] proved that there
exists an operation F(x) from a separable Banach space ¢,
to itself, satisfying the condition of Lipschitz, having every-
where the Gateaux differential contimious in x and h Joint-
ly and being nowhere Fréchet-differentiable. An another example
was propesed by M.M. Vajnberg. Let ()= g (e (X), X ) be
an operator of Nemyckij, where N-function g- (e, X ) satis~
fies the conditions of theorem 20.2 [ 1,chapt.VI,$ 20]. Then
h(u) is G3teaux-differentiable in L, , D.A (4,7 ) is con-
tinuous in u, v Jjointly and h(u) satisfies the Lipschitz
condition in L, . But h(u) is nowhere Fréchet-differentiable
in L, [4,5 5,P+91=92]1, Hence these examples show that the
strong continuity of VF (X, &) in (x,,-h), & € X can-
not be replaced in theorem 2 by continuity of VF (X, 4 ) in
(X, ) M & X even if we impose on F +the Lipschits con-
dition.
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Theorem 3. Let X be a reflexive Banach space, F: X—»
~— X o mapping of X into X . Suppose that P possesses
the G8teaux differential V F (X, #v ) 1in a convex neighbour-
hood U (x,) of x, € X. If VF(x,,6Hh) 15‘3';2:1;: conti-
nuous in (x,, f), h € X jointly, then F possesses the
Fréchet derivative at x, and VF (X, )=d F(x,,A)=Fx,)h.

Proof. Is similar to that of Theorem 2,

3. Unless otherwise explicitly stated, X, ¥ are linear
normed spaces, The concept of a bounded differential can be in-
troduced equivalently as follows:

Definition 1. We shall say that a mapping Fs X = ¥
possesses at X, € X a bounded differential d VF (X, ,# )
if

Flx,+ )= F(x,)=dVF(X,,h)+w (X,,h) ,

. Mo, n)l
Wherﬁm ——"-RL“——.- o)dVF(.x,,a:h) =axdVF(x,, )

for any real ov and dVF (x,, /o) is continuous at & =
= @ _JTet us note that the continuity of LVF (X, , /) at
4 = 0 implies the boundedness of & VF (%, , 42 ) in some
neighbourhood of 4 = 0 .
Since A VF (x,, h) is homogeneous in h , dVF (X,, A )
is bounded on any closed ball Dlixll £ RYCE X . In-
stead of the continuity of AV F (X, , ) at h = 0, one
may require that aVF (x,, A) is bounded in some neigh-
bourhood of h =0, or that &V F (x, , # ) is bounded
on some sphere [l x | = R > 0.

Theorem 4. Stuppose that F : X —» Y  and that P
possesses a bounded differential d V F (x,, A ) at X, € X.

- 322 -~




If F is strongly continuous, uniformly continuous, continuous,
weakly continuous, demicontinuous, compact in some neighbour~
hood U (X,) ©of x, 5, then dVF(x,,# ) considered as
the mapping in h from X into Y 4is strongly continuous,
uniformly continuous, continuous, weakly continuous, demiconti-
nuous, compact, respectively.

Proof. For instance we shall assume that F is weakly
contimwous in U (x,) of x, . For any given #, ¢ X 1let
{h,5e X be a sequence such that 4, X, 4, . We need
to show that &V F(X,, M, ) - d VF (x,, 4, ) in Y.
If this assertion were not true, we could find a positive num-
ber €, , & linear functional ¢ € )’*, e, I =1 and a
subsequence { —%,w‘bi such that

(11) 1 (dVF (X, My, )-dVF(x,,h,),¢, )] & €, ,

where (4, €, ) denotes the value of e, at the pointg € Y-
Choose & positive number t such that x,+th, € U (X,) ,
X, +th,, € U(X,) for every n (n =1,2,...) &

We have
A2V (F(Xo+ t M, )= F(Xo+ th, ), € )] =
2tI(AVF (Xors Mg ) - AV F (X, M), €, )| = | (@ (X, , T, ) e,)] -
- 1@ (X, th,), €0 2 EHAVF(X,, 1, ) -

= dVF (Xoy Mo),€,) | = N (X, , thmyg VI -

“lw (X, th, ).

Since ,h»”—"!—& A,, I, | € C for every n . Hence,

by our assumption there exists a positive number to .
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(0< ¢, < t)
o B A,

and an integer 4, such that far every

Eo
(13) ﬂa)(x,,t,lu,%)u < -g’; t,, lw (x,,t, 4, )< 5 t, -
In view of (11),(12),(13)
(14) | CF(Xo+ toHmg) - FXo+t, b0, 801> 52 t, (4 Zhe,).

since d,+ t, An, € U (X)), X, + t,h, € U(X,)
X, + 1, —"b,,vb—y!—hx,i't; 4, and P is weakly continuous on
Ux,), Flx,+t, /h«,,v“)l’ Fx,+t, 4, ) , which contra=-
dicts with (14). Therefore V F (x,,- ) 1is weakly continuoug
mapping in h'e X . This completes the proof.
Corollary 2. Let F : X — Y be a mapping of X in-
to Y . Suppose that there exists a bounded differential
dVF (x,, ). If P is completely continuous ( or comple-
tely compact) in some neighbourhood U (x,) of x, , then
dVYF(X,,/A ) is completely continuous (or completely com-
pact) in he X.
Gorollary 3. Let X be a reflexive Banach space, F: X
—> X amapping of X into X having the property that P
is strongly continuous in some neighbourhood ’u(.x,) of X, €
€ X . Suppose that F possesses the bounded differential at

X, € X, Then d YF (x,, o ) is completely compact in
any closed ball Dg = { e X; I Al € R3.

