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Commentationes Mathematicae Univers i ta t i s Carolinae 

9 ,1 (1968) 

GENERATORS OF THE BOOLEAN ALGEBRA OF REGULAR OPEN SETS IN 

LINEAR METRIC SPACES 

Petr ST£pXNEK,Praha 

In the present paper, systems of generators in special 

B^olena algebras are invest igated . In add i t ion to general ly 

known notions we use some def in i t ions adopted from f 2 J f D J # 

In the f i r s t part we prove a general theorem on Boolean a l 

gebras (the method of i t s proof i s due to Solovay [1J) . Th i s 

theorem i s then app l ied to Boolean algebras of regular open 

s e t s . We prove that the complete Boolean algebra of a l l regu

lar open s e t s in a metric l inear space has a denumerable s y s 

tem of generators. In conclusion, the s imilar theorem for s o 

me other metric spaces i s also proved. 

Def init ion 1 . (cf. [ 2 ] , [3,]) Let B be a complete Boole

an algebra, *t and /& ordinal numbers. A s e t A * A m 

-{^(y,<n$/e4i,-^tf^$ £ B is called an (<*,}(l ) -system on 

& , if the following holds: 

( D ) ? * r i - * V ^ A K r ^ / ) » 0 for any 

(1') <*#<—>*Wy,<> AW^^cr)* O for any 

(2) For each J € Ô  J\/ w(<?,<?) «• 1 . 

(2') For each <f€ CJa N*/ w(T,<f) m 1 , 
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07 1 being the zero and unit element of B respecti

vely. 

Theorem !• Let B be a complete Boolean algebra, 

A>» {iir (#; <f); tfec^jCTe&fl) be an (<K 7 fi ) -system on 

B • Let us construct "tr(CKif<Ax), A1%Aze O^ as follows: 

*r(Xi,X±) = > V , (wCAitf) A <wCXz,c£ )) . 

Then the collection f v ^ , Xx ) ; ^ , ^2 € a i c i? generates 

the whole (oc,/3) -system A^* • 

Proof. Let B' S B be the least complete Boolean 

algebra containing the family { v (X^7 Xx > j X^ , ^ e - ^ £, 

It has to be proved that al l tw(<tf*, cf ) '3 are in E>' .We 

prove i t by induction on cf . I t suffices to show that, 

for any tf e a^ , f € a)^ , the joins Js/ <ur C T, ^K 

J^wfy <f) are in B / * 

Let us suppose that, for some f e c2>^ and for all 

X e 4^ f all <w(A, cf ) 's with cT< £ are in E>' . 

Since apparently J\^ <w (X,cT) e B' f the only thing to 

prove is J\/l iw C X, cT ) & B' . Let us choose X €. o^. 

arbitrarily. Defining 

^-( . 5 V^<«p>^^-^> A ^ ( ' A '^)} 

for any X^ e a)^ . Xi =£ X we obtain, from Definition 

1 property (2), the following equality 

v J>S~ C<ur CX^cC,)^ wCX,<fz » m <vCX,X^)\^ 

w sy?"c*i><<* ^ ^ ^ ^ » - ^ ^ v ^ c ^ f ^ ^ ^ > 
which shows that c» € B' for any A* e O K , i\. *#• #. , 

We show that the following equality holds: ^ <ur c"A, <f) *» 
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- A . c* • &et cT * £ . Uaing (2) from Def in i t i on 1 we 
Xj*Ck ^1 J *° 

obta in 

i t f » 

for any XA -# A » 

This f ac t immediately impl ies ^ / ^ CQ.,cr)& a ^ A
 c ,a • 

Suppose <U. = / ^ C a - € ^ / u r ^7 cr)s*s 0 • T n e n t h e r e e x i s t s 

£, > f such that M> /\ tcr C2i, fa ) #- o , s ince £s/ufCi\? 

(T)=1. But J s / ' u r ^ 3", f ) * ^ holds; by (2 ' ) of De f in i t i on 

1 . Then there e x i s t s A.̂  such t h a t 

^ A W " ( A , f f l ) A 1 ^ U f t f ) * O -

But S0 #* £ implies I \ -4s A ^ by the assumption Cl ' ) 

in Def in i t i on 1. Then we ob ta in IV C &, §# ) A W CA,f f M 

A C^ =¥ 0 . .From t h i s i n e q u a l i t y we obta in the fol lowing 

a s s e r t i o n : 

There e x i s t f# , ^ such tha t <^ < f2 —> f„ * f ) 

and 

<wCJL,fe ) A « r a 1 f p A ^ c a , ; fr ) /\wca.,ft)+ o . 

But F «= §z and f » £, by Def in i t ion 1 ( l ' ) - a c o n t r a 

d ic t ion^ 

This proves t h a t J*s£ wr cCKct) & A c~ .which completes 

the proof of Theorem 1* 

Remarks In the peceding proof, we did not use (1) from 

the d e f i n i t i o n of an fee, & ) -system. I t means t h a t a s l i g h t 

l y s t ronger theorem could be formulated. We do not do i t b e 

cause of the connection of Theorem 1 with the theory of V -

model9 (cf. L21). 



