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Commentationes Mathematicae Univers i ta t ia Carolinae 

8 ,3 (1967) 

ON PAIRS OF'MATRICES WITH PROPERTY L 

J i r i KOPiCfiEK, Praha 

In [1] T.S.Motzkin and O.Taussky have proved the f o l l o 

wing theorem. 

Theorem 1. Let A,B be two ft\ x m mat r i ce a s a t i s f y 

ing the condit ions 

l.A and B are hermitian. 

2 . The eigenvalues XA , \ , . . . , 3 ,^ and ^ , (U,Xf 

'"if**** °^ A an<* B r e s p e c t i v e l y can be ordered in such a 

way t h a t , for every oo and (i r e a l , cc A4 +> /3 A^ are a l l 

eigenvalues of the matrix & A +• /3 B (property L ) . 

Then AB ** BA . 

The aim of t h i s paper i s t o general ize t h i s theorem, or , 

more p r e c i s e l y , to prove 

Theorem 2 . Let A,B be two <n x m, matrices , sar-

t i s f y i n g the fol lowing condit ions: 

1 . Both A and B have only rea l eigenvalues A^ and 

(Cf̂  r e s p e c t i v e l y ( i = 1 , 2 , . . . , n) , and the matrix otA +flh 

can be diagonalized by a s i m i l a r i t y transformation (depending 

in general on oc and /J ) for every r e a l oc and /& • 

2 . A, B have the property L • 

Then AB » BA and A and B can be diagonalized by 

the same s i m i l a r i t y transformation. 
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Proof« I t i s e u f f i c i e n t to construct a matrix T f 

dtt T + 0 , such that %m T~* AT and % - T~* BT 

are hermitian. Since A and B w i l l a l s o háve the proper-

ty L t they commute by The ořem l ,and so do A and 3 • 

Por the construction of such a matrix we consider the matrix 

A ť o O * oc A 4- & and rearrange i t s eigenvalue «C A^ + ( ^ 

in A> & m groups in the fol lowing manner: two eigenva-

lues ct A^ *• JCÍ^ and cc A^ «f- ^u^ belong to the sar 

me group i f and only i f X^ * A^ , (U^ * (tc^ . It w i l l be 

convenient to consider A C oc ) for a l l complex numbers oC . 

Since the both s ides of the equal i ty 

dU (* fc - A (cc )) m n f X - \ <* - ( ^ > 

are polynomials in oc we háve that oc ̂  + ^a^ are all 
eigenvalues of A (CC) for all complex oc . Moreover, 
A(oc) can be diagonalized by a similarity transformation 
T~*(&) A(oc) T(ot) for all complex oc . This fact can 
be seen as follows. 
If £ ¥* Jť , the equality OC &£+("% m ^ \ , +. (^$^ holds 

either for all complex cc (if X^ * X^ , (U, - (U^ ) or for 
(Um m ÉU 

* " **h "SZPKI ; * * « % * - ^ (for A # * ^ ) , or 

ocX + fá + oc \ + (Ují for a l l complex cc ( i f ^ • A ^ , 

P^l ** (*& ^m T n u s w e n a v e Vhati for every complex oc d i f -

ferent from <£/£, , the matrix A (oc ) has k d i f f e -

rent e igenvalues oc X^ + £*>» , *"^»A+ ^ > •••» <* A^-*- < u ^ , 

each of them having the samé m u l t i p l i c i t y for a l l such oL whith 

we denote by ^ , >̂ • 49 £ , , . , , A . Let N^ (cc ) be the 

corresponding eigensubspace. I t s dimension i s rt>j because 
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the rank of the matrix fíotA^ • (*,+ ) E - A (<*, )) being 
4 /n -pj, for reál <x , it is Cm, -p± also for com-
plex 00 (its mlnors are polynomials in (X )• Thus 
d&um, N± (<x>) > Pj. . But it can't be > p ^ for co ̂  a^ -. 
In each N^ (<t) $ we can choose an orthonormal basis 
tj (oc), t* (oč),"*, t£ Ccc) . Moreover, if oc^ is arbitra-

ry complex number different from tft^ 9 we can choose these 
t£ fot) to be analytic in some neighbourhood of oco . The

se bases are not determined uniquely, one of them can be ob-
tained from another one by appropriate unit ary transforma-
tion» Thus the matrix TC O L ) diagonalizing ACoc,) is not 
determined uniquely (the columns of T (cc) are vectors 
t* CcC), i * 4f l,...,J*, K> « 4,1,..., pj ), but it can be 
easily seen that the matrix T(ec) ~T*(ct) does not depend 
on the speciál choice of t£ (ot, ) in each point oc dif
ferent from <&IJL • Since i? Ccc) can be chosen analy
tic in some neighbourhood of each ct ¥* ct^ , we see that 

T(oL)T*Ccc) is analytic for all cc + cc^. , and it is boun-

dedo Thus it must be a constant regular matrix, say C • 

Thus we háve obtained that there exists, for all oc • °^g^ * 

a regular uniformly bounded matrix TYoc? satisfying, for 

such cc the conditions 

(1) T«t) T*Coc) * C , 

(2) TCoc) Af<*> - <3C A + M , 

C being a hermitian regular matrix and 
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V*m (1) i t řollows that i T•%-> i » I T*7<*> r4MlT*ť*)UC"lt 

and then 

(3) lTm4(cc) I 4 c#n»t • 

Lat oc^, «^ * « ^ , cĉ  ̂á. 0 , be reál and ivm, cc^ ~ 0 . 
We can assume that "TCoc^) -> T (taking an appropriate sub-
aequence if it is necessary)* From (3), T ia re gul ar and 
"l""^****** T~* . řrom (1) and (2) we obtain 

(4) TT* - C , 

(5) T^BT- M . 

Moreover, we háve, for all oc^ , 

ACcc„) m T C a ^ K e * n A + M ) Tm4f*^ > . 
Multiplying by $** and T , we get 

^T^AT + T^BT- ̂ T"^T+M -

•T-'T^K*nA + M ) T ^ 

where we háve ušed (1),(4),(5)» Slnce tbe right-hand side and 
M are hermitian, and oc^j* 0 i s reál, 1 AT i s also 
hermitian. Thus the matrix with above mentioned propertiea 
ia constructed. By Theorem 1, A B «• BA where A * i A T 

and $ » T"* BT» M and thus 

A B - T A T ^ T g r ^ T Í A r ' . BA . 

% Theorem 1 in [2J (p.10), A and B oan be diagonalized by 
the samé slmilarlty transformation* The proof ia conplete. 
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