4+ We introduce the following

" Definition 2. A mapping F : X — VY is called lo-
_cally weakly uniformly differentiable in D= (x€ X3 IxI<R)
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if for every ¢ > 0 anmd X, € Dy  there exist two po-
sitive constants 0" (€, X, ), n (6, X, ) such that, if
lt1 < 0(e, x,), then )

14 wx,thrl < e

holds for every x € D (x,, 7 ) N Dg , where
W (X, th)=F(x+th)-F(x)-VF(x,th),

DX, ) = {xeX:llx-X,lI<7} and. h is an arbitrary (but
fixed) element of X .

A Gdteaux differential VF (X, , 4 ) is said to be
continuous at X, € X if X, —» X, implies VF(x,,,h )
—VF (Xy,# ) . Using the arguments similar to those of [1,
chapt.I1, it is easy to prove the following

Theoren 5. Let F s X — Y  be a mapping having im
Dg C(lx Il <« R) & continuous Giteaux differential VF(x,4).
Then F is locally weakly uniformly differentiable in Dg

Theorem 6. Suppose that F s X —= VY is continucus
in some neighbourhood % (x,) of X, € X . If ‘P 1is locally
weskly uniformly differentiable on U (i, ), then VF (Xo, &)
is continuous at x, ¢ X.

Proof. For any given (but fixed) h € X , let {X,§ € X
be a sequence such that Xy —> X, Then there exists an
integer n, such that for every m & M, Xn. € U (X,).
Since F is locally uniformly differenmtiable on U (Xo) ,

Flxe+ th)= Flx)m VF(3, , b h)+ @ (%o, th)
FlXp+th)=F(X )= VF(X,,,th)+@ (X, ,th), M2 m,.

Taking t > 0 sufficiently small, we have that
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X, +th € UCX,), X,+th € U(X,) for every n
(n=1,2,...) « For any given € > 0  there exist two
positive constants t, (0<?,< ¢t),n (€, X, ) such that
for every X € D (Xo,7) N U (X0 ) there is

Il %;w (X, t, W)l < & | since x, = X,, %, 6D(x,7)Nn

7
N U CX,) forevery m & M, . Hence

A lf @, t, < §, I @ x,, A<

(m & m,). Since F is continuous on U (X, ), for a gi-

ven —%— t, ‘there exists an integer n, such that far

every m = m,
(16) | F (Xt t, )= F (Xt B, )< 1, IF O~ F (x ) lI<
<% t,
By (15) and (16)
IV F (%, ) = VF(x,, A < N w0t 8 R0 11+
+ ;g; w(.x,,,t,h)ll+§2— < E

for every m & M, , where m, = mat (M, ,MN,, M, ).

This concludes the proof.

Amapping F : X — Y 1is said to be weakly Lipschitzi-
an[4,chapt.I]at x, € X if for every h e X, Il = 1
there exists 0'(h ) > 0 such that if [t | < o"(4 ), then

NF(Xe+th)-F(xdl & Clltnll,

where a positive constant C does not depend on h .
Theorem 7. Lett £ : X = ¥  be a mapping locally
weskly uniformly differentiable on_,vvé'dgng neighbourhood U (X, )
of X € X . Suppose that P 16'9_9n.t1nuous in U CX,) and
weakly Lipschitzian at X, € X. ThenVF(X,,)=DF(x,4)
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md DF(X,,h)= F'(x,) , where F'(x, ) denotes the
Gateaux derivative of F at x,

.

Proof. According to theorem 6, V F (X, , #2) is conti-
nuous at X, € X . From the continuity of YF (x,, ) at
x, € X and the existence of Y F (x , A ) in some
neighbourhood of x, it follows that VF (x,,#)=DF (X,, ).
Since F 1is weakly Lipschitzian at x, , DF (x,, o) is
bounded. This concludes the proof,

It is easy to prove the following

Theorep 8. Suppose that a mapping F : X —» Y possesaes
the GAtesux differential VF (X, , ) at %, € X. Then
YF (X, , /) 1s continuous at h = O under an arbitrary
direction ue X (one may suppose that l 4¢ | = 4 ) if and
only if F is conﬂnuoua at x, under the direction u .

Recall that a mapping F: X — Y  1is called continuous
at x, 6 X under an arbitrary direction uw (lu ll = 1) 1f
t% IF(Xe+ta)-F(xXo)Il = 0.

Definition 3. A mapping F: X ~ Y  is said to be
weakly uniformly differentiable in Dy ={xe€ X: N x|l < R }
if for any given € > 0  there exists a positive number
d"(e) such that if It| < o Ce ), then ll-%w(.x,thlk&
for every X € Dg , where w (X, tha)= F(x+th)-F(x)-VRix,th)
and h .is an arbitrary (but fixed) element of X .

Definition 4. Suppose that a mapping F: X—> Y  is G&-
teaux-differentiable in an open ball Dg ., (X > 0).VWe
shall say that F possesses an uniformly continuous differen—
tial VF (X, o) under the direction he€ X in
Dg (Ix 1 < R )" if for any given € > 0 there exi*to
a number o (e, h) > 0 such that if
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lt] < (e, /), then

I VF(x+th, A)~-VF(x, )< €
for every X € Dpg ¢ :

Theorem 9. Let F : X —> Y be a mapping having an uni-
formly continuous differential Y F (X, 42 ) in Dg un
der the direction h € X . Then F 1is weakly uniformly diffe-
rentiable in Dg .. Conversely, if F is uniformly continuous
in Dg,o (x > 0) and F is weakly uniformly diffe-
rerﬁ:iable in Dy , then VF (X, /2 ) is uniformly conti-
nous in DR with respect to x .

Remark. Some further results concerning the Gateaux, Fré-
-chet and bounded differentials will be published later.
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