If there is an foe, /3 )-system in any Boolean al

gebra, it has, as we have proved, O^, generators. In so

me special Boolean algebras, a suitably chosen (ac,(S)-sys

tem generates the whole algebra. It means that such an al

gebra has CO^ generators. In what follows, we deal with 

Boolean algebras in linear topological spaces. Let us re

call some definitions: A set <r c P in a topological spa

ce ( P, ̂  > is called a regular open set if yn£ (c£ cr) «* 

& (f . The collection B of all regular open sets of a 

space ( P,t ) with operations V<£6 m 3n/ < ^ J ^ ^ h 

/\^^%d(^r^),^j^t^(P^u)^heve <U £ 6 ; is a complete 

Boolean algebra. If the sets from a family a, are mutually 

disjoint, we use the symbol E x ( a ) . Souslin's number 

(U>( Pj X > of a topological space ( P, T? ) is introduced 

as follows: 

^(P.^^snusrite, nBct(E*(*)&<*<zV&ca*da,~oc »; 

it means that p, ( P, f ) is the least cardinal number witr. 

the property that in ( P} t? > there is no disjoint family 

of open sets having this cardinality. A space (P ; r ) is 

said to be saturated if ĉx (&> t)=s<<*(P,7z) holds for any 

non-void open subset cr of P • One can easily verify that 

each topological linear space is saturated. In the following, 

we use the following theorems proved in [3J: 

1° (U, ( P7 f > is a regular cardinal, 

2° if (Py t ) is a metric space, then^C^'jr) -= ^ 

for some <x ; it means that xx, ( P} f ) is an isolated 

cardinal. 



Theorem Z» Let ( P ; f ) be a saturated metric space, 

g> the complete Boolean algebra of a l l open regular sets in 

(Pf V ) . Then B has a denumerable set of generators. 

Proof . The metric space f P, f ) is saturated and 

fU ( P, tf ) * Hc+'f nolds for some CTC • By induction on 

zyv < d>0 we construct a sequence of regular open se ts 
A*->•'•»«!, C ^ n ^ o ^ ; A f , . ~ , a ^ < cHc > • 

Let B * " f B ^ j ^ , ^ be a family of non

empty open sets such that 

(a) d(&A }< ^ for any <\^ e a)^ , 

(b) £ * ( B * > ; 

(c) ci f p B^ ) * P . 

There is such a family because (u, ( P, t ) «• M^.^ • Put 
AA =r 1nt(ct BA ) f or *ny ^ e O ^ The family 
•if A^ > Â  € a)^ $ sa t i s f ies (a) - (c) as well. Having con
structed the sets A* * for any m, £ <n„ , we con-

•^f'" *<tp ° 7 

struct the sets A ~ * as follows: Let 
*V.f » • * ^ty * 7 

A ^ "• A.̂ , De a** arbitrary already constructed set, and let 

< A * C ^ ; -v*€ **-* x**"> * *~ <"-«'.-••-**.>* 
be a disjoint family of non-empty regular open sets such that 

/ rA * A 
a A7.., ^<^4<r ' < r j+T for any 3 ^ - K - € <̂ ec and that 

oT^ <y we define: urc>i.,c?0 .-.- „ V \ A , a . In [3 J 

i t is proved that ^0 t j C- { i t r ^ , </") ; <n.ec3ot cTe d^ j is a 

( 0 , oc ) -system on B • Following Theorem 1, the elements 
o f * ^ « c a r e generated by a denumerable family {v (<n,<nt ) ; 

<Yi, <rn e ^c ? • We show th^t the sets A % ttt 4 ^ 



can be constructed from elements of ^oeG by induction 

on m . For any X^ € o ^ ? A^ is tw (4 f A,,, ) 0 Ha

ving constructed a l l the sets Aft a for some 

/n ? we have 

A«i . . . . -V , **.< ' * r r " 1 + 1' * * " ) A A * - " a - * 

This proves the theorem, for each regular open set in 

( P 7 t ) being the join of a family of se t s A ^ ... ^ . 

This follows from the construction of these se t s . 

Remark. Theorem Z can be proved without verifying that 

JloaCf i s a (at7 (I)-system. Instead of th is we have to 

prove that the sets 

V(<rt, mt > mr V A * .„ * (<h&*n,<n 8t &„, & X^ ) 

generate the sets A ^ ... ^ , This can be done direct

ly, by analogy to the proof of Theorem 1. 

Corollary 1. Let ( P> t ) be a linear metric space, 

3 the complete Boolean algebra of all regular open sets in 

( P, f) . Then B has a denumerable set of generators. 

Remark. It is possible to give some other conditions 

for a topological space to be saturated. 

We say that a space ( P; ?? ) i s homogeneous if, for e-

very two points £*, y, €• P , there exists a homeomorphism 

Cf of P onto P such that cp CiX ) = 0£ . The follow

ing assertion gives a sufficient condition for a space 

( P , V ) to be saturated. 

Lemma 1. Let ( P % V ) be a homogeneous topological 

space. Let there exist a saturated set c^ c P such that 

(U (<Kj , t O * - (U ( P,t?) . T.hen ( P} f ) i s saturated. 

•Proof. Let there exist a non-empty set eg c P such 
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t h a t (CJL C <r0 } *& > < (U. ( PJ *c > . We can e a s i l y ve r i fy 

t h a t CKf -# 0 . Let us f i x X € cr^ f <t£ e C£ .Then t h e 

r e i s no homeomorphism 97 such t h a t cp C*X .> *» ^ , and 

t h i s gives a c o n t r a d i c t i o n . From t h i s fo l lows t h a t ( P7 -c > 

i s s a t u r a t e d . 

Coro l la ry 2 . Let ( P; tf ) be a metr ic space which s a 

t i s f i e s the assumptions of Lemma 1. Then the complete Boo

l ean algebra of a l l r e g u l a r open s e t s i n ( P, f ) has a de -

numerable se t of g e n e r a t o r s . 